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An algorithm for highway vehicle detection
based on convolutional neural network
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Abstract

In this paper, we present an efficient and effective framework for vehicle detection and classification from traffic
surveillance cameras. First, we cluster the vehicle scales and aspect ratio in the vehicle datasets. Then, we use
convolution neural network (CNN) to detect a vehicle. We utilize feature fusion techniques to concatenate high-
level features and low-level features and detect different sizes of vehicles on different features. In order to improve
speed, we naturally adopt fully convolution architecture instead of fully connection (FC) layers. Furthermore, recent
complementary advances such as batch-norm, hard example mining, and inception have been adopted. Extensive
experiments on JiangSuHighway Dataset (JSHD) demonstrate the competitive performance of our method. Our
framework obtains a significant improvement over the Faster R-CNN by 6.5% mean average precision (mAP). With
1.5G GPU memory at test phase, the speed of the network is 15 FPS, three times faster than the Faster R-CNN.
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1 Introduction
Vehicle detection is a very important component in traffic
surveillance and automatic driving [1]. The traditional ve-
hicle detection algorithms such as Gaussian mixed model
(GMM) [2] has achieved promising achievements. But it is
not ideal due to illumination changes, background clutter,
occlusion, etc. Vehicle detection is still an important chal-
lenge in computer vision.
With the revival of DNN [3], object detection has

achieved significant advances in recent years. Current top
deep-network-based object detection frameworks can be di-
vided into two categories: the two-stage approach, including
[4–8], and one-stage approach, including [9–11]. In the
two-stage approach, a sparse set candidate object boxes is
first generated by selective search or region proposal net-
work, and then, they are classified and regressed. In the
one-stage approach, the network straightforward generated
dense samples over locations, scales, and aspect ratios; at
the same time, these samples will be classified and regressed.
The main advantage of one-stage is real time; however, its
detection accuracy is usually behind the two-stage, and one
of the main reasons is class imbalance problem [12].

In the two-stage, Region-based Convolutional Network
method (R-CNN) is the pioneer of deep-network-based
object detection. R-CNN utilizes selective search to gen-
erate 2000 candidate boxes; each candidate box is to be
warped into fixed size and as an input image of CNN, so
2000 candidate boxes will be computer 2000 times. It
has too low efficiency. In order to reduce computer, Fast
R-CNN [5] generates candidate boxes on the last layer
feature map and adopts Rol pooling.
Under Fast R-CNN pipeline, Faster R-CNN [4] shares

full-image convolutional feature with the detection network
to enable nearly cost-free region proposals. The aforemen-
tioned approaches adopt fully connection layers to classify
object. It is time-consuming and space-consuming both in
training and inference time. R-FCN [8] uses fully convolu-
tion and adding position-sensitive score maps. Neverthe-
less, R-FCN still needs region proposals generated from
region proposal network.
The aforementioned methods are general object

detection methods. However, vehicle detection is special
detection. If we straightforwardly use general object detec-
tion algorithms to detect vehicles, the effect is not the
best. The main reasons are the following three aspects: (1)
Faster R-CNN and Single Shot MultiBox Detector (SSD)
using aspect ratios are [0.5, 1, 2], but the aspect ratio
range of vehicles is not so big. (2) In Faster R-CNN and
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SSD extract candidate regions on high-level feature map,
the high-level feature has more semantic information, but
cannot locate well. (3) Vehicle detection requires high
real-time, but Faster R-CNN adopts FC layers. It takes
about 0.2 s per image for VGG16 [13] network.
Aimed to the general object detection methods, there

exist problems. We present an efficient and effective frame-
work for vehicle detection and classification from traffic
surveillance cameras. This method fuses the advantages of
two-stage approach and one-stage approach. Meanwhile,
we use some tricks such as hard example mining [14], data
augmentation, and inception [15]. The main contributions
of our work are summarized as follows:

1) We use k-means algorithm to cluster the vehicle scales
and aspect ratios in the vehicle datasets. This process
can improve 1.6% mean average precision (mAP).

2) We detect vehicles on different feature map
according to different size vehicles.

3) We fuse the low-level and high-level feature map,
so the low-level feature map has more semantic
information.

Our detector is time and resource efficient. We evaluate
our framework on JiangSuHighway Dataset (JSHD) (Fig. 1)
and obtain a significant improvement over the
state-of-the-art Faster R-CNN by 6.5% mAP. Furthermore,
our framework achieves 15 FPS on a NVIDIA TITAN XP,
three times faster than the seminal Faster R-CNN.

2 Related work
In this section, we give a brief introduction of vehicle
detection in traffic surveillance cameras. Vision-based
vehicle detection algorithms can be divided into three
categories: motion-based approaches, hand-crafted
feature-based approaches, and CNN-based approaches.
Motion-based approaches include frame subtraction,

optical flow, and background subtraction. Frame subtrac-
tion computers the differences of two or three consecutive

frames sequences to detect the motion object. Frame sub-
traction is characterized by simple calculation and adapt-
ing dynamic background, but it is not ideal for motion
that is too fast or too slow. Optical flow [16] calculates the
motion vector of each pixel and tracks these pixels, but
this approach is complex and time-consuming. Back-
ground subtraction such as GMM are widely used in ve-
hicle detection by modeling the distribution of the
background and foreground [2]. However, these ap-
proaches cannot classify and detect still vehicles.
Hand-crafted feature-based approaches include Histo-

gram of Oriented
Gradients (HOG) [17], SIFT [18], and Harr-like. Be-

fore the success of CNN-based approaches, hand-crafted
feature approaches such as deformable part-based model
(DPM) [19] have achieved the state-of-art performance.
DPM explores improved HOG feature to describe each
part of vehicle and followed by classifiers like SVM and
Adaboost. However, hand-crafted feature approaches
have low feature representation.
CNN-based approaches have shown rich representation

power and achieved promising results [4–6, 9, 11]. R-CNN
uses object proposal generated by selective search [20] to
train CNN for detection tasks. Under the R-CNN frame-
work, SPP-Net [7] and Fast R-CNN [5] speed up through
generating region proposal on feature map; these approaches
only need computer once. Faster R-CNN [4] uses region
proposal network instead of selective search, then it can train
end to end and the speed and accuracy also improve. R-FCN
[8] tries to reduce the computation time with
position-sensitive score maps. Considering the high effi-
ciency, the one-stage approach attracts much more attention
recently. YOLO [9] uses a single feed-forward convolutional
network to directly predict object classes and locations,
which is extremely fast. SSD [11] extracts anchors of differ-
ent aspect ratios and scales on multiple feature maps. It can
obtain competitive detection results and higher speed. For
example, the speed of SSD is 58PFS on a NVIDIA TITAN X
for 300 × 300 input, nine times faster than Faster R-CNN.

Fig. 1 Vehicle detection on JSHD
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3 Methods
This section describes our object detection framework
(Fig. 2). We first introduce k-means algorithm to prepare
data in Section 3.1. Then, in Section 3.2, we present feature
concatenate to fuse high-level and low-level feature map.
Next, we explain how to generate candidate anchor boxes
on different feature map in Section 3.3. In Section 3.4, we
discuss how to detect different size vehicles on different
feature map. Finally, we introduce batch-norm, hard ex-
ample, and inception; these tricks can improve the result.

3.1 Bounding box clustering
The traditional object detection algorithms use sliding win-
dow to generate candidate proposal, but these methods are
time-consuming. In CNN-based detectors such as Faster
R-CNN and SSD use aspect ratios [0.5, 1, 2], so the candi-
date proposals are less than sliding window. But there are
two issues in this way. The first issue is that the aspect ra-
tios are hand-picked. If we pick better priors of dataset, it
will be easier for the network to predict good detections.
The second issue is that the aspect ratios are designed for
general object detection such as PASCAL VOC [21] and
COCO [22] dataset. It is not very suitable for vehicle detec-
tion. In order to solve these issues, we run k-means cluster-
ing on our dataset instead of choosing aspect ratios by
hand. The cluster centroids are significantly different than
hand-picked anchor boxes. They are suitable for vehicle de-
tection. The k-means algorithm can be formulated as:

E ¼
Xk

i¼1

X

x∈Ci

x−μik k22 ð1Þ

where x is the sample, μi is the average vector of Ci,
and k is the center of clustering. We run k-means by
various k on vehicle sizes and aspect ratios (see Fig. 2).
We choose k = 5 for vehicle weight and height and k = 3
for aspect ratios as a good trade-off between accuracy

and speed. It can improve 1.6% mAP on our vehicle
dataset.

3.2 Baseline network
We use VGG-16 as the baseline network, which is
pre-trained with ImageNet [23] dataset. It has 13 convolu-
tional layer and three fully connected layers. In order to im-
prove detection speed and reduce the parameters, we use
convolutional layer instead of the last three fully connected
layers. It has been proved to be effective in paper [8].

3.3 Feature concatenate
Previous work on Faster R-CNN only uses the last feature
map to general candidate proposal, and it is not good
enough for vehicle detection, because the vehicle scale
change is larger. It is beneficial to concatenate the
high-level and low-level feature [24]. The high-level feature
layers have more semantic information for object classifica-
tion but lack insight to precise object localization. However,
the low-level feature layers have a better scope to localizing
objects as they are closer to raw image. In [24], objects de-
tect on a single concatenate feature map, and it is not ac-
curate enough for multi-scale. In order to detect on
multi-layers, we adopt feature pyramid in our network, as
shown in Fig. 3. Feature pyramid can enrich the feature
presentation and detect objects on different feature layers.
This way is suitable for multi-scale; we can detect different
size vehicles on different feature layers. As shown in Fig. 3,
Firstly, a deconvolutional layer is applied to the last feature
map (conv7), and a convolutional layer is grafted on back-
bone layer of conv6 to guarantee that the inputs have the
same dimension. Then, the two corresponding feature
maps are merged by element-wise addition. In our network,
the last layer feature map is 5 × 5, after deconvolution is
10 × 10. The size is the same as conv6 feature map. We use
four convolutional layers (conv4–7) to generate four differ-
ent size feature pyramid layers. So we can detect different

Fig. 2 Clustering vehicle size and aspect ratios on JSHD. Left is the result of aspect ratios. Right is the result of vehice size
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size vehicles on different size feature pyramid layers. And
this way can improve detection accuracy.

3.4 Reference boxes
In order to detect different size vehicles on different fea-
ture map, we generate candidate proposals on different
feature map. As we all know, different feature maps have
different receptive field sizes. Low-level feature map has
smaller receptive field sizes compared with high-level fea-
ture map. We run k-means on JSHD to get five vehicle
sizes and three aspect ratios. The width and height of each
box are computed with respect to the aspect ratio. In total,
there are two scales and three aspect ratios at each feature
map location. Finally, we combine them together and use
non-maximum suppression (NMS) to refine the results.

3.5 Inception
We use some new technology to improve detection re-
sults including inception and batch normalization. We
employ the inception module on our network. In this
paper, we just use the most simple structure incep-
tionV1, as shown in Fig. 4. The inception module can
improve the feature presentation and detection accuracy.
Batch normalization leads to significant improvements
in convergence while training. By adding batch
normalization on all feature layers in our network, we
obtain more than 1.9% improvement in mAP. Batch
normalization also helps regularize the model.

4 Training and testing
In this section, we introduce the details of network
training and testing, including data augmentation, hard
example mining loss function, and parameter selection.

4.1 Data augmentation
We are lack of labeled data, because labeling data is expen-
sive. In order to avoid overfitting while training network,

we adopt data augmentation. We mainly use two data aug-
mentation methods to construct a robust model to adapt a
variation vehicle. One is using flipping input image. The
second is randomly sampling a patch whose edge length is
{0.5, 0.6, 0.7, 0.8, 0.9} of the original image and at least one
vehicle’s center is within this patch. Please refer to [11] for
more details.

4.2 Hard negative mining
After the matching step, most of the default boxes are
negatives; similar to [11], we use hard negative mining to
mitigate the extreme class imbalance. At each mini-batch,
we make the ration between negative and positive below
1:3, instead of using all negative anchors in training.

4.3 Loss function
We use a multi-task loss function to jointly train our
network end to end. The loss function consists of two
parts, the loss of classification and bounding box regres-
sion. We denote the loss of bounding box regression

Fig. 3 Vehicle detection framework

Fig. 4 The basic inception module
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with Lloc. It optimizes the smoothed L1 loss between the
predicted bounding box locations t = (tx, ty, tw, th) and
target offsets t∗ = (t∗x, t

∗
y, t

∗
w, t

∗
h). We adopt the parame-

terizations of the four coordinates as follows (2):

tx ¼ x−xað Þ=wa; ty ¼ y−yað Þ=ha;
tw ¼ log w=wað Þ; th ¼ log h=hað Þ;
t�x ¼ x�−xað Þ=wa; t

�
y ¼ y�−yað Þ=ha;

t�w ¼ log w�=wað Þ; t�h ¼ log h�=hað Þ;
ð2Þ

where x, y, w, and h denote the box’s center coordinates
and its width and height. Variables x, xa, and x∗ are for
the predicted box, anchor box, and ground-truth box re-
spectively (likewise for y, w, h).
The loss of classification is denoted as Lcls, which is

computed by a Softmax over K + 1 outputs for each
anchors.
Therefore, our loss function is defined as follows (3):

L ¼ 1
Ncls

Lcls þ λ
1

Nloc
Lloc ð3Þ

where λ balances the two parts. We consider the two
parts equally import, and λ = 1 is set to computer the
multi-stage loss.

5 Experiments, results, and discussion
In order to evaluate the effectiveness of our network.
We conduct experiments on our vehicle dataset (JSHD).
The experiments are implemented on Ubuntu 16.04
with a GPUs (NVIDIA TITAN XP) and i7 7700 CPU.

5.1 Dataset
There are large number of various types of vehicles in
highway surveillance video. And it is suitable for traffic
video analysis because of the large and long view of the
road. So we construct a new dataset from 25 videos of
JiangSu highway, Jiangsu province, which we called
JSHD, as shown in Figs. 1 and 5. The dataset contains
5000 frames which are captured from the videos. The

vehicle is classified into four categories (bus, minibus,
car, truck). We do not care for the vehicles that are too
small. Specifically, the vehicle whose height is less than
20 pixels will be ignored. We use random 3000 frames
to train our network and 2000 frames to test.

5.2 Optimization
During training phase, stochastic gradient descent
(SGD) is used to optimize our network. We initialize the
parameters for all the newly added layers by drawing
weights from a zero-mean Gaussian distribution with
standard deviation 0.01. We set the learning rate as
0.001 for the first 60k iterations and 0.0001 for the next
60k iterations. The batch size is 16 for a 320 × 320
model. We use a momentum of 0.9 and a weight decay
of 0.005.

5.3 Results
To evaluate the effectiveness of our proposed network,
we compare our proposed network to the
state-of-the-art detectors on JSHD. Table 1 shows the re-
sults of our experiment. It is obvious that our network
outperforms the other algorithms. We achieve a signifi-
cant overall improvement of 6.5% mAP over the
state-of-the-art Faster R-CNN and 6.9% over SSD300. It
is clear that the precision of the car is lower than that of
the bus and truck because the deep learning detection

Fig. 5 Success detection results on JSHD test set

Table 1 Results on the JSHD

Models Overall (mAP) Car Bus Minibus Truck

Fast R-CNN 67.2 53.6 83.2 62.5 69.5

Faster R-CNN 69.2 55.2 85.4 64.7 71.3

YOLO 58.9 46.6 75.2 53.4 60.5

SSD300 68.8 54.4 85.1 64.3 71.5

SSD512 71.2 57.4 87.2 66.8 73.4

RON320 [25] 73.6 60.2 89.5 69.1 75.5

Ours 75.7 62.4 91.8 71.3 77.3
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algorithms is not friendly to small object. Our network
shows a strong ability on detecting vehicles with a large
variance of scales, especially for small vehicles. In test-
ing, the speed of our network is 15 FPS, three times fas-
ter than the Faster R-CNN. It can been apply to
real-time intelligent transportation systems. In summary,
our network achieves the best trade-off between accur-
acy and speed.

5.4 Discussion
Our network baseline is Faster R-CNN and SSD. We im-
prove the baseline with k-means, feature concatenate, and
detecting on different features to enhance detection. The
analysis results have been shown in Table 2. We can see that
the feature concatenate module is important for detection.
Figure 5 demonstrates qualitative evaluations for our

approach on the test set. We succeed in detecting most
of the vehicles in different appearances, different scales,
and heavy occlusion.

6 Conclusions
In this paper, we present an improved convolutional net-
work for fast and accurate highway vehicle detection.
We use k-means to cluster dataset and learn prior infor-
mation. We use feature concatenate to extract more rich
features. In order to detect different sizes of vehicles, we
detect on different features. With these technology ap-
plication, our framework obtains a significant improve-
ment over Faster R-CNN and SSD, especially small
vehicles. Furthermore, we will do challenging research in
urban with occlusion and complex scene.

Abbreviations
CNN: Convolution neural network; FC: Fully connection; GMM: Gaussian
mixed model; JSHD: JiangSuHighway Dataset; NMS: Non-maximum
suppression; SGD: Stochastic gradient descent
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