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Abstract

In this paper, we develop an extensive research on different types of grayscale images applying standard non local
(NL)-means algorithm on different search and patch windows sizes to obtain optimal parameters where the values
of criteria peak signal-to-noise ratio (PSNR), mean absolute error (MAE), and structural similarity index (SSIM) would
be the best possible. The research shows quantitatively the importance on the appropriate selection of the
windows sizes used during the filtering process. Based on the optimal parameters of the standard NL-means, we
propose the improved preclassification non local-means (IPNLM) for filtering grayscale images degraded with
additive white Gaussian noise (AWGN). The proposal uses a descriptors evaluation for each search window in the
noisy image to apply statistical neighborhood preclassification respect to the homogeneity of each window to
distinguish whether the current noisy pixel is in a homogeneous region or it is in an edge object region. Also, two
thresholds based on the standard deviation of the local region in the noisy image are proposed to classify the
pixels and perform a filtering level degree providing a commitment between the image denoising and the
processing time. The proposal IPNLM reveals good results outperforming other filters based on NL-means by
balancing the tradeoff between the noise suppression, detail preservation, and processing time. Experimental
results demonstrate that IPNLM algorithm can reduce considerably the processing time from 8 through 15 times in
comparison with the standard NL-means and other analyzed filters.

Keywords: Non local-means, Additive white Gaussian noise, Neighborhood preclassification, Search windows, Patch
size, Grayscale image denoising

1 Introduction
Noise is a common problem in digital images; it is usually
incorporated when the images are acquired or transmitted
through the communication channels. Considering that the
noise is inherent in all the images, i.e., low light and poor
visibility; it is essential to carry out the improvement, preser-
vation, and noise removal to obtain less degraded images to
be analyzed and to develop computer vision applications.
Several filtering methods are mainly focused on noise

smoothing, preserving inherent characteristics in the images.
Although, one of the most important algorithms found in

the scientific literature is the non local (NL)-means devel-
oped by Buades [1], which is used in many scientific applica-
tions until today [2–5]. This algorithm estimates a denoised
pixel as the weighted average of the entire image pixels; the
weights exponentially decay in dissimilarities between the
local neighborhood of the current pixel and each local
neighborhood of the surrounding pixels.
The NL-means gets better results than others local

smoothing filters in terms of the mean square error (MSE)
criterion [6], emphasizing the fact that a small MSE does
not guarantee a good visual quality in the restored image
[1]. The novelty of this idea has attracted the interest of
many researchers that are looking to improve the computa-
tional efficiency and image restoration of this algorithm
using better similarity measures [7] and adaptive local
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neighborhoods [8]. Other researchers proposed algorithmic
acceleration techniques [7, 9], the FFT-based computation
of the neighborhood similarities [9], and the multiscale
methodology of the pull-push scattered data interpolation
method [10] to improve the NL-means. Enming Luo et al.
[11] incorporated noise dependence into the weight func-
tion of NL-means and propose two process stages provid-
ing better denoising effect. Dixit and Phadke [12, 13]
proposed a local adaptive filtering method that can track
the noise variance during the NL-means estimation process
and after applying a local denoising filtering method in
those particular areas with remaining noise.
Kaihua Gan et al. [14] introduced a modification in the

NL-means based on edge detection by using the improved
Sobel operator where the result is feedback and used to im-
prove the weight function parameter. To enhance the
weight function in the NL-means, V. Bruni et al. [15] em-
bedded the structural similarity index (SSIM) criterion in
place of the L2 norm and a further refinement of the
denoising results can be performed in the denoised image
by using the Wiener filter in both the denoised and its re-
spective residual images. Rushi Lan et al. [16] considered
the weights as fuzzy variables; these were determined by
solving an energy minimization problem; also, they intro-
duce a new exponential parameter to fuzzify the weights to
map them in a proper space.
For the search windows size, Verma and Pandey [17] pro-

posed an algorithm to select the optimal search window size
for each pixel using values based on the gray scale magni-
tude differences, which describes the local characteristics of
the region. Jing Wang et al. [18] introduced a method that
adaptively adjust the filter parameters in concordance to the
content of different image patch, building a prediction func-
tion, used to compute optimum parameters.
Considering the literature survey, we assume that there

are two ways to establish the window sizes; one is select the
values proposed by previous authors or evaluate experimen-
tally different sizes and choose the one that best suits the
particular needs. So, it was developed an extensive re-
search on 150 different grayscale images to assess the stand-
ard NL-means algorithm behavior on different search and
patch windows sizes to obtain the optimum parameters
where the values of the peak signal-to-noise ratio (PSNR),
mean absolute error (MAE), and SSIM criteria yield the best
results. This research shows quantitatively the importance
on the appropriate selection of the window sizes used during
the filtering procedures. Based on the optimal windows size
parameters found in the evaluation of the standard
NL-means, we propose the improved preclassification non
local-means algorithm (IPNLM) for denoising grayscale im-
ages degraded with additive white Gaussian noise (AWGN).
The proposal employs a descriptors evaluation for each
search window in the noisy image to bring about neighbor-
hood preclassification according to the homogeneity of each

window, wherewith distinguish if the current noisy pixel is
located either in a homogeneous region or in an edge object
region. A criterion value based in two thresholds is proposed
to perform a filtering level. In this way, the pixels are classi-
fied using the value given by the standard deviation of the
local region in the noisy image providing thereby a commit-
ment between the image denoising and the processing time.
The performance results reveal that the proposed IPNLM
algorithm outperforms the standard NL-means and other
filters based on NL-means by balancing the tradeoff be-
tween noise suppression, fine detail preservation, and pro-
cessing time. Experimental results demonstrate that the
proposed IPNLM approach can reduce considerably the
processing time from 8 through 15 times in comparison
with the standard NL-means.
The paper structure is organized as follows: in Section 2.1

is explained the standard NL-means algorithm. In Section
2.2 is shown the simulation experiments to find optimal
parameters for the standard NL-means. In Section 2.3 is
presented the proposed IPNLM algorithm and its filtering
performance in comparison with different NL-means based
filters. In Section 3 are set out the results and its discussion.
Finally, the conclusions are given in Section 4.

2 Methods/experimental
2.1 Standard NL-means algorithm
The NL-means filter is a denoising algorithm whose par-
ticularity lies in the computation of a pixel value based
on a nonlocal similarity averaging of all pixels in the
image. This reduces the loss of the details in the filtered
image [1, 19].
The standard algorithm can be described as follows:

consider a noisy image defined on a discrete grid I given
a discrete noisy image u = {u(i)|i ∈ I}. Then, the estimated
NL-means value NL(u(i)) for a pixel i is computed as a
weighted average of all the pixels in the image,

NL u ið Þð Þ ¼
X
j∈I

w i; jð Þu jð Þ; ð1Þ

where {w(i, j)} is a family of weights that depends on the
similarity between the pixels i and j, and satisfies the
usual conditions 0 ≤w(i, j) ≤ 1 and ∑jw(i, j) = 1. This simi-
larity is based on the magnitude correspondence of the
gray levels neighborhoods u(Ni) and u(Nj), where Nk de-
notes an odd square neighborhood of fixed size and cen-
tered at pixel k.
The similarity measure is a decreasing function of

the squared weighted Euclidean distance d2 ¼ 1
3ð2 fþ1Þ2

ðuðNiÞ−uðN jÞÞ2 of the patches centered respectively at
i and j of the radius size determined for {(2f + 1)| f ∈
ℕ}. Therefore, the pixels with a similar neighborhood
to Ni have larger weights in the average weights.
These weights are defined as,
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wORI i; jð Þ ¼ e−
1

3 2 fþ1ð Þ2
u Nið Þ−u N jð Þð Þ2

h2

X
j

e

1
3 2 fþ1ð Þ2

u Nið Þ−u N jð Þð Þ2
h2

; ð2Þ

where wORI is defined as the original weight function,
X
j

e−
1

3ð2 fþ1Þ2
ðuðNiÞ−uðN jÞÞ2

h2 is the normalizing constant, and the

parameter h controls the filtering level through the
decay of the exponential function and therefore the
decay of the weights as a function of the Euclidean
distances.
Because of the flexibility of the NL-means, Buades [20]

published an improvement to this algorithm, in which the
weight function is modified in the manner of it is set to
the average similar patches up to noise. So, the similarity
windows with quadratic distances smaller than 2σ2 are
fixed to one, while for larger distances decrease rapidly ac-
cording to the exponential kernel. The improved weight
function wIPOL is given as follows [20],

wIPOL i; jð Þ ¼ e
−

max d2−2σ2 ;0ð Þð Þ
h2

� �
X
j

e−
max d2−2σ2 ;0ð Þð Þ

h2

ð3Þ

According to Buades et al. [1], the size of the search
window should be the same size of the whole image;
however, this is costly computationally. So, due to com-
putational purposes, the search of similar windows can
be restricted to a search window of the radius size deter-
mined for {2t + 1| t ∈ℕ}, where the value t is defined by
the user; in this way, it is not necessary to cover all the
pixels of the image considering only those that are inside
of this radius. Generally, authors select the window sizes
in two ways: experimentally according to the best re-
sults obtained for tested images or setting up the
values provided in the table obtained from Buades et
al. [20].

2.2 Optimal parameter values for the NL-means
There are initial parameters that must be established in
the NL-means algorithm, such as filtering level, similar-
ity window (patch), search window, and weight function.
So, one of the purposes of this paper is to provide an
evaluation to find the parameters where the NL-means
works optimally for diverse types of images in terms of
the PSNR and MAE criteria, additionally is suggested
the use of the SSIM as human visual system (HVS)
metric to complement the research. These criteria were
selected because they are the most typically and

extensively tested quality metrics to evaluate several
image processing applications.
We performed evaluations in a set of 150 different im-

ages: from the Berkeley database [21], video sequences
frames, and images commonly evaluated on denoising;
all of them present natural noise and artifacts.
In order to find the optimal parameters to be used in

different scenarios, the standard NL-means algorithm
was implemented, presenting several parameters to be
modified. We decided to establish some fixed conditions
like σ = 10, h = 10 to vary others ast = {6, 8, 10, 14,
17, 19}, f = {1, 2, 3, 4, 5, 6}, and w = {wORI, wIPOL},
carrying out the combinations between these parameters
obtaining 72 different cases for each test image. We de-
cide to select noise level as 10 considering that this is a
typical initial research value [14–16]. Quality metrics as
the PSNR [22], the MAE [6], and the SSIM [23] were
calculated; additionally, to measure computational per-
formance, the processing time (time) is included. For σ
= 10, the values of the patch of 3 × 3 pixels and the
search window of 21 × 21 pixels were taken from the
table provided in [20] and the filtering level h was con-
sidered as the same value of the standard deviation σ of
the noise level, as was suggested in [2].
The procedure that we proposed to obtain the optimal

parameters of NL-means is given as follows:

1. Evaluation and selection between the original
weight function wORI in Eq. (2) and the improved
weight function wIPOL in Eq. (3).

2. Evaluation and selection of the search window size.
3. Evaluation and selection of the patch size.

Figures 1 and 2 show the boxplot comparison for the
windows sizes combinations and the weight functions in
terms of the criteria: (1a) MAE, (1b) PSNR, (2a) SSIM,
and (2b) processing time using the weight functions
wORI (blue) and wIPOL (red) in the standard NL-means
algorithm. From the plots (1a, 1b, and 2a), the original
weight function wORI provides better metrics perform-
ance than the improved weight function wIPOL; more-
over, the longest processing time values are obtained
when the weight function wIPOL is used because of its
optimal search window size of 35 × 35 pixels, and for lar-
ger sizes, the processing time increases considerably as it
is shown in the plots of Fig. 2b. It must be highlighted
that the whiskers and the outliers extent along a large
metric interval since the several characteristics of the
studied images. Nevertheless, this representation allows
us to a better comparison for all the cases by means of
the median and the interquartile range.
For the quality metrics, we obtain the minimum me-

dian value on the search windows of 13 × 13 and 17 × 17
pixels; regarding to the patch size, the analysis reveals
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Fig. 1 Boxplot performance comparison of a MAE and b PSNR criteria for standard NL-means algorithm for different windows sizes combinations
and the two weight functions
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Fig. 2 Boxplot performance comparison of a SSIM criterion and b processing time for standard NL-means algorithm for different windows sizes
combinations and the two weight functions
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that the optimal is the smallest size evaluated in all the
cases. As it can be seen, the MAE and PSNR quality
metrics values for the two weight functions get closer in-
creasing windows sizes. In the case of SSIM criterion,
some combinations like 29 × 11, 29 × 13, 35 × 11, 35 ×
13, 39 × 11, and 39 × 13, the wIPOL function improves the
original weight function, but the processing time is big-
ger than the obtained from smaller windows where the
SSIM value is better.
The Fig. 3 depicts the graphic representation of the

wORI and wIPOL functions for some distances and for
patch sizes of f = {1, 2, 3, 4, 5, 6}. Here, it is observed that
the original weight function wORI is a complete Gaussian
function (see Fig. 3a), which gives a weight for each pixel
within the patch window in a greater or lesser extent,
and the Gaussian function opening is affected directly by
the patch size. On the other hand, the improved weight
function wIPOL is set to average similar patches up to
noise (see Fig. 3b), namely, patches with square distances
smaller than 2σ are set to 1, while larger distances de-
crease rapidly accordingly to the exponential kernel. So,
this creates a strong dependence on the noise estimation
to give the highest weight value leaving out some pixels.
Thereupon, from this research, the original weight func-
tion wORI is chosen as an optimal parameter and is used
in the next experiments.
Figure 4 depicts the visual results obtained during the

evaluation and selection of the patch size for the Barbara
image. Figure 4a, b shows the close-ups of the original
and noisy images, respectively. Figure 4c–g presents the
filtering results for distinct size patches of 3 × 3, 5 × 5,
7 × 7, 9 × 9, 11 × 11, and 13 × 13 pixels, respectively.
The best metrics results were obtained using a patch

size of 9 × 9 pixels providing better noise suppression
and detail preservation in comparison with other patch
sizes (as seen in Fig. 2), although the differences in the
performance criteria for the patches evaluated are al-
most visually indistinguishable between the images of
Fig. 4. The maximum difference between the best and

the worst results in Fig. 4 in terms of the PSNR, MAE,
and SSIM criteria are 0.4639 dB, 0.2948, and 0.0122, re-
spectively. It is important to notize that when the patch
size increases (i.e., 13 × 13), the smoothing begins to ap-
pear in many areas; this can be appreciated on the
shadows of floor area in Fig. 4h.
From these experiments is clearly perceived the influ-

ence of these parameters, so that the noise is decreased
considerably applying a search window size of 17 × 17
pixels and the patch size of 9 × 9 pixels.
To complement the research, it was developed the

evaluation on small search windows and patches using t
= {3, 4, 5, 6} and f = {1, 2, 3, 4, 5}. Figure 5 pre-
sents the statistical boxplots evaluation of small search
windows and patches combinations. As it can be seen,
the median values of the quality metrics are closer
among them; the maximum differences are of 0.148,
0.671 dB, and 0.0082 for the MAE, the PSNR, and the
SSIM criteria respectively. For the processing time, it is
obtained a difference of 1.035 min measured between
the smallest and the biggest window. From the plots, the
best metrics values are given for the window size com-
bination of 11 × 5 (MAE) and 13 × 3 (PSNR and SSIM).
However, the time is about three or four times more
than the search window size of 7 × 7 pixels.
Considering the window sizes analysis achieved, it can

emphasize the importance of the correct selection of the
search window and patch size; and the meaningful dif-
ference when an optimal value of them is established.
According to the results presented in this section, the

best parameters obtained for σ = 10 of Gaussian noise in
grayscale images are the original weight function wORI,
the search window sizes 11 × 11 or 13 × 13 pixels, and
the patch size which can be chosen according to the vis-
ual results or the processing time. The results reveal that
for large search or patch windows sizes, the processing
time is longer; this is clear from the algorithm. Never-
theless, one of the objectives in this paper is to reduce
the processing time by balancing the tradeoff between

Fig. 3 Graphic representation of the a original weight function and b modified weight function
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noise suppression, fine detail preservation, and processing
time. For this reason, it is proposed a search window size of
7 × 7 pixels and a patch size of 5 × 5 pixels. Figure 5 pre-
sents the quantitative differences between the median value
of 7 × 5 combination and the best values found: 0.0359,
0.177 dB, and 0.0031 for the MAE, the PSNR, and the
SSIM criteria respectively; the processing time decreases in
1.0309 min in comparison with the 13 × 13 windows
combination.
It was mentioned that the noise σ and filtering level h have

a strong correlationship, so Buades [20] provides a table to
solve this problem. However, the experimental results ob-
tained in this section demonstrate better results achieved
with a direct correlationship agreed to Tristán-Vega et al.
[2]. Several experiments were also developed related on the
variation of h in the tested images according to [24], and we
found that the best metrics for the noise level σ = 10 were
obtained using a filtering level of h= 12 in most cases.
The filtering parameter h is more sensitive in comparison

with other parameters of the NL-means filtering. This is, if
h is too small, little noise can be removed in the image,

while if h is set too high (h >> σ), the image can be blurred
[25]. There are several papers that show the optimal value
of h based on σ. For instance, Manjon et al. [24] suggested a
value of h= 1.2 × σ using the search window of 11 × 11
pixels and the similarity window of 5 × 5 pixels; Coupe et al.

[26] proposed h ¼ ffiffiffiffiffi
2β

p � σ̂ , where β= 1 and σ̂ is the
standard deviation estimation of the noise by 11 × 11 search
window and 3 × 3 similarity window sizes; Bhushan et al.
[27] presented a value of h= 0.72 for a 11 × 11 search win-
dow size; and Li et al. [25] provided a value of h= 0.45 for
the search window size of 11 × 11 pixels. Moreover, the opti-
mal value of h is not only a function of σ, the window sizes
should be considered (i.e., the block size over which filtering
is performed) [25]. For example, the computational cost of
the filter is increased drastically as a function of the search
window size; a good commitment between accuracy and
computational load can be found with small values, since a
further increase of this value does not produce a noticeable
improvement but increases notably the filter computational
cost [24]. These references reveal different values for the

Fig. 4 The visual results obtained during the evaluation and selection of the patch size, a original Barbara image close-up, b image corrupted
with Gaussian noise of σ = 10, filtered images with different patch size of c 3 × 3, d 5 × 5, e 7 × 7, f 9 × 9, g 11 × 11, and h 13 × 13
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parameter h and close to 11 × 11 pixels for the search win-
dow size. Experimental results obtained indicate two vari-
ants for the proposed value of h = 1.0 × σ (h = 10 for σ= 10):
(a) for the search window sizes of 11 × 11 or 13 × 13 pixels
and the patch size is chosen according to the visual results;
and (b) to reduce the processing time, the search window
size of 7 × 7 pixels and the patch size of 5 × 5 pixels are pro-
posed. It is noticed that the best metrics for the noise level
σ = 10 were obtained using filtering level h = 1.2 × σ. Ac-
cording to the optimal parameters obtained by other re-
searchers, there is a concordance with the proposal of
Manjon et al. [24] that suggests the values of h = 1.2 × σ, the
search window of 11 × 11 pixels, and the similarity window
of 5 × 5 pixels. To demonstrate the performance of the pro-
posed parameters against other ones using standard
NL-means, Table 1 shows the quality metrics for BSD284,
Cameraman, and Brain (obtained from Brain Web) images;
in most cases, the best results were obtained from the pro-
posed parameters; the processing time could be reduced
without a significant quality lost.

It must be noticed that we only present the specific
case of σ = 10; to find the optimal parameters for an-
other σ value, it could be followed the complete pro-
posed procedure or taking the search window and patch
size previously found according to their needs (visual re-
sults or processing time) and then varying the h values
looking for the best metric values.

2.3 The proposed IPNLM filter
The second goal of this paper is the proposal of an im-
proved preclassification NLM (IPNLM) filter; hence, in
this section, we introduce a modification in the filtering
scheme of the standard NL-means algorithm employing
an evaluation of descriptors for each search window in
the noisy image to apply neighborhood preclassification
to be able to distinguish if the current noisy pixel is lo-
cated in a homogeneous region or in an object edge re-
gion. The proposal was taken from the idea that the
noise is inherent in the images, so to solve this problem,
several authors analyze the characteristics of the

Fig. 5 Boxplot performance comparison of a MAE, b PSNR, c SSIM, and d processing time for standard NL-means algorithm for small windows
sizes combinations
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homogeneous regions and the edges of the objects in a
noisy image and use the local region properties of the
image pixels to discriminate between them [28, 29]. We
made use of the parameters obtained in Section 2.2 for
noise level σ =10: search window size of 7 × 7 pixels,
patch size of 5 × 5 pixels, and filtering level h = 12.
It was proposed to describe a texture region, the statis-

tical method [30], where in the homogeneous areas the
second central moment is low and when sudden changes
happen, as edges, the second central moment is high.
The proposed algorithm takes advantage of the hori-

zontal sweep used in standard NL-means determining
homogeneous areas by computing the standard deviation
of the current search window. The proposed criterion is
based upon the comparison of the standard deviation of
the neighborhood of the current search window with a
threshold to make the filtering decision.

The standard deviation of the neighborhood σ SWi of
the current search window intensities SWi centered at
pixel i of {2t + 1| t ∈ℕ} radius size is given as,

σSWi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXiþt

k¼i−t

ðuðkÞ−μSWi
Þ2=ð2t þ 1Þ2;

vuut ð4Þ

where μSWi
is the mean of the search window intensities

centered at pixel i.
Consequently, for each pixel in the image, it is esti-

mated the standard deviation of its associated search
window. So, we have n standard deviation values, where
n is the total number of pixels in the whole image.
Then, we compare the standard deviation of the

current search window σSWi with a threshold to distin-
guish between homogeneous regions and object edge
pixels. If the value of σSWi is greater than a threshold
value, the search window is considered to have object
edge pixels, and it is performed the NL-means with the
parameters previously established; otherwise, the search
window has homogeneous regions and it is applied the
mean filter since in this window there are no fine details
or textures. The proposed filtering condition to the
current noisy pixel is given as follows:

IPNLM v ið Þð Þ ¼ σNSW ið Þ > Thresholdx;
otherwise;

NL u ið Þð Þ
NSW ið Þ ;

�

ð5Þ

where IPNLM(v(i)) is the filtering output of the pro-
posed IPNLM, NL(u(i)) is the NL-means filtering using

the parameters previously established, NSW ðiÞ is the 3 ×
3 mean filtering, and Thresholdx is the threshold based
on the standard deviation of the search windows in the
noisy image.
Two thresholds based on the R-estimators are pro-

posed to carry out the filtering. The R-estimators form a
class of nonparametric robust estimators based on rank
calculations [31, 32]. In the case of absence of any a
priori information about a probability distribution and
data moments, the most powerful rank test is the me-
dian. The R-estimators are well-known robust estimators
of location and they have already been used in image
processing applications resulting in the so-called
R-filters [31, 32]. For instance, the median estimator and
the corresponding median filter are preferred when the
observation data have long-tailed distributions. The me-
dian filter is very suitable for the removal of impulsive
noise, so the median proposal consist of a window size
of N = 2v + 1, which can reject up to v impulses proving
good denoising capabilities. The median filter has good
edge preservation properties, in such a way that, if the
filter window is symmetric about the origin and includes

Table 1 Quality metrics for parameters evaluation on the
standard NL-means state-of-the-art (σ = 10)

Algorithm BSD284

PSNR MAE SSIM Time

Manjon et al. [24] 33.715 3.470 0.917 0.88

Coupe et al. [26] 29.260 7.002 0.683 0.87

Bhushan et al. [27] 29.456 6.863 0.688 1.06

Li et al. [25] 29.159 7.105 0.676 0.92

Proposed (a) for h = 1.0 × σ 33.884 3.495 0.917 1.35

Proposed (b) for h = 1.0 × σ 33.684 3.548 0.915 0.37

Proposed (a) for h = 1.2 × σ 33.771 3.578 0.912 0.90

Proposed (b) for h = 1.2 × σ 33.755 3.448 0.918 0.38

Cameraman

Manjon et al. [24] 35.785 2.860 0.929 1.50

Coupe et al. [26] 29.590 6.773 0.632 1.67

Bhushan et al. [27] 29.641 6.725 0.633 1.71

Li et al. [25] 29.293 6.997 0.622 1.59

Proposed (a) for h = 1.0 × σ 35.997 2.815 0.932 1.66

Proposed (b) for h = 1.0 × σ 35.721 2.999 0.921 0.62

Proposed (a) for h = 1.2 × σ 35.864 2.893 0.928 2.13

Proposed (b) for h = 1.2 × σ 35.814 2.901 0.926 0.65

Brain

Manjon et al. [24] 25.764 12.635 0.817 0.22

Coupe et al. [26] 25.456 12.425 0.769 0.22

Bhushan et al. [27] 25.401 12.518 0.769 0.23

Li et al. [25] 25.378 12.516 0.768 0.23

Proposed (a) for h = 1.0 × σ 25.824 12.618 0.823 0.22

Proposed (b) for h = 1.0 × σ 25.803 12.653 0.823 0.09

Proposed (a) for h = 1.2 × σ 25.796 12.602 0.819 0.22

Proposed (b) for h = 1.2 × σ 25.795 12.554 0.819 0.09
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the origin, the corresponding median filter preserves any
step edge [31]. According to the properties described
above, the R- (median) estimator can be used as noise
detector to identify between a noisy pixel or an object
edge pixel and a pixel related to a homogeneous region
[33]. For these reasons, it is proposed to use the median
estimator to compute the thresholds to perform a filter-
ing level in a hard or soft way. One threshold is pro-
posed as the median of the standard deviations of all the
search windows in the whole image; this is to achieve a
hard filtering condition; and the other one is established
as the half of the first threshold, so it is considered a soft
filtering condition. Both filtering conditions are modeled
as in the following equation:

Threshold1 ¼ median σSW 1ð Þ; σSW 2ð Þ;…; σSW nð Þ½ �
2

;

Threshold2 ¼ median σSW 1ð Þ; σSW 2ð Þ;…; σSW nð Þ½ �

ð6Þ
where Threshold1 or Threshold2 can be used in the vari-
able Thresholdxin Eq. (5).
Using the exposed conditions, the proposed IPNLM

algorithm can evaluate the homogeneity of the current
search window and is possible to decide if the current
pixel is filtered with NL-means or the mean algorithm.
In this way, the pixels are classified using the thresholds
based on the standard deviation of the local region prop-
erties in the noisy image to provide a commitment be-
tween the image denoising and the processing time. If
the proposed IPNLM algorithm applies the Threshold2,
more pixels could be filtered using the mean filter, im-
plying less computational processing time than the
Threshold1, which only takes the half of the value of
Threshold2, and the rest of the pixels could be filtered
using NL-means with optimal parameters, increasing the
processing time.
The runtime analysis of the IPNLM filter with the pro-

posed thresholds (Threshold1 and Threshold2) and the
standard NL-means filter were conducted for different
images and frames of the video sequences using Matlab
2011 in a PC with Intel Core i7 CPU, 4 GB RAM, and
Windows 7 Ultimate.
The complexity of the standard NL-means algorithm

is given as,

search window
� similarity square neighborhood � N �M; ð7Þ

where N ×M is the image size (i.e., number of pixels of
the image) [1].
According to the suggested parameters of Table 1 pro-

vided in [20], a search window of 21 × 21 pixels and a
similarity square neighborhood of 3 × 3 pixels are needed

for the condition σ = 10; so, the final complexity of the
standard NL-means is about 441 × 9 ×N ×M [1]. For the
proposal IPNLM, the minimum complexity is ((n1 ×m1

− 1) ×N ×M) times the addition [34], where n1 ×m1 is
the filtering window size; this is determined when the
threshold is greater than the standard deviation of the
neighborhood of the search window, to wit, the IPNLM
is changed by the mean filter; and the maximum is given
by 49 × 25 ×N ×M considering the optimal values found
in Section 2.2; to wit, when the filtered process is per-
formed only with the NL-means algorithm. Additionally,
since to obtain the median of a window of N ×M values
of the standard deviations, the average number of com-
parisons is typically proportional to N×M; assuming the
original random ordering procedure [35], the complexity
of the proposed Threshold1 is N ×M comparisons plus
one division and for Threshold2 is N ×M comparisons.
Finally, the complexity of proposed IPNLM method de-
pends on the size of the input image and the image
scene content, where the thresholds control the number
of pixels to be filtered with the mean or the NL-means
algorithm with the parameters previously established.

3 Results and discussion
We developed the evaluations in 150 images to obtain
the performance of the standard NL-means and the pro-
posed IPNLM with the two thresholds in the case of the
use of the optimal values proposed and the values pro-
vided by Buades [20]. Figure 6 shows the boxplots for
the (a) MAE, (b) PSNR, (c) SSIM, and the (d) processing
time criteria.
In general, analyzing the three algorithms, when the

proposed IPNLM uses the parameters provided by
Buades [20] (IPNLMT1(2) and IPNLMT2(2)), the statis-
tic of the metric results are better than the standard
NL-means (NLM), but they are worse than the IPNLM
using our optimal parameters (IPNLMT1(1) and
IPNLMT2(1)). The processing time, in the last one, de-
creases considerably because of the small window sizes.
In the specific case of the thresholds, it is important to

notice that the IPNLM Threshold1 provides better results
than the IPNLM Threshold2, but the processing time
among them is reduced in almost an a half in benefit of
the IPNLM Threshold2; so, considering the last one, it
could work for cases when the time is an important
variable.
In Fig. 7, some visual results in some images are provided

by using the standard NL-means and the proposed IPNLM.
From this figure, one can see that the filtering results ob-
tained with the proposed IPNLM Threshold1 and IPNLM
Threshold2 produce better metrics and visual image denois-
ing in comparison with the standard NL-means.
The proposed IPNLM Threshold1,2 (1) algorithms

have been evaluated in the case of degraded images with
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σ = {10, 20, 30, 40} of AWGN and compared with some
state-of-the-art algorithms. Figure 6 shows the boxplots
of the denoising results using the proposed IPNLM
Threshold1,2, standard NL-means and some NL-means-
based filters, such as the non-local means based on edge
detection (NLM-ED) [14], the generalized non-local
means (GNL-means) [11], the non-local fuzzy means
(NLFM) [16], and adaptive isotropic non-local means
(ANLM) [17] filters. The chosen filters, as comparative,
show advantages against other state-of-the-art filters
found in scientific literature.
One advantage of the proposed IPNLM filter is the

fixed value of the parameters found after an extensive
research for the noise level σ = 10 (those are, 7 × 7 pixels
window size, patch size of 5 × 5 pixels, and filtering level
h = 12). These parameters provide better results in most

cases in comparison with other filters. For the cases
where the noise level is different of 10, it was established
the value of h = σ to evaluate all the images.
From Fig. 8, the median values for σ = 10 demonstrate that

the proposed IPNLM Threshold1 and Threshold2 produce
better quality metrics values and the lesser processing time.
The high value outliers for the MAE and the low value out-
liers for the PSNR and SSIM criteria were less and better in
most cases than other filters, a more desirable result. Never-
theless, we have to emphasize that the sample chosen in-
clude different texture, content, sizes in the images, which
produce larger whiskers along the metric values.
In the case of σ = 20, 30, 40, the algorithm provides

competitive performance in comparison with some
NL-means-based methods [11, 14, 16, 17]. It could be
noticed that some median values from other filters get

Fig. 6 Boxplot comparison of a MAE, b PSNR, c SSIM criteria, and d processing time between standard NL-means algorithm and IPNLM proposal,
using (1) optimal parameters and (2) Buades parameters
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closer or better than the proposal; however, in this case,
we are not looking for an optimal h value or window
sizes, which could improve the results.
In general, analyzing the processing time, the proposed

IPNLM is faster than other filters for the samples evalu-
ated and the whiskers are very close from the interquar-
tile range. We noticed that the GNL-means and
NLM-ED algorithms execute NL-means and other stages
to refine the denoising results, which increases computa-
tional processing time.

4 Conclusions
The standard NL-means was implemented and evalu-
ated for σ = 10 of Gaussian noise and it was found that
the best results in the PSNR, MAE, and SSIM criteria
are for the 11 × 11 and 13 × 13 search window sizes;
nevertheless, the lowest processing time is achieved
for the 7 × 7 search window size. The highlight is that
the present research work allows a first optimization

in the standard NL-means algorithm by means of the
use of optimal parameters for the search window and
patch sizes of the standard NL-means; using the pa-
rameters of 7 × 7 search window size and 5 × 5 patch
window size, the filter is faster than using the parame-
ters established by Buades [20], and moreover, the
quality metric values are improved. Performance re-
sults indicate that the proposed parameters provide
better results in comparison with other parameters
optimization found in the novel scientific literature ap-
plied on the standard NL-means in terms of quality
metrics and processing time.
After that, a second optimization using neighborhood

preclassification to evaluate the homogeneity in the noisy
image improves the performance results in terms of the
MSE, PSNR, and SSIM criteria in comparison with the
standard NL-means and other state-of-the-art filters in
most cases when the noise level is σ = 10. Performance
boxplot results in images degraded with different noise

Fig. 7 The visual results of some images by using the standard NL-means and the proposed IPNLM methods: column (a) original images; column
(b) noisy images; column (c) denoised images by standard NL-means; column (d) denoised images by IPNLM Threshold1 with optimal paramaters; and
column (e) denoised images by IPNLM Threshold2 with optimal parameters
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levels using the proposed parameters and the parameters
provided by Buades [20] applied on the proposed IPNLM
reveals that the IPNLM produce better results in the
metrics using both parameters in comparison with the
standard NL-means. Moreover, the outcomes of IPNLM
are better than NL-means-based filters in most cases.
The processing time can be reduced by almost 8 times

using IPNLM Threshold1 and about 15 times with IPNLM
Threshold2 in comparison with the standard NL-means,
so the proposed method potentially could provide a
real-time solution of denoising schemes implemented in
some specific purpose devices. Finally, extensive simula-
tion results with different images have demonstrated that
the proposed filter consistently outperforms other filters
by balancing the tradeoff between the noise suppression,
the fine details and edges preservation, besides in optimiz-
ing and saving computational charge resources.
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