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Abstract

Since most digital cameras use color filter arrays to sample red, green, and blue colors by a specific pattern, only
one color sample would be taken at every pixel location. The process named demosaicking is exploited to recover
the full-color image from the incomplete color samples. The paper presents a novel demosaicking method based
on two-dimensional continuous 3 × 3 order HMM (2D 3 × 3 CHMM), which incorporates the statistics of high resolution
images into the CFA interpolation process. The proposed new method adopts an approach of MAP sequence
estimation and exploits high-order statistical dependency between missing pixels. Experiment results demonstrate that
the proposed method outperforms several existing or state-of-the-art demosaicking techniques in terms of both objective
and subjective evaluations.
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1 Introduction
Digital imaging devices find a broad range of applica-
tions, particularly in digital cameras, surveillance de-
vices, and mobile phones [1–5]. Every pixel must consist
of three independent primary color components: red,
green, and blue, when a digital camera obtains a color
image [1, 6]. In order to reduce costs, most digital cam-
eras use only one monochromatic image sensor with a
color filter array (CFA) which makes each pixel to obtain
only one color component. The most common CFA is
the Bayer pattern that includes twice as much green
information compared to blue (or red) information. To
reconstruct the full-color image from such CFA samples,
the missing color components need to be estimated by
the color demosaicking (CDM) process.
The quality of the reconstructed image relies on not

only the image contents but also the demosaicking
methods [7, 8]. The earliest proposed approaches are the
interpolation-based methods such as nearest-neighbor
replication, bilinear, and bicubic interpolation. Although
the implementation of these methods is simple and fast,

they yield severe artifacts like zippering or false color
information, especially along highly textural regions or
the edges. The recently developed methods include the
directional linear minimum mean square-error estima-
tion (DLMMSE)-based CDM method [9], the variance of
color difference (VCD)-based CDM method [10], the
adaptive homogeneity CDM (AHD) method [11], and
the successive approximation (SA)-based CDM method
[12]. These demosaicking methods make the assumption
that the local correlations are high. Such an hypothesis
may be well effective for Kodak images, while the
assumption may fail for images such as those in the
McMaster dataset [7, 8]. The nonlocal similarity method
(NS) and the nonlocal similarity fusion method (VCD-NS)
presented recently exploit the image nonlocal redundancy
to improve the CFA interpolation result [13, 14]. The
demosaicking methods which use nonlocal similarity are
called the nonlocal CDM methods. Similarly, we call the
demosaicking methods that only use local correlations the
local CDM methods.
Most block-based image classification algorithms decide

the class of a block by examining only the feature vector
of this block [15]. Since context information between
blocks is ignored, the performance of such algorithms is
limited [16]. In order to improve image classification by
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context, J. Li et al. [15] proposed a two-dimensional hid-
den Markov model (2D-HMM), in which the state transi-
tion probability for each block relies on the states of
nearest neighboring blocks from vertical and horizontal
directions. The 2D-HMM has wide applications in the
field of pattern recognition and image processing [17–20].
However, the context information which a block depends
on may arise from other directions, such as diagonal
direction [21, 22]. In order to overcome the defect of the
assumption of the 2D-HMM, the paper [22] presents the
2D 3 × 3 CHMM, where the probability density of the
observation depends on not only current state but also
immediate vertical and horizontal states, and where the
state transition probability depends on not only imme-
diate vertical and horizontal states but also immediate
diagonal state.
In this paper, we present a novel demosaicking method

based on 2D 3 × 3 CHMM, which incorporates the sta-
tistics of HR images into the interpolation process. In
our method, the problem of CFA interpolation is con-
verted into the MAP sequence estimation, which ex-
ploits high-order statistical dependency between pixels.
Extensive experiments show that our proposed method
outperforms the demosaicking algorithm based on
two-dimensional continuous HMM. This is because
that 2D continuous high-order HMM can better model
spatial correlation in image data compared to the exist-
ing 2D continuous HMM.
The remainder of the paper is organized as follows:

Section 2 provides the definition of the 2D continuous
3 × 3 order HMM. Section 3 gives some algorithms to
solve the basic problems for the 2D continuous 3 × 3
order HMM. Section 4 describes in detail the proposed
demosaicking algorithm. Sections 5 and 6 present the
experimental results, and Section 7 concludes the paper.

2 Definition of the 2D continuous 3 × 3 order
HMM
Let IM, N = {(i, j)| 1 ≤ i ≤M, 1 ≤ j ≤N} be a M ×N integer
grid. If i' < i, or i' = i and j' < j for (i', j'), (i, j) ∈ IM, N, we
call that (i', j') is before (i, j) and write (i', j') < (i, j).
Put φi, j = {(i', j')| (i', j') < (i, j)}.

Ui; j ¼
i−1; jð Þ; ði−1; j−1Þ; ði; j−1Þf g; i > 1; j > 1;
i−1; jð Þf g; i > 1; j ¼ 1;
i; j−1ð Þf g; i ¼ 1; j > 1:

8<
:

Vi; j ¼
i−1; jð Þ; ði; j−1Þf g; i > 1; j > 1;
i−1; jð Þf g; i > 1; j ¼ 1;
i; j−1ð Þf g; i ¼ 1; j > 1:

8<
:

We denote the state and the observation at (i, j) by qi, j
and oi, j, respectively. Then, we give the following two
assumptions (1) and (2).

P qi; jjqk;l; ok;l; k; lð Þ∈φi; j

� �
¼ P qi; jjqk;l; k; lð Þ∈Ui; j

� �
ð1Þ

P oi; jjqi; j; qk;l; ok;l; k; lð Þ∈φi; j

� �
¼ P oi; jjqi; j; qk;l; k; lð Þ∈V i; j

� �
ð2Þ

Let O = {oi, j| (i, j) ∈ IM, N} be an observation matrix
and Q = {qi, j| (i, j) ∈ IM, N} be a state matrix. Suppose the
observation oi, j at a specific state follows multivariate
normal distribution. Then, (Q,O) is 2D 3 × 3 CHMM
when and only when (1) and (2) hold.
For convenience, the parameters of the 2D 3 × 3

CHMM (Q,O) are given as follows:

(1) L represents the total state number.
(2) The probability density of oi, j(2 ≤ i ≤M, 2 ≤ j ≤N)

B ¼ bk;m;n oi; j
� �j1≤k;m; n≤L

� �
¼ P oi; jjqi; j ¼ n; qi−1; j ¼ k; qi; j−1 ¼ m; 1≤k;m; n≤L

� �n o
¼

n
2πð Þ−p=2 det Σk;m;n

� �� 	−1=2
e−

1
2 oi; j−μk;m;nð Þ0 Σk;m;nð Þ−1 oi; j−μk;m;nð Þ

j1≤k;m; n≤L
o

where μk, m, n and Σk, m, n are the mean vectors and the
covariance matrix, respectively, and where p is the di-
mension of oi, j.

(3) The probability density of the observation in the
first row

Bh ¼ bhm;n o1; j
� �j1≤m; n≤L; 2≤ j≤N

n o
¼ P o1; jjq1; j ¼ n; q1; j−1 ¼ m; 1≤m; n≤L; 2≤ j≤N

� �n o
¼

n
2πð Þ−p=2 det Σh

m;n

� �h i−1=2
e−

1
2 o1; j−μh

m;nð Þ0 Σh
m;nð Þ−1 o1; j−μh

m;nð Þ

j1≤m; n≤L; 2≤ j≤NÞ
o

where μh
m;n and Σh

m;n are the mean vectors and the co-
variance matrix, respectively, and where p is the dimen-
sion of o1, j.

(4) The probability density of the observation in the
first column

Bv ¼ bvm;n oi;1
� �j1≤m; n≤L; 2≤ i≤M

n o
¼ P oi;1jqi;1 ¼ n; qi−1;1 ¼ m; 1≤m; n≤L; 2≤ i≤M

� �n o
¼

n
2πð Þ−p=2 det Σv

m;n

� �h i−1=2
e−

1
2 oi;1−μvm;nð Þ0 Σv

m;nð Þ−1 oi;1−μv
m;nð Þ

j1≤m; n≤L; 2≤ i≤MÞ
o
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where μv
m;n and Σv

m;n are the mean vectors and the co-
variance matrix, respectively, and where p is the dimen-
sion of oi, 1.

(5) The probability density of the observation in the
initial position

B0 ¼ b0n o1;1
� �j1≤n≤L� � ¼ P o1;1jq1;1 ¼ n; 1≤n≤L

� �n o
¼ 2πð Þ−p=2 det Σ0

n

� �� 	−1=2
e−

1
2 o1;1−μ0nð Þ0 Σ0

nð Þ−1 o1;1−μ0nð Þj1≤n≤LÞ
n o

where μ0
n and Σ0

n are the mean vectors and the covari-
ance matrix, respectively, and where p is the dimension
of o1, 1.

(6) The state transition probability distribution A = {ak,
l, m, n| 1 ≤ k, l,m, n ≤ L},

where ak, l, m, n = P(qi, j = n| qi − 1, j = k, qi − 1, j − 1 = l, qi, j −
1 =m),1 ≤ k, l, m, n ≤ L.

(7) The probability of the state transfer about the first
row

Ah ¼ fahm;nj1≤m; n≤Lg, where ahm;n ¼ Pðq1; j ¼ njq1; j−1
¼ mÞ, 1 ≤m, n ≤ L.

(8) The probability of the state transfer about the first
column.

Av ¼ favm;nj1≤m; n≤Lg , where avm;n ¼ Pðqi;1 ¼ njqi−1;1
¼ mÞ, 1 ≤m, n ≤ L.

(9) The initial state probability distribution π = {πn| 1 ≤
n ≤ L} where πn = P(q1, 1 = n),1 ≤ n ≤ L.

Put τ = (π,Ah,Av,A, B0, Bh, Bv, B). Then, τ may be used
to represent the set of all model parameters.
Set Tn ¼ fq1;n; q2;n;⋯; qM;ng, On= {o1, n, o2, n,⋯, oM, n}.

Assume that Q and O are state matrix and observation
matrix of τ, respectively. If the nth column of Q and O can
be indicated by Tn and On respectively, 1 ≤ n ≤N, then we
have

P TnjTn−1;⋯;T1ð Þ ¼ P TnjTn−1ð Þ ð3Þ

P OnjTn;Tn−1;⋯;T1ð Þ ¼ P OnjTn;Tn−1ð Þ ð4Þ

By (3) and (4), we can deduce that τ equals a
one-dimensional 1 × 2 order HMM λ ¼ ðAτ;B

0
τ;Bτ;πτÞ ,

that is described as follows.

(1) LM represents the total state number. I is used to
represent the individual state, where

Ω ¼ IjI ¼ i1; i2;⋯; ik ;⋯; iMð Þ0 ; ik∈f1; 2;⋯; Lg;
1≤k≤Mg; I∈Ω:

(

(2) Bτ = {bIJ(W)} represents the observation probability
distribution, where

bIJ Wð Þ ¼ P W ¼ o1;n; o2;n;⋯; oM;n
� �0 jTn ¼ J

� �
¼ bhi1 j1 o1;n

� � � b j1i2 j2 o2;n
� �

⋯bjM‐1iM jM oM;n
� �

n > 1; J∈Ω;W∈E:

(3) The initial observation probability density is B
0
τ ¼ f

b JðWÞg, in which

b J Wð Þ ¼ P W ¼ o1;1; o2;1;⋯; oM;1
� �0 jT1 ¼ J

� �
¼ b0j1 o1;1

� �
bvj1 j2 o2;1

� �
⋯bvjM‐1 jM

oM;1
� �

; J∈Ω;W∈E:

(4) The initial state probability is ∏τ = {πJ}, where

π J ¼ P T1 ¼ Jð Þ ¼ π j1 � avj1 j2 � a
v
j2 j3

⋯avjM‐1 jM
; J∈Ω:

(5) The probability of the state transfer is Aτ = {aI, J}, in
which

aI; J ¼ P Tnþ1 ¼ JjTn ¼ Ið Þ
¼ ahi1; j1 � aj1;i1;i2; j2 � aj2;i2;i3; j3⋯ajM‐1;iM‐1;iM ; jM

I ¼ i1;⋯; ik ;⋯; iMð Þ0 ; J ¼ j1;⋯; jk ;⋯; jM
� �0

; I; J∈Ω:

3 Basic problem solving for the proposed model
In order to put the proposed model into some practical
applications, we need to solve these basic problems that
are shown below.

Problem 1: Given τ and O, how do we compute
P(O| τ)?
Problem 2: Given τ and O, how do we get the optimal
state Q = {qi, j| (i, j)∈ IM, N}?
Problem 3: Given the observation matrix O, how do we
adjust τ to maximize P(O| τ)?

3.1 Solution for problem 1
αn(I) is called the forward variable, where αn(I) = P(W1,
W2,⋯,Wn,Tn = I| λ) andWn = (o1, n,⋯, oM, n)

', n = 1, ⋯,
N. Then, we can calculate the forward variable as
follows:

(1) Initialization
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α1 Ið Þ ¼ πIbI W1ð Þ ¼ πi1 � b0i1 o11ð Þ � avi1i2 � bvi1i2 o21ð Þ
�avi2i3 � bvi2i3 o31ð Þ⋯aviM−1iM � bviM−1iM oM1ð Þ;

I ¼ i1;⋯; ik ;⋯; iMð Þ0∈Ω:

(2) Recursion.

αnþ1ðJÞ ¼
X
I∈Ω

ðαnðIÞ � aI; J � bI; JðWnþ1ÞÞ

¼
X
I∈Ω

ðαnðIÞ � ðahi1; j1 � aj1;i1;i2; j2⋯ajM−1;iM−1;iM ; jM Þ�

ðbhi1 j1ðo1;nþ1Þ � bj1i2 j2ðo2;nþ1Þ⋯bjM−1iM jMðoM;nþ1ÞÞÞ
I ¼ ði1;⋯; ik ;⋯; iMÞ

0
; J ¼ ð j1;⋯; jk ;⋯; jMÞ

0
;

(3) Termination

P Ojτð Þ ¼ P W1;⋯;WN jλð Þ ¼
X
I∈Ω

αN Ið Þ ð5Þ

3.2 Solution for problem 2
There is one way to solve problem 2 by the standard as
follows:
Standard: Given τ and O, find the optimum state q�i; j

such that

q�i; j ¼ arg max
1≤m≤L

P qi; j ¼ mjO; τ
� �

¼ arg max
1≤m≤L

P qi; j ¼ mjO; λ
� �

ð6Þ

We call βn(I) backward variable, where βn(I) = P(Wn +

1,Wn + 2,⋯,WN,Tn = I| λ) and
Wi = (o1, i,⋯, oM, i)

', i = n + 1, ⋯, N. Then, we can cal-
culate the backward variable as follows:

(1) Initialization

βN Ið Þ ¼ 1; I ¼ i1;⋯; ik ;⋯; iMð Þ0∈Ω:

(2) Recursion.

βn Ið Þ ¼
X
J∈Ω

βnþ1 Jð Þ � aI; J � bI; J Wnþ1ð Þ� �
¼

X
J∈Ω



βnþ1 Jð Þ � ahi1; j1 � aj1;i1;i2; j2⋯ajM−1;iM−1;iM ; jM

� �
�

bhi1 j1 o1;nþ1
� � � bj1i2 j2 o2;nþ1

� �
⋯bjM−1iM jM oM;nþ1

� �� �Þ
I ¼ i1;⋯; ik ;⋯; iMð Þ0 ; J ¼ j1;⋯; jk ;⋯; jM

� �0
; I; J∈Ω

Define γn(I) as the posteriori probability distribu-
tion of the nth state column qn = I given λ and O,

i.e., γn(I) = P(qn = I|O, λ), in which γnðIÞ ¼ PðO;qn¼IjλÞ
PðOjλÞ

¼ αnðIÞ�βnðIÞX
I∈Ω

αnðIÞβnðIÞ
;

I∈Ω
.

Given τ and O, ηi, j(k) is defined as the posteriori prob-
ability distribution of qi, j = k, i.e., ηi, j(k) = P(qi, j = k|
O, τ), where qi, j is the state at (i, j).

Then, we have ηi; jðkÞ ¼
X

I∈Ω;IðiÞ¼k

PðT j ¼ IjO; λÞ

¼
X

I∈Ω;IðiÞ¼k

γ jðIÞ, in which I(i) is the ith component of I.

Thus, the optimal state q�i; j can be found, where

q�i; j ¼ arg max
1≤ k ≤L

½ηi; jðkÞ�, 1 ≤ i ≤M, 1 ≤ j ≤N.

3.3 Solution for problem 3
Define ξt(I, J) as the probability distribution being in
state I at column t, and in state J at column t + 1, givenλ
and O, i.e.,

ξt I; Jð Þ ¼ P Tt ¼ I;Ttþ1 ¼ Jjλ;Oð Þ; I; J∈Ω: ð7Þ
By αn(I) and βn(I), we have

ξt I; Jð Þ ¼ αt Ið Þ � aI; J � bI; J Wtþ1ð Þ � βtþ1 Jð ÞX
I∈Ω

X
J∈Ω

αt Ið Þ � aI; J � bI; J Wtþ1ð Þ � βtþ1 Jð Þ

ð8Þ
where αn(I) is the forward variable and βn(I) is the back-
ward variable.
We denote the reestimation model and the initial

model by τ ¼ ðπ;Ah
;A

v
;A;B

0
;B

h
;B

v
;BÞ and τ = (π,Ah,

Av,A, B0, Bh, Bv, B), respectively.
To solve problem 3, the reestimation formulae are

given as follows:

μv
m;n ¼

XM−1

i¼1

P qi;1 ¼ m; qiþ1;1 ¼ n;Ojτ
� �

� oiþ1;1

XM−1

i¼1

P qi;1 ¼ m; qiþ1;1 ¼ n;Ojτ
� � ð9Þ
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Σv
m;n ¼

XM−1

i¼1

P qi;1 ¼ m; qiþ1;1 ¼ n;Ojτ
� �

� oiþ1;1−μv
m;n

� �
� oiþ1;1−μv

m;n

� �0

XM−1

i¼1

P qi;1 ¼ m; qiþ1;1 ¼ n;Ojτ
� �

ð10Þ

μh
m;n ¼

XN−1

j¼1

P q1; j ¼ m; q1; jþ1 ¼ n;Ojτ
� �

� o1; jþ1

XN−1

j¼1

P q1; j ¼ m; q1; jþ1 ¼ n;Ojτ
� �

ð11Þ

Σh
m;n ¼

XN−1

j¼1

P q1; j ¼ m; q1; jþ1 ¼ n;Ojτ
� �

� o1; jþ1−μh
m;n

� �
� o1; jþ1−μh

m;n

� �0

XN−1

j¼1

P q1; j ¼ m; q1; jþ1 ¼ n;Ojτ
� �

ð12Þ

μk;m;n ¼

XM−1

i¼1

XN−1

t¼1

X
I; J∈Ω;I iþ1ð Þ¼m; J ið Þ¼k; J iþ1ð Þ¼n

ξt I; Jð Þ � oiþ1;tþ1

XM−1

i¼1

XN−1

t¼1

X
I; J∈Ω;I iþ1ð Þ¼m; J ið Þ¼k; J iþ1ð Þ¼n

ξt I; Jð Þ

ð13Þ

Σk;m;n ¼

XM−1

i¼1

XN−1

t¼1

X
I; J∈Ω;I iþ1ð Þ¼m; J ið Þ¼k; J iþ1ð Þ¼n

ξt I; Jð Þ � oiþ1;tþ1−μk;m;n

� �
� oiþ1;tþ1−μk;m;n

� �0

XM−1

i¼1

XN−1

t¼1

X
I; J∈Ω;I iþ1ð Þ¼m; J ið Þ¼k; J iþ1ð Þ¼n

ξ t I; Jð Þ

ð14Þ

μ0
k ¼ μ0

k ;Σ
0
k ¼ Σ0

k ð15Þ

πn ¼
P q1;1 ¼ n;Ojτ
� �

XL
k¼1

P q1;1 ¼ k;Ojτ
� � ð16Þ

ahm;n ¼

XN−1

j¼1

P q1; j ¼ m; q1; jþ1 ¼ n;Ojτ
� �

XL
n¼1

XN−1

j¼1

P q1; j ¼ m; q1; jþ1 ¼ n;Ojτ
� � ð17Þ

avm;n ¼

XM−1

i¼1

P qi;1 ¼ m; qiþ1;1 ¼ n;Ojτ
� �

XL
n¼1

XM−1

i¼1

P qi;1 ¼ m; qiþ1;1 ¼ n;Ojτ
� � ð18Þ

ak;l;m;n ¼

XM−1

i¼1

XN−1

j¼1

P qi; jþ1 ¼ k; qi; j ¼ l; qiþ1; j ¼ m; qiþ1; jþ1 ¼ n;Ojτ
� �

XL
n¼1

XM−1

i¼1

XN−1

j¼1

P qi; jþ1 ¼ k; qi; j ¼ l; qiþ1; j ¼ m; qiþ1; jþ1 ¼ n;Ojτ
� �

ð19Þ

in which 1 ≤ k, l, m, n ≤ L.
By the formulas (9)–(19), we can get τ such that PðOj

τÞ≥PðOjτÞ.

4 Methods of CFA interpolation algorithm based
on the 2D 3 × 3 CHMM
In the research, we find that the 2D continuous high-order
HMM is suitable for the task of CFA interpolation, thanks
to its ability to model two-dimensional spatial correlations.
The interpolation of a missing pixel could benefit from

the property of the waveform of the true underlying HR
image, in particular, whether the pixel is in an area with
nonlocal similarity or in a region with local correlation.
Since the knowledge of the waveform of the original HR
image is unknown at the missing pixel location (i, j), we
need to estimate the state si, j which is hidden by the
down sampling process [23–25]. The estimation is based
on the observable low resolution features that are exhib-
ited by si, j.
We can construct the 2D continuous high-order

HMM used to demosaicking, if the original 2D intensity
function at the missing pixel xi, j is classified into a
set of states S = {s1, s2}, where s1 and s2 stand for the
state with stronger local correlation and the state with
stronger nonlocal similarity, respectively. For simplicity,
the state set is denoted by {1, 2}. It should be pointed out
that si, j ∈ {1, 2}.
Generally speaking, the observation vector ξi, j of si, j

involves attributes of the LR image in a window Wi, j

which is centered at (i, j); thus, we can measure the
feature vector ξi, j by Wi, j. The contents below have
detailed descriptions on the measure for ξi, j.
For convenience, we denote VCD, DLMMSE, NS, and

VCD-NS demosaicking algorithm by method 1, method

Fig. 1 Schematic diagram of Bayer resampling. From left to right,
the two kinds of Bayer pattern are labeled as a to b
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2, method 3, and method 4, respectively. These four
methods are known and can be directly used.
Without loss of generality, the original Bayer pattern is

shown in Fig. 1a. By method i, the reconstructed image
RIi0 can be gotten through interpolating the missing
colors. After RIi0 is resampled according to the new
Bayer pattern, the sampled red and blue values in the
original CFA image are replaced by the green values in
RIi0, and the sampled green values in the original Bayer
pattern are replaced by the blue values and the red
values in RIi0, which are shown in Fig. 1. By using the
method i again, the full-resolution color image RIi is ob-
tained from the CFA samples which are shown in Fig. 1b.
By sampling RIi by the original Bayer pattern, we can ob-
tain the improved Bayer pattern, where R, G, and B are
the samples in the original Bayer pattern, and where ri,
gi, and bi are the values of R, G, and B channels of RIi(i
= 1, 2, 3, 4), respectively, as illustrated by Fig. 2.
Method 1 and method 2 only use local correlation while

method 3 and method 4 utilize not only the local correl-
ation but also nonlocal similarity. Hence, we call method
i(i = 1, 2) and method j(j = 3, 4) local demosaicking method
and nonlocal demosaicking method, respectively. At pos-
ition (i, j), we denote the weight of method 1 versus
method 3, method 1 versus method 4, method 2 versus

method 3, and method 2 versus method 4 by ξ1i; j , ξ
2
i; j , ξ

3
i; j ,

and ξ4i; j , respectively, where ξki; j∈½0; 1�, k = 1, 2, 3, 4. To be

specific, ξki; j can be calculated by the formulas (20)–(23).

ξ1i; j ¼ min
x

−1 f 1 xð Þ ¼ ξ1i; j num

ξ1i; j den

;

where

f 1 xð Þ ¼
X

m;n∈Wi; j

R m; nð Þ−x � r1ðm; nÞ− 1−xð Þ � r3ðm; nÞ½ �2

þ G m; nð Þ−x � g1ðm; nÞ− 1−xð Þ � g3ðm; nÞ� 	2
þ B m; nð Þ−x � b1ðm; nÞ− 1−xð Þ � b3ðm; nÞ½ �2ξ1i; j num

¼
X

m;n∈Wi; j

r3 m; nð Þ−r1ðm; nÞ½ � � r3 m; nð Þ−Rðm; nÞ½ �

þ g3 m; nð Þ−g1ðm; nÞ� 	 � g3 m; nð Þ−Gðm; nÞ� 	
þ b3 m; nð Þ−b1ðm; nÞ½ � � b3 m; nð Þ−Bðm; nÞ½ �ξ1i; j den

¼
X

m;n∈Wi; j

f r3 m; nð Þ−r1ðm; nÞ½ �2 þ ½g3 m; nð Þ

−g1ðm; nÞ�2 þ b3 m; nð Þ−b1ðm; nÞ½ �2g
ð20Þ

Fig. 2 The improved Bayer pattern

Fig. 3 200 × 200 McMaster images used in the experiments. From left to right, these images are labeled as 1 to 5
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ξ2i; j ¼ min
x

−1 f 2 xð Þ ¼ ξ2i; j num

ξ2i; j den

;

where

f 2 xð Þ ¼
X

m;n∈Wi; j

½R m; nð Þ−x � r1ðm; nÞ− 1−xð Þ

�r4ðm; nÞ�2 þ ½G m; nð Þ−x � g1ðm; nÞ

− 1−xð Þ � g4ðm; nÞ�2 þ ½B m; nð Þ−x

�b1ðm; nÞ− 1−xð Þ � b4ðm; nÞ�2ξ2i; j num

¼
X

m;n∈Wi; j

r4 m; nð Þ−r1ðm; nÞ½ � � r4 m; nð Þ−Rðm; nÞ½ �

þ g4 m; nð Þ−g1ðm; nÞ½ � � g4 m; nð Þ−Gðm; nÞ½ �

þ b4 m; nð Þ−b1ðm; nÞ½ � � b4 m; nð Þ−Bðm; nÞ½ �ξ2i; j den

¼
X

m;n∈Wi; j

f r4 m; nð Þ−r1ðm; nÞ½ �2 þ ½g4 m; nð Þ

−g1ðm; nÞ�2 þ b4 m; nð Þ−b1ðm; nÞ½ �2g
ð21Þ

ξ3i; j ¼ min
x

−1 f 3 xð Þ ¼ ξ3i; j num

ξ3i; j den

;

where

f 3 xð Þ ¼
X

m;n∈Wi; j

R m; nð Þ−x � r2ðm; nÞ− 1−xð Þ � r3ðm; nÞ½ �2

þ G m; nð Þ−x � g2ðm; nÞ− 1−xð Þ � g3ðm; nÞ� 	2
þ B m; nð Þ−x � b2ðm; nÞ− 1−xð Þ � b3ðm; nÞ½ �2ξ3i; j num

¼
X

m;n∈Wi; j

r3 m; nð Þ−r2ðm; nÞ½ � � r3 m; nð Þ−Rðm; nÞ½ �

þ g3 m; nð Þ−g2ðm; nÞ� 	 � g3 m; nð Þ−Gðm; nÞ� 	
þ b3 m; nð Þ−b2ðm; nÞ½ � � b3 m; nð Þ−Bðm; nÞ½ �ξ3i; j den

¼
X

m;n∈Wi; j

f r3 m; nð Þ−r2ðm; nÞ½ �2 þ ½g3 m; nð Þ

−g2ðm; nÞ�2 þ b3 m; nð Þ−b2ðm; nÞ½ �2g
ð22Þ

Fig. 4 200 × 200 Kodak images used in the experiments. From left to right, these images are labeled as 6 to 10

Table 1 CPSNR(dB) results using different demosaicking methods

Images VCD-NS [14] DLMMSE [9] VCD [10] NS [13] 2D CHMM 2D 3 × 3 CHMM

1 38.21 37.87 37.41 38.23 38.01 38.26

2 31.77 28.70 29.22 31.25 31.65 31.85

3 33.87 33.40 32.56 33.99 33.82 33.99

4 27.09 24.49 23.43 27.15 27.16 27.17

5 38.89 38.53 38.16 38.93 38.82 38.98

6 39.64 41.04 39.17 39.49 39.45 41.09

7 37.15 38.54 36.10 37.76 38.26 38.61

8 39.45 40.01 39.28 38.87 39.11 40.05

9 35.82 36.76 33.91 36.55 36.74 36.83

10 36.91 40.11 37.22 37.56 40.01 40.08

Average 35.88 35.95 34.65 35.98 36.30 36.69

Wang EURASIP Journal on Image and Video Processing        (2018) 2018:131 Page 7 of 10



ξ4i; j ¼ min
x

−1 f 4 xð Þ ¼ ξ4i; j num

ξ4i; j den

;

where

ξ4i; j den ¼
X

m;n∈W

f r4 m; nð Þ−r2ðm; nÞ½ �2 þ ½g4 m; nð Þ

−g2ðm; nÞ�2 þ b4 m; nð Þ−b2ðm; nÞ½ �2gξ4i; j num

¼
X

m;n∈Wi; j

r4 m; nð Þ−r2ðm; nÞ½ � � ½r4 m; nð Þ

−Rðm; nÞ� þ g4 m; nð Þ−g2ðm; nÞ½ � � ½g4 m; nð Þ

−Gðm; nÞ� þ b4 m; nð Þ−b2ðm; nÞ½ � � ½b4 m; nð Þ

−Bðm; nÞ� f 4 xð Þ ¼
X

m;n∈Wi; j

½R m; nð Þ−x � r2ðm; nÞ

− 1−xð Þ � r4ðm; nÞ�2 þ ½G m; nð Þ−x � g2ðm; nÞ

− 1−xð Þ � g4ðm; nÞ�2 þ ½B m; nð Þ−x � b2ðm; nÞ

− 1−xð Þ � b4ðm; nÞ�2
ð23Þ

It should be noted that if ξki; j den ¼ 0 then ξki; j ¼ 0:5,

where k = 1, 2, 3, 4.
So far, we might measure the observation vector ξi; j

¼ ðξ1i; j; ξ2i; j; ξ3i; j; ξ4i; jÞ of the state si, j at pixel location (i, j).

Let Ω1
i; j ¼ fsm;njðm; nÞ < ði; jÞg and ξ1i; j ¼ fξm;njðm; nÞ

< ði; jÞg, where (m, n) < (i, j) is defined as m < i, or m = i
and n < j. Let Ω2

i; j ¼ fsm;njðm; nÞ≥ði; jÞg and ξ2i; j ¼ fξm;nj
ðm; nÞ≥ði; jÞg , where (m, n) ≥ (i, j) is defined as n < j, or
n = j and m < i. Set Ω3

i; j ¼ Ω1
i; j∪Ω

2
i; j, ξ

3
i; j ¼ ξ1i; j∪ξ

2
i; j.

Put

Ui; j ¼
i−1; jð Þ; ði−1; j−1Þ; ði; j−1Þf g; i > 1; j > 1
i−1; jð Þf g; i > 1; j ¼ 1
i; j−1ð Þf g; i ¼ 1; j > 1

8<
: ;

V i; j ¼
i−1; jð Þ; ði; j−1Þf g; i > 1; j > 1
i−1; jð Þf g; i > 1; j ¼ 1
i; j−1ð Þf g; i ¼ 1; j > 1

:

8<
:

Based on the definition of the 2D 3 × 3 CHMM, we
have

P si; jjΩt
i; j; ξ

t
i; j

� �
¼ P si; jjsk;l; k; lð Þ∈Ui; j

� �
; t ¼ 1; 2; 3;

P ξi; jjsi; j;Ωt
i; j; ξ

t
i; j

� �
¼ P ξi; jjsi; j; sk;l; k; lð Þ∈V i; j

� �
; t

¼ 1; 2; 3:

The demosaicking method based on the 2D 3 × 3
CHMM is given below.

(1) After the initial 2D 3 × 3 CHMM has been selected,
we reestimate the model by using the formulas
(9)–(19) and the given observation matrix O.

(2) We obtain the state si, j at pixel location (i, j)
according to the solution to problem 2 in
Section 3.2.

(3) Adaptive processing is as follows:
If si, j = 1 and ξ1i; j þ ξ2i; j≥ξ

3
i; j þ ξ4i; j, then the CFA

interpolation result for method 1 is selected.
If si, j = 1 and ξ1i; j þ ξ2i; j < ξ3i; j þ ξ4i; j, then the CFA
interpolation result for method 2 is selected.
If si, j = 2 and ð1−ξ1i; jÞ þ ð1−ξ3i; jÞ≥ð1−ξ2i; jÞ þ ð1−
ξ4i; jÞ, then the CFA interpolation result for

method 3 is selected.
If si, j = 2 and ð1−ξ1i; jÞ þ ð1−ξ3i; jÞ < ð1−ξ2i; jÞ þ ð1−
ξ4i; jÞ, then the CFA interpolation result for

method 4 is selected.

5 Experiments
The proposed demosaicking method, which is denoted
by 2D 3 × 3 CHMM, is implemented and compared with
five other CDM algorithms: VCD [10], DLMMSE [9],
NS [13], VCD-NS [14], and 2D CHMM.
In the section, we assess the performance of various

demosaicking methods on the two benchmark data sets,
which are the Kodak dataset and the McMaster dataset.
A set of testing images are generated by the 5 McMaster
color images in Fig. 3 and the 5 Kodak color images in
Fig. 4. CPSNR is used to quantify and measure the per-
formance of the CDM algorithms.
In the experiments, the original images are

down-sampled into the Bayer CFA images, and then, we
have reconstructed the full-color images using the six algo-
rithms. Table 1 tabulates the CPSNR performance of those
six methods. Among the tested demosaicking algorithms,
our proposed 2D 3 × 3 CHMM method obtains the best
average performance. Specifically, our proposed method
can produce 0.39 dB improvement over 2D CHMM
method, 0.71 dB improvement over NS method, 0.74 dB
improvement over DLMMSE method, 0.81 dB improve-
ment over VCD-NS method, and 2.04 dB improvement
over VCD method.
Figures 5 to 6 show the cropped and zoomed demo-

saicking results of the six schemes on images 2 and 4. It
should be clear that the proposed method yields much
better demosaicking outputs than the other five methods.

6 Results and discussion
2D 3 × 3 CHMM and 2D CHMM significantly reduce
the artifacts and color demosaicking errors and recover
more accurately the missing samples than VCD-NS,
DLMMSE, VCD, and NS. Their higher CPSNR measures
in Table 1 also verify the powerful features in color

Wang EURASIP Journal on Image and Video Processing        (2018) 2018:131 Page 8 of 10



reproduction. These are expected since the classification
and optimization based on the 2D 3 × 3 CHMM and 2D
CHMM to the VCD-NS, DLMMSE, VCD, and NS can
improve the CFA interpolation effects.
Compared with 2D CHMM, the classification based

on the 2D 3 × 3 CHMM takes more context into consid-
eration, and hence, the 2D 3 × 3 CHMM reduces the
false colors and zipper effects and more faithfully pre-
serves the edges.

7 Conclusions
This paper has presented the 2D 3 × 3 CHMM in which
a structured way is provided to incorporate more con-
text information into classification. After several algo-
rithms are given to solve the basic questions for the
model, a novel adaptive demosaicking method based on
the 2D 3 × 3 CHMM is proposed. In the method, the
problem of CFA interpolation is converted to the MAP
sequence estimation. The 2D 3 × 3 CHMM incorporates

Fig. 6 a–g Part of the demosaicking results of image 4 by different methods

Fig. 5 a–g Part of the demosaicking results of image 2 by different methods
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the statistics of HR images into the interpolation process
and exploits high-order statistical dependency between
missing pixels. Experimental results show that our pro-
posed method achieves satisfactory images and outper-
forms several state-of-the-art demosaicking approaches.
In the future, we are planning to further speed up the

proposed demosaicking algorithm and then extend the
method to super-resolution. We are also interested in
applying the proposed method to video analysis.
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