
RESEARCH Open Access

Three-dimensional convolutional restricted
Boltzmann machine for human behavior
recognition from RGB-D video
Lukun Wang

Abstract

This paper provides a novel approach for recognizing human behavior from RGB-D video data. The three-dimensional
convolutional restricted Boltzmann machine (3DCRBM) is proposed which can extract features from the raw RGB-D
data. In a physical model, the 3DCRBM differs from the restricted Boltzmann machine (RBM) as its weights are shared
among all locations in the input and preserving spatial locality. Adjacent frames of the RGB image and the
corresponding adjacent frames of the depth image are set as the input of 3DCRBM. Then, multiple 3D
convolutional kernels can be applied to these four frames to extract spatio-temporal features. In the experiment of
human behavior recognition, the deep belief network (DBN) is established by a layer of 3DCRBM network,
convolutional neural network (CNN), and back propagation (BP) network. 3DCRBM is adapted for unsupervised
training and getting a feature, while CNN and BP are used for supervised training and classifying the human
behavior. The experiment results demonstrate that the correct differentiation rate of 95.7% is achieved, so the
effectiveness of our approach could be validated.

Keywords: Three-dimensional convolutional restricted Boltzmann machine, RGB-D, Human behavior recognition,
Deep belief network

1 Introduction
As an important research direction in the field of
intelligence, human behavior recognition has gradually
attracted people’s attention. At present, human behavior
recognition is mainly divided into vision-based recogni-
tion and sensor-based identification [1, 2]. The former
has been a research hotspot in academia due to its appli-
cation potential in various fields [3]. The relevantly trad-
itional research methods mainly include the template
matching method [4, 5] as well as the state space
method [6]. However, these methods are mainly applied
to a relatively stable environment, while the accuracy of
the light and shadow transformation can be greatly af-
fected under the real complicated situation. Thus, the
identification of human behavior characteristics in a real
complex environment is the main concern of this study.
In recent years, with the development of deep learning

[7], more and more depth models have been introduced

with significant effect in various fields, including target
detection [8], activity recognition [3, 9], and natural lan-
guage processing [10]. For example, Ji et al. [11] pro-
posed a convolutional neural network model for video
analysis on the basis of the traditional convolutional
neural network. This model can decompose the video
data into frames and then hard-coded them. After that,
multiple convolutional kernel operations are done to ex-
tract low-dimensional feature information at the same
position in consecutive input frames, and the mean-
pooling method will downsample the output features of
the convolutions to reduce feature dimensions. This
method has got good results in video-based human body
recognition. Another method, an unsupervised one, was
put forward by Le et al. [12] to directly learn human be-
havior characteristics from surveillance videos. They de-
signed an independent subspace analysis algorithm (ISA)
with the adoption of cascading and convolutional strat-
egies to learn the characteristic information from the
data. It has been testified by experiments that the algo-
rithm can obtain higher recognition rates in human
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behavior recognition. Farabet et al. [13] proposed a
method for extracting feature vectors of dense image
pixels from multi-scale convolution networks trained by
original pixels. Lin et al. [14] decomposed spatio-tem-
poral video sequences in time and space by ASM (ap-
proximate string matching) to implement behavior
recognition. Ni et al. [15] proposed a multi-level context
information depth perception to implement behavior
identification. Megavannan et al. [16] made use of depth
MHI (motion history image) to capture the motion
change processes, and the Hu matrix was used to repre-
sent features. Then human behavior recognition can be
realized by SVM classifier with the extraction of features.
Wang et al. [17] made an action-let ensemble model and
applied it to depth image human behavior recognition,
and obtained good results. Jalal and Kamal [18] designed
a real-time life cycle system and applied it to intelligent
home services with the help of the depth silhouette
method to realize functions such as action monitoring
and behavior identification. Liu et al. [19] used Bayesian
networks to estimate the direction of human action. The
literature [20] broke the limitation of RGB video through
learning the deep video to realize human behavior. The
studies above have proved that videos incorporating 3D
data features are more complex than the traditional 2D
videos. The current recognition rates of human behavior
based on 3D video is not high, and its robustness is
poor.
In order to achieve recognition of human behavior in

RGB-D depth video, this paper is going to present a new
3D convolution-restricted Boltzmann machine model.
The model uses multi-dimensional convolutional kernels
to extract spatio-temporal feature information from suc-
cessive RGB and depth images of a video sequence, and
it uses the pooling method to reduce the dimension of
the feature information. The effectiveness of the algo-
rithm has been verified by the simulation experiment.

2 Basic model
2.1 Restricted Boltzmann machine
The deep belief network (DBN) model was proposed by
Hinton et al. as the new life of neural networks [21] in
the journal Science in 2006 [22]. This kind of network
can extract features with lower dimensionality and
higher discrimination from complex high-dimensional
input data, and it is structurally compose of multiple re-
stricted Boltzmann machines (RBMs). Roux and Bengio
[23] have theoretically confirmed that RBM can fit any
types of discrete distribution if the number of elements
in the hidden layer is large enough. In recent years,
depth algorithms based on RBM have been proved to be
effective in image recognition [24], speech recognition
[25], text recognition [26], and other fields.

Restricted Boltzmann machine is the most important
part of the deep belief network. It is a type of Boltzmann
machine with no link between any visible nodes or hid-
den nodes. Its main advantage is that all visible nodes
are independent of others, so do the hidden nodes. Its
structure is composed of the visible layer V and the hid-
den layer H, and there are several nodes in each layer. In
the structure, the input layer node represents the evalu-
ation of the object and it is used to stand for the data;
the hidden layer represents the state of the evaluated ob-
ject and it is used to improve the learning ability. Except
the link between the two layers, there is no other links
between the nodes in each layer. The same layer relies
on messages to connect. If there is any change of the
message, the state of different layers will be correspond-
ingly changed. The structural characteristics of the re-
stricted Boltzmann machine indicate that the hidden
units and the visual ones are respectively independent.
The following figure shows the structure and the link
weight is represented by W (Fig. 1):

2.2 Convolutional neural network
The convolutional neural network (CNN) was first intro-
duced by LeCun [27, 28] as the solution to the problem
of excessive parameters caused by the full connection of
the input layer during the process of image classification
by the neural network. It is a kind of deep neural net-
work with a convolution structure; the structure can re-
duce the amount of memory occupied by the deep
network and the number of parameters of the network
and then alleviate the over-fitting problem of the model.
The convolutional neural network consists of four layers:
an input layer, a convolutional layer, a subsampling layer,
and an output layer.
CNN has provided an end-to-end learning model in

which the parameters can be trained by the traditional
gradient descent method. The trained convolutional
neural network can learn the features from the image
and complete the extraction and classification of image
features. As an important branch in the research of
neural networks, the convolutional neural network is

Fig. 1 The structure of RBM
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characterized by the practicability that the features of
each layer can be obtained through the convolution ker-
nel of the shared weight by the local region of the upper
layer. Thus, this characteristic makes the convolutional
neural network more suitable for the learning and ex-
pressing the image features than other neural network
methods.
Figure 2 shows the CNN structure. In it, the C layer is

a convolution layer. Each neuron in the layer is con-
nected with the local receptive field of the input layer,
and it is obtained by a convolution operation of the con-
volution kernel at the input layer to extract features. The
S layer is a subsampling layer. Based on the preservation
of the feature information of the convolutional layer, it
takes advantage of translation invariance through a pool-
ing operation to reduce the dimension of the feature
matrix. The last layer of the CNN is a full-connected
layer, it not only transforms the feature information ob-
tained through pooling into a single-dimensional feature
vector, but also uses feedback neural network to imple-
ment image classification.
Thanks to the shared weights of neurons on a map-

ping surface in the CNN, the number of network weight
parameters and the complexity of network parameter se-
lection are both reduced.
The CNN has become a research focus in the field of

image understanding. Its similar weight-sharing network
structure with the biological neural networks makes it
possible to reduce the complexity of network model as
well as the number of weights. This advantage is more
obvious when the input of the network is a multi-dimen-
sional image. The image can be directly used as the in-
put of the network, avoiding the complicated feature
extraction and data reconstruction processes in the trad-
itional recognition algorithms. The convolutional net-
work is a multi-layer perceptron which specially designs
to recognize two-dimensional shapes with its certain in-
variance to translation, scaling, and other forms of de-
formation. In a typical CNN structure, the first few
layers are usually alternating between the convolutional
layer and the downsampling layer, and the last few layers

of the network near the output layer are usually fully
connected networks. The focus of the training processes
of the CNN is to learn the parameters, such as the con-
volutional kernel parameters of the convolutional layer
and the network parameters of the inter-layer connec-
tion weight. The prediction process is mainly based on
the input image and network parameters to calculate the
category label. The keys of the CNN are the network
structure (including convolutional layer, downsampling
layer, fully connected layer, etc.) and the back propaga-
tion algorithms.

3 Methods
The three-dimensional convolutional restricted Boltz-
mann machine (3DCRBM) is different from the trad-
itional RBM in that it uses a local receptive field to link
each output neuron with only a portion of the input
neurons. Using the strategy of shared weights, the
neuron weights of the same plane are the same, thus re-
ducing the parameters of actual training and the diffi-
culty of network training.

3.1 3D convolution
In the analysis of the video sequence, a plurality of adja-
cent frames is taken as the input layer data of the
3DCRBM. Since the traditional two-dimensional convolu-
tion kernel can only extract the spatial dimension features,
the concept of spatio-temporal convolution is proposed.
The spatio-temporal convolutions can extract multi-di-
mensional features of the time and space dimensions
through high-dimensional convolution kernels. The vol-
ume base layer is linked with a plurality of adjacent frames
by means of a high-dimensional convolution kernel, and
the motion characteristics of the video sequence are ac-
quired from the space-time high-dimensional space.
Figure 3 shows the differences between two-dimensional

convolutions and high-dimensional convolutions. (a) is an
ordinary two-dimensional convolution, and (b) the
convolution kernels are two-dimensionally convolved in
both temporal and spatial dimensions. Use a 2 × 2
high-dimensional convolution strategy. The solid and

Fig. 2 CNN Network
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dashed lines represent the convolution kernels of the two
consecutive sets of needles. In each set of convolution ker-
nels, feature mapping weights are shared with each other.
Because spatio-temporal convolutions share weights

when using the same high-dimensional convolution ker-
nel, only a set of features can be extracted in multiple
adjacent frames. In order to extract more features in the
same set of adjacent frames, in the spatio-temporal con-
volution process, different high-dimensional convolution
kernels are convoluted at the same position in adjacent
frames to extract more features. As shown in Fig. 4, in
the same position of two adjacent frames, different con-
volution kernels are used for convolution, so that two
different feature maps are obtained.

3.2 3DCRBM algorithm
Like RBM, 3D convolutional RBM is a probabilistic
model. We define its energy function as:

E v; hð Þ ¼ −a
XN
i; j¼1

vij−
XK
k¼1

bk
XM
i; j¼1

hkij−
XK
k¼1

hk � v � ~Wk
� �

ð1Þ

where a represents the biased item shared in the visual
layer, K represents the number of hidden layers, hkij repre-
sents the value of the k-th hidden layer. bkdenotes the bias
term shared at the k-th hidden layer. ∗ signifies a convolu-
tion operation, ~Wk means that the link weight matrix is
flipped, A · B = trATB. According to the principle of ther-
modynamics, the conditional probability distribution is

P hkij ¼ 1jv
� �

¼ σ bk þ v � ~Wk
� � ð2Þ

where σðxÞ ¼ 1
1þ expð−xÞ . Using formula (2) can calculate

the activation probability of the hidden layer nodes.

Fig. 3 a 2D convolution and b spatial temporal convolution

Fig. 4 Multiple convolutional kernel
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Since there is no direct link between the visible layer
units, it is only associated with the hidden layer h.
Therefore, it can be seen that the cells conform to the
independent conditional distribution and the condition
term is h. The conditional probability distribution is

P vij ¼ 1jh� � ¼ σ aþ
X
k

hk �Wk

 !
ð3Þ

3.3 Active learning
The attribute tag of the data is the classification infor-
mation that humans judge through experience and adds
data to the data. Video data collected in a real environ-
ment is often unlabeled data. These unlabeled data have
a low recognition rate in an unsupervised environment,
and it is costly to artificially add attribute tags to these
data. In response to this problem, the unsupervised ac-
tive learning is used to improve the recognition rate of
the unlabeled data.
A set of unlabeled data is given as X = {x1,…, xn} and

the known label classification as Y = {y1,…, yk}.
Select the softmax function as its computed output

function. The corresponding loss function J(θ) is

J θð Þ ¼ −
1
n

Xn
i¼1

Xk
j¼1

1 yi ¼ j
� �

log
eθ

T
j x

iPk
l¼1e

θTl x
i

" #
ð4Þ

where 1{·} is an indicative formula and the output is 1
or 0. θ = {W, a} The probability that the hypothesis is xi

classified as category j is

p yi ¼ jjxi; θ� � ¼ eθ
T
j x

iPk
l¼1e

θTl x
i

ð5Þ

Calculate the probability P = {p(y1| xi, θ),…, p(yk| xi, θ)}
of input xi for each category. If p(yi = j| xi, θ) exceeds the
preset threshold δ, then xi is considered to be tagged
and classified as yi. For unlabeled data that does not ex-
ceed the preset value, you need to calculate the expected
gradient length [16] for each action. Its calculation for-
mula is

EGL xi
� � ¼Xn

i¼1

p yi ¼ jjxi� �
∇ J θð Þk k ð6Þ

where ∇J(θ) is the gradient of the loss function

∇ J θð Þ ¼ −
1
n

Xm
i¼1

−xi 1 yi ¼ j
� �

−p yi ¼ jjxi; θ� �� �� 	
ð7Þ

The expected gradient length is a measure of the
amount of gradient change for unlabeled data. Since the
calculation of the gradient requires a priori label, the

expected gradient length can be calculated for the un-
labeled data, and the parameter o is selected as the la-
beled data with the high expected gradient length (EGL)
value. The entire network active learning process is
shown in Algorithm 1.

4 Networks
On the basis of the 3DCRBM of Chapter 3, a deep belief
network is designed to extract feature information of the
time and space dimensions. From the physical structure,
the network constructed in this paper is logically struc-
tured by a layer of 3DCRBM network, convolutional
neural network (CNN) network and back propagation
(BP) network. 3DCRBM is applied to unsupervised
learning of the spatio-temporal characteristics of the
video data. CNN and BP are used to provide a supervise
training and to determine the type of behavior in the
video. The network structure is shown in Fig. 5.
3DCRBM is the first layer of the deep structure which

includes four layers: the input layer, the convolution
layer, the pooling layer, and the output layer. It is shown
in Fig. 6.

(1) The input layer is a continuous seven-frame RGB
image extracted from the video and a corresponding
seven-frame depth image. For the ease of calculation,
the RGB image is converted to a grayscale image,
then forming a 14 × 320 × 240 input data.

(2) In the C layer, a 21 × 21 × 3 convolution kernel is
used to convolve the input layer data. In order to
increase the richness of the feature map, two
different convolution kernels are used to convolve
at the same location, and the C layer finally obtains
10 × 2300 × 220 feature maps.

(3) The S layer is a pooling layer. It uses max-pooling
for subsampling. The feature map of the C layer is
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scaled to improve the robustness of the network
for feature patterns. In order to ensure that
the output layer can implement a simulated
approximation, the S layer of the 3DCRBM sets
the scaling factor to 1. The number of feature
maps does not change.

(4) The output layer uses convolution kernel of 21 ×
21 × 3 to give a convolution operation of feature
map after max-pooling, so as to get approximate
input of 14 × 320 × 240.

After 3DCRBM, a CNN network is set below the deep
structure to accept link weights and offset values for
unsupervised training 3DCRBM. The input layer and the
link weight kij of the C layer and the bias item bj
obtained after training 3DCRBM are all initialized and
assigned to CNN network. The structure is shown in
Fig. 7.

1. The input layer, the C1 layer, and the first two
layers of the 3DCRBM assign the convolution
kernel values of the trained 3DCRBM to the CNN.

2. The S1 layer, which is a MAX-pool layer, set a
scaling factor of 5 to obtain 10 × 2 and 60 × 44
feature maps.

3. The C2 layer uses 11 × 11 × 3 convolution to verify
convolution of the two channels. Three different
convolution kernels are set up to be convolved to
obtain 6 × 6 feature maps, each of which has a size
of 50 × 34.

4. The S2 layer is the max-pooling layer. The scaling
factor is set to be 2 to scale the C1 layer feature
map into 25 × 17. The number of feature maps does
not change.

5. In order to unify the dimension in the horizontal
and vertical directions of the feature map, C3
obtains a feature map sized 10 × 10 after the
operation with a 16 × 8 × 3 convolution kernel.
Three different sets of convolution kernels are set
up to get 2 × 18 feature maps.

6. The S3 layer is the max-pooling layer. The scale
factor is set to be 2 to scale the C1 layer feature
map into 5 × 5.

After three times of convolutions and subsampling,
2 × 18 sets of feature maps are finally extracted from
each seven adjacent frame. These feature maps are

Fig. 5 DBN network

Fig. 6 3DCRBM network
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expanded into 360 × 1 (= 2 × 18 × 5 × 5 × 1) eigenvectors
as the input for the next layer. During the process of
spatio-temporal convolution, only 3881 weight parame-
ters need to be trained.
The F layer is the neural network layer and forms the

structure in Fig. 7 together with the S3 layer. 360 × 1 ei-
genvectors are used as the input of back propagation
(BP) network, unsupervised learning weights are
assigned to BP, and softmax is used as the output

function. The entire network is reconstructed according
to the error until the error converges.

5 Experimental results and discussions
In order to verify the validity of 3DCRBM, the open
source dataset CAD-120 [29] and UTKinect [30] are
used as test objects. For each dataset, the effectiveness
of our algorithm will be verified through a series of com-
parative experiments.

Fig. 7 CNN network

Fig. 8 CAD-120 dataset
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5.1 CAD-120 dataset
The CAD120 dataset was collected and published by
Jaeyong Sung et al. of CORNEELL University in 2012.
The dataset uses Microsoft Kinect as a collector and
a total of 120 segments of RGB-D video are captured.
Each video clip has a size of 640 × 480 and a duration
of 45 s. There are altogether 12 actions in these vid-
eos including: washing mouth (A1), brushing teeth
(A2), wearing contact lenses (A3), telephoning (A4),
drinking (A5), opening a bottle (A6), chopping when
cooking (A7), mixing when cooking (A8), chatting in
the sofa (A9), lying in the sofa (A10), writing on a
whiteboard (A11), and operating the computer (A12).
These actions are performed by four volunteers (two
men and two women) in five environments (office,
kitchen, bedroom, bathroom, and living room). Part
of the dataset’s RGB and depth images are shown in
Fig. 8.
The experimental data is classified by K-fold cross-

validation (K-fold). The experimental data is divided
into K groups and the cross-validation process is re-
peated K times. During each time, a different part is
selected as the test data, and the other K − 1 groups
as the training data. Finally, the results of the K ex-
periments are averaged. In this paper, K = 4 is set,
that is, video data for each action is divided into four
groups, each of which is trained in three groups, and
another group is used as the test data repeated four
times so that each group of data is taken as a test
sample. Finally, the result can be obtained by aver-
aging the test results.
According to the location of different actions, the

actions will be assigned to different environments.
Figure 9 shows the confusion matrix of 12 types of
actions after four layers of cross-validation. From the
results, it can be found that the total recognition rate
of motion in different environments is 85.7%. In the
bathroom environment, the highest rate of motion
recognition is 91%. In the living room environment,
the minimum recognition rate is 82%. In addition,
through experiments it can be seen that the confusion
rate of action A5, A6, A7, and A8 is higher, and the
motion characteristics of the two groups of actions
are similar; therefore, they share a high confusion
rate. Moreover, the study has found that the confu-
sion rate is symmetrical, which means, A7 has a
higher confusion rate than A8, and vice versa. In
order to solve the problem of high confusion, a group
of cameras will be probably added to collect the de-
tails of actions.
Table 1 shows a certain groups of recognition rate

raised by some current researchers based on CAD120
dataset. It can be seen that the accuracy rate of our algo-
rithm is relatively high.

Fig. 9 Confusion matrix
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5.2 UTKinect dataset
The UTKinect dataset is used as the experimental object
to verify the validity of the 3DCRBM algorithm. The
dataset has collected 10 actions by 10 different volun-
teers for a total of 200 video sequences. The 10 actions
mainly include the following: walking, sitting down,
standing up, picking up something, taking something
away, throwing something, pushing, pulling, waving, and
clapping. Each volunteer does each movement twice.
Since Kinect is used as a video collector, the videos of
the RGB and depth channels will be captured. The
screenshots of some actions are shown in Fig. 10.
This dataset also uses the K-fold cross-validation

(K-fold) method to classify the experimental data. Set K
= 6, that is, divide the video data of each action into six

groups, train five of them at a time, and use another
group as test data, and repeat six times so that each
group of data is used as a test sample. Table 2 shows the
recognition rate of each action. The motion recognition
rate is compared with the one in paper [30], and it is
found that the average recognition rate of 10 actions of
the 3DCRBM method is 92.9%.

6 Conclusion
This paper proposes a DBN deep network composed of
3DCRBM, CNN, and BP as the verification of 3DCRBM
network algorithm and the solution to the problem of
depth video human behavior recognition. This algorithm
extends the traditional RBM algorithms, increases the
convolution layer and the pooling layer, and reduces the
use of local receptive field sharing weights. The number
of weight parameters and the complexity of network can
be reduced by 3DCRBM. In addition, the 3DCRBM al-
gorithm uses 3D convolution at the input layer and uses
3D convolution kernel to extract the spatio-temporal
features of adjacent frames.
In order to verify the effectiveness of the 3DCRBM al-

gorithm, this paper constructs a DBN deep network
structure composed of 3DCRBM, CNN, and BP and ap-
plies it to human behavior recognition experiments. The
network structure firstly uses 3DCRBM for unsupervised
training and extracts spatio-temporal features from

Fig. 10 UTKinect dataset

Table 1 Comparison of methods

Algorithms Recognition rate

3DCRBM+DBN 85.7%

Koppula et al. [31] 80.8%

Gupta et al. [32] 78.1%

Ni et al. [33] 75.9%

Yang and Tian [34] 71.9%

Piyathilaka and Kodagoda [35] 70%

Sung et al. [36] 67.9%
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RGB-D images. Then, the link weights of the convolu-
tional layer and the pooling layer of the 3DCRBM are
assigned to the CNN, and on the basis of supervised
training again, there is a CNN and BP network, and the
behavior is identified.
In the human behavior recognition experiment, this

paper uses the constructed DBN network to identify the
behavior of the two open datasets CAD120 and UTKi-
nect, respectively. Among them, the CAD120 dataset
obtains 87.5% recognition rate, and the UTKinect data-
set obtains 95.3% recognition rate. It is fully proved that
the algorithm has a greater improvement in accuracy
than the traditional recognition algorithms.
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