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Abstract

The next-generation High Efficiency Video Coding (HEVC) standard reduces the bit rate by 44% on average compared to
the previous-generation H.264 standard, resulting in higher encoding complexity. To achieve normal video coding in
power-constrained devices and minimize the rate distortion degradation, this paper proposes a hierarchical complexity
control algorithm for HEVC on the basis of the coding unit depth decision. First, according to the target complexity and
the constantly updated reference time, the coding complexity of the group of pictures layer and the frame layer is
allocated and controlled. Second, the maximal depth is adaptively assigned to the coding tree unit (CTU) on the basis of
the correlation between the residual information and the optimal depth by establishing the complexity-depth model.
Then, the coding unit smoothness decision and adaptive low bit threshold decision are proposed to constrain the
unnecessary traversal process within the maximal depth assigned by the CTU. Finally, adaptive upper bit threshold
decision is used to continue the necessary traversal process at a larger depth than the maximal depth of allocation to
guarantee the quality of important coding units. Experimental results show that our algorithm can reduce the encoding
time by up to 50%, with notable control precision and limited performance degradation. Compared to state-of-the-art
algorithms, the proposed algorithm can achieve higher control accuracy.
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1 Introduction
With the development of capture and display technologies,
high-definition video is being widely adopted in many
fields, such as television, movies, and education. To effi-
ciently store and transmit large amounts of high-definition
video data, the Joint Collaborative Team on Video Coding
(JCT-VC), consisting of ISO-IEC/MPEG and ITU-T/
VCEG, proposed High Efficiency Video Coding (HEVC) [1]
as the next-generation international video coding standard
in 2013. Compared with the previous-generation video cod-
ing standard H.264/AVC [2], HEVC uses new technologies,
such as the quad-tree encoding structure [3], which reduces
the average bit rate by 44% while providing the same ob-
jective quality [4]. However, the computational complexity
of HEVC is high [5], and HEVC cannot be implemented on
all devices, especially mobile multimedia devices with lim-
ited power capacity. To reduce the computational

complexity of HEVC, many algorithms have been proposed
to speed up the motion estimation [6], mode decision [7],
and coding unit (CU) splitting [8]. However, the speedup
performance is obtained at the cost of the degradation of
rate distortion performance. In addition, the computational
complexity reduction of these algorithms is not consistent
for different video sequences. Hence, it is significant to con-
trol the coding complexity for different multimedia devices
and sequences.
The research goals of HEVC complexity control are

high control accuracy and rate distortion performance.
High control accuracy can minimize the loss of rate dis-
tortion performance. Many researchers have devoted
considerable efforts toward achieving these goals. Correa
et al. used the spatial-temporal correlation of the coding
tree unit (CTU) to limit the maximal depth of restricted
CTUs. Thus, they reduced the coding complexity by
50% while incurring a small degradation in the rate dis-
tortion performance [9]. Correa et al. further limit the max-
imal depth of CTU in restricted frames to achieve

* Correspondence: pengzongju@126.com
Faculty of Information Science and Engineering, Ningbo University, Ningbo,
China

EURASIP Journal on Image
and Video Processing

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Chen et al. EURASIP Journal on Image and Video Processing  (2018) 2018:96 
https://doi.org/10.1186/s13640-018-0341-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0341-3&domain=pdf
mailto:pengzongju@126.com
http://creativecommons.org/licenses/by/4.0/


complexity control [10]. The abovementioned algorithms
[9, 10] do not fully consider the image characteristics when
determining the restricted CTUs and frames. Correa et al.
used the CTU rate distortion cost in the previous frame as
the basis for determining whether the current CTU should
be constrained or unconstrained, and they controlled the
coding complexity by limiting the modes and the maximal
depth [11]. Furthermore, by adjusting the configuration of
the coding parameters, they were able to restrict the target
complexity to 20% [12]. However, the relationship between
the coding parameters and the complexity is obtained off-
line and cannot adapt to video with different features. Deng
et al. employed the visual perception factor to limit the
maximal depth in order to realize complexity allocation
[13]. Further, they studied the relationship between the
maximal depth and the complexity and limited the max-
imal CTU depth by combining the temporal correlation
and visual weight. Their algorithm not only controls the
computational complexity but also guarantees the subject-
ive and objective quality [14]. In addition, they have

proposed a complexity control algorithm for video confer-
encing, which is adaptable to the features of video confer-
encing [15]. The abovementioned methods of complexity
allocation [13–15] are more effective for sequences with
less texture, while they result in degradation of the rate dis-
tortion performance for sequences with rich texture. Zhang
et al. established a statistical model to estimate the com-
plexity of CTU coding and restricted the CTU depth tra-
versal range to achieve complexity control. However, it
cannot achieve accurate complexity control for the videos
with large scene changes [16]. Amaya et al. proposed a
complexity control method based on fast CU decisions
[17]. They obtained thresholds for early termination at dif-
ferent depths via online training. These thresholds are used
to terminate the recursive CU process in advance. Their al-
gorithm can restrict the target complexity to 60% while
guaranteeing the coding performance. However, the control
accuracy requires improvement and the rate distortion
performance undergoes severe degradation as the target
computational complexity decreases.

a

b
Fig. 1 Partition example of 64 × 64 CTU. a Example of CTU optimal partition and possible PU splitting mode for a CU. b Corresponding quad-tree structure
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To further improve the control accuracy and reduce the
rate distortion performance degradation, this paper
proposes a hierarchical complexity control algorithm based
on the CU depth decision. First, according to the target
complexity and the constantly updated reference time, the
coding complexity of the group of pictures (GOP) layer and
frame layer is assigned and controlled. Second, the
complexity weight of the current CTU is calculated, and
the maximal depth is adaptively allocated according to the
encoding complexity-depth model (ECDM) and the video
encoding feature. Finally, the rate distortion optimization
(RDO) process is terminated early or continued on the
basis of the CU smoothness decision and the adaptive
upper and low bit threshold decision. This paper has two
main contributions: (1) We propose a method with period-
ical updating strategy to predict the reference time. (2) We
propose two kinds of adaptive complexity reduction
methods, which adapt to different video contents well.
The remainder of this paper is organized as follows.

Section 2 describes the quad-tree structure and the rate
distortion optimization process of HEVC. Section 3 pro-
vides a detailed explanation of the proposed method.
Section 4 presents and discusses the experimental
results. Finally, Section 5 concludes the paper.

2 Quad-tree structure and rate distortion
optimization process of HEVC
HEVC divides each frame into several CTUs of equal size.
If the video is sampled according to the 4:2:0 sampling
format, then each CTU contains a luma and two chroma
coding tree blocks, which form the root of the quad-tree
structure. As shown in Fig. 1a, CTU can be divided into
several equal-sized CUs according to the quad-tree struc-
ture, which ranges in size from 8 × 8 to 64 × 64. The CU is
the basic unit of intra or inter prediction. Each CU can be
divided into 1, 2, or 4 prediction units (PUs), and each PU
is a region that uses the same prediction. HEVC supports
11 candidate PU splitting modes, Merge/Skip mode, two
intra modes (2N × 2N, N ×N), and eight inter modes
(2N × 2N, N ×N, N × 2N, 2N ×N, 2N × nU, 2N × nD, nL ×
2N, nR × 2N). The transform unit (TU) is a shared trans-
form and quantization square region defined by a
quad-tree partitioning of a leaf CU. Each PU contains
luma and chroma prediction blocks (PBs) and the corre-
sponding syntax elements. The size of a PB can range
from 4 × 4 to 64 × 64. Each TU contains luma and chroma
transform blocks (TBs) and the corresponding syntax ele-
ments. The size of a TB can range from 4 × 4 to 32 × 32.
RDO process of the quad-tree structure is used to deter-

mine the optimal partition of the CTU. RDO needs to
traverse entire depth in the order shown in Fig. 2 with all the
PU splitting modes. By comparing the minimal rate distor-
tion cost of the parent CU and the sum of the minimal rate
distortion costs of four sub CUs, it is determined whether

the parent CU should be divided into four sub CUs. If the
minimal rate distortion cost of the parent CU is smaller, then
partitioning is not performed; otherwise, it is performed.
Analysis of the HEVC quad-tree structure and RDO

process shows that the high computational complexity of
HEVC is mainly caused by the depth traversal with the
various modes. Considering the limited computational
power of multimedia devices, we design a complexity
control algorithm that skips the unnecessary CU depth
and performs early termination of the mode search ac-
cording to the video coding feature.

3 Methods
This paper proposes a hierarchical complexity control
algorithm based on the coding unit depth decision, as
shown in Fig. 3. The proposed algorithm includes the
complexity allocation and control of GOP layer and
frame layer, the CTU complexity allocation (CCA), the

Fig. 2 Traversal order of RDO

Fig. 3 Schematic of the proposed method
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CU smoothness decision (CSD) method, and the adap-
tive upper and lower bit threshold decision (ABD)
method. The CCA divides the complexity weight of the
CTU and allocates the maximal depth to the CTU in
combination with the ECDM model. The CSD and ABD
further restrict the RDO process and reduce the compu-
tational complexity.

3.1 Complexity allocation and control of GOP layer and
frame layer
Among the encoding process, the first GOP has only
one I frame, and is different from other GOPs. In the
second GOP, the number of reference frames in the first
three frames is less than that in other frames. Except the
first two GOPs, the encoding structures of the subse-
quent GOPs are similar, and the encoding time is nearly
consistent. Moreover, a GOP except the first GOP con-
tains G frames, and for convenience of presentation, we
refer to the m-th frame (m = 1,2,3, …, G) in the j-th
GOP as frame (m,j). For certain k, the frames (k, j) are
corresponding frames. The encoding parameters of the
corresponding frames in consecutive GOPs are consist-
ent. Hence, their proportion of the encoding time is
similar. Figure 4 shows the proportion of the encoding
time in different GOPs for the BQsquare sequence. The
encoding time proportion ρ(k,j) is calculated as:

ρ k; jð Þ ¼ t k; jð Þ
XG

m¼1

t m; jð Þ
; ð1Þ

where t(k,j) is the coding time of frame (k,j). Clearly, the
ρ(k,j) is nearly consistent for certain k. For example,
ρ(4,j) slightly varies in a small range from 0.314 to 0.337.
Inspired by the phenomena, we can estimate the refer-
ence coding time of entire sequence To by normal cod-
ing some frames. To is the predicted value of the normal

coding time of entire sequence, and normal coding
means that frames should be encoded without complex-
ity control.
The first three GOPs are normally coded to obtain the

initial To, and after the third GOP, a frame is normally
coded for every four GOPs to update To, i.e.,

To ¼

J−3ð Þ �
X2G

f¼Gþ1

t f þ
X2G

f¼0

t f ; if f ¼ 2G

1
f −2Gð Þ= 4Gð Þ þ 1

�
Xf −2Gð Þ= 4Gð Þ

g¼0

tg�4Gþ2G

ρ G; 3ð Þ
� J−3ð Þ þ

X2G

f¼0

t f ; if f −2Gð Þ% 4Gð Þ ¼ 0

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

;

ð2Þ
where f denotes the f-th frame, f ∈ [0, F − 1], J is the total
number of GOPs to be encoded, and tf denotes the ac-
tual coding time of the f-th frame. Constantly updating
To causes it to further approach its true value.
After encoding the (j − 1)-th GOP, the target coding

time of the j-th GOP T j
GOP is determined according to

the remaining target time and the number of remaining
frames to be coded. It is calculated as

T j
GOP ¼ T c � To−T coded

F−Fcoded
� G; ð3Þ

where Tc is the target complexity proportion, Tc ⋅ To is
the target coding time of entire sequence, Tcoded is the
consumed encoding time, Fcoded is the number of coded
frames, and F is the total number of frames to be
encoded.
In the case of complexity control algorithms, the rate

distortion performance of video sequences severely dete-
riorates as the target encoding time decreases [9–15].
Moreover, the coding time of each frame in one GOP
differs significantly because of different coding parame-
ters. Hence, the time proportion rather than absolute
time is reasonably used to regulate the encoding com-
plexity. In the study, to achieve temporal-consistent rate
distortion performance, the proportion of time saving is
the same in one GOP. To maintain the same proportion
of the time saving for each frame in the GOP, we allo-
cate the target encoding time by using the temporal sta-
bility of the encoding proportion in the frame layer.
For complexity control of the frame layer, it is import-

ant to maintain good rate distortion performance. In the
proposed algorithm, we estimate the actual time saving
of the coded frame by considering the difference be-
tween the normal coding time of the coded frame and
the actual coding time. Then, the following strategies are
adopted. (1) If the sum of the actual time saving of

Fig. 4 Proportion of k-frame in GOP encoding time

Chen et al. EURASIP Journal on Image and Video Processing  (2018) 2018:96 Page 4 of 14



already coded frames is greater than the target time saving
of the entire sequence, normal coding is carried out in
time to avoid degradation of the rate distortion perform-
ance. (2) When the sum of actual time saving of the coded
frames is less than the target time saving of the entire se-
quence, the remaining frames still need to be encoded
under control. (3) When the actual time saving of the pre-
vious frame is much greater than the target time saving of
the previous frame, the degree of control of the current
frame needs to be reduced. Therefore, the current frame
only uses the CSD method to save the coding time and
achieve better rate distortion performance.

3.2 CTU complexity allocation
The proportion of the CU at each depth changes according
to the characteristics and coding parameters of video se-
quences. Based on the residual information and the ECDM
model, a complexity allocation method for the CTU layer is
proposed in this study. The target complexity of the frame
layer is reasonably allocated to each CTU by avoiding the
RDO process in the unnecessary CU depth.

3.2.1 Complexity weight calculation
In the low-delay configuration of HEVC, the CTU encoded
with large depth often corresponds to the region with
strong motion or rich texture. Figure 5a shows the 16th
frame in sequence ChinaSpeed. Figure 5b shows the
residual of the ChinaSpeed. Figure 5c shows the optimal
partition of ChinaSpeed and blue solid line indicates
motion vector of CU. Clearly, the residual in motion
regions is more obvious and the corresponding optimal
partition is more precise. Therefore, when the CU depth is
0, the residual is reflected by the absolute difference
between the original pixel and the predicted pixel. The
mean absolute difference (MAD) of the CU is used as the
basis for judging the pixel level fluctuation, and the abso-
lute difference that is greater than the MAD is accumu-
lated to obtain the effective sum of absolute differences
(ESAD). Figure 5d shows the relation between the ESAD
and optimal depth of CTU. Here, the optimal depth refers
to the depth calculated through the RDO process. The digit
in each CTU represents the optimal depth, and color de-
notes different ESAD. Clearly, the optimal depth is strongly
related to the ESAD. Therefore, in the proposed algorithm,
ESAD of the i-th CTU, denoted by ωi, is used as the com-
plexity allocation weight of the i-th CTU.

3.2.2 Encoding complexity-depth model
Statistical analysis of the average coding complexity under
the different maximal depth dmax was conducted to explore
the relationship between the coding complexity and dmax

of the CTU. We trained five sequences, as shown in
Table 1, on HM 13.0 software under the low delay P main
configuration. Four different quantization parameter (QP)

a

b

d

c

Fig. 5 Relation between CU partition and residual. a 16th frame in
sequence ChinaSpeed. b Residual. c Optimal partition. d Relation
between ESAD and optimal depth
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values (i.e., 22, 27, 32, 37) are used. The coding time Cnð
dn
maxÞ is obtained statistically when dn

max is 0, 1, 2, and 3, re-
spectively, in the n-th CTU. The coding time when dn

max is
3 is regarded as the reference time, and the coding time is
normalized when dn

max is 0, 1, 2, and 3, respectively, i.e.,

Cnðdn
maxÞ ¼

Cnðdn
maxÞ

Cnð3Þ ; dn
max∈f0; 1; 2; 3g: ð4Þ

The normalized coding times when dmax is 0, 1, 2, and
3, respectively, are summed and the average normalized
coding time CðdmaxÞ is obtained. Figure 6 shows normal-
ized coding complexity difference of four QPs with dif-
ferent maximal depth. We find that the difference of
normalized encoding complexity with different QPs is
small. Thus, we get mean of the training results of four
QPs, as presented in Table 1.
From mean of the training results, the average coding

complexity TCTU under different dmax is obtained, and
the ECDM is established as follows:

TCTU ¼
1; dmax ¼ 3
0:75; dmax ¼ 2
0:52; dmax ¼ 1
0:31; dmax ¼ 0

8
>><

>>:
; ð5Þ

where TCTU represents the average coding complexity of
the CTU under different dmax.
The CCA method is summarized as follows:
1) Obtain the target coding time Tt

f and ωi of the f-th

frame.
2) According to the allocation time of Tt

f and ωi, the

target coding time of the i-th CTU Ti
CTU is calculated as:

Ti
CTU ¼ Tt

f −Rcoded

XI

m¼i

ωm

� ωi; ð6Þ

where Rcoded represents the sum of the actual coding
times of the all the coded CTUs in the current frame,
ωm represents the complexity allocation weight of the

m-th CTU in the corresponding frame of the last GOP,
and I represents the number of CTUs in one frame.
4) Use the normal coding time of the CTU in the

corresponding frame in the third GOP as the normal-
ized denominator to normalize Ti

CTU in order to
obtain the normalized target coding complexity of

CTU ~T
i
CTU.

Table 1 Mean normalized coding complexity of four QPs at
different maximal depths

Training sequence Cð0Þ Cð1Þ Cð2Þ
Traffic 0.23 0.43 0.66

BasketballDrive 0.22 0.44 0.72

BQMall 0.34 0.57 0.78

BQSquare 0.47 0.67 0.84

KristenAndSara 0.29 0.50 0.73

Average 0.31 0.52 0.75
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Fig. 6 Normalized coding complexity difference across the four QPs
with different maximal depth. a Maximal depth = 0. b Maximal
depth = 1. c Maximal depth = 2
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5) According to the ECDM and ~T
i
CTU, set the maximal

depth of the current CTU as:

di
max ¼

0; if ~T
i
CTU≤0:31

1; if 0:31 < ~T
i
CTU≤0:52

2; if 0:52 < ~T
i
CTU≤0:75

3; if 0:75 < ~T
i
CTU≤1

8
>>>><

>>>>:

ð7Þ

In the proposed method, the frames in the first three
GOPs are normally coded. Subsequently, only one frame
out of every four GOPs is normally coded to update T0 and
ratio of CTU optimal depth is 0. When the motion is
strong or the texture is rich, the maximal CTU depth deter-
mined by Eq. (7) will degrade the rate distortion perform-
ance. When the ratio is less than 0.4, the CU at depth 0
only tests Merge/Skip and inter 2N× 2N mode, and longer
coding time is required for traversal of larger depths. Thus,
Eq. (7) becomes:

di
max ¼

1; if ~T
i
CTU≤0:31

2; if 0:31 < ~T
i
CTU≤0:75

3; if 0:75 < ~T
i
CTU≤1

8
><

>:
ð8Þ

3.3 CU smoothness decision
The CCA method avoids traversal of some unnecessary
depths, but after allocating dmax, redundant traversal
may still occur for CUs with depth d ∈ [0, dmax]. It has
been observed that when the residual volatility is smooth
and the motion is weak, the CU is more likely to be op-
timal partition, as shown in Fig. 5c. Therefore, the
current CU no longer proceeds with the deeper RDO
process when the following conditions are satisfied: (1)
the absolute difference between the original value and
the predicted value of any pixel in the CU is smaller
than a certain threshold, and (2) the motion vector is 0.
Apparently, the greater the threshold, the greater is the

probability of falsely terminating the RDO process. The

threshold should be set on the basis of a tradeoff between
the rate distortion performance and the computational
complexity. To obtain the threshold, we perform explora-
tive experiments by normal coding 150 frames under the
low-delay configuration. The training sequences, as shown
in Table 2, with different features are encoded under QP =
22, 27, 32, and 37. We can obtain the partitioned quad-tree
of all the CTUs. Further, we can directly obtain the number
of CUs that is not optimal partition, statistically analyze
them, and ensure that the former conditions with the
threshold (ranging from 1 to 128) are satisfied. Hence, we
can set a reasonable threshold by considering the rate dis-
tortion performance and encoding speed. On the one hand,
we constrain the false termination ratio within 1% by
adjusting the threshold in order to achieve better rate dis-
tortion performance. On the other hand, we should
maximize the threshold to save more time. Hence, in the
proposed method, the reasonable threshold βd at depth
level d is given by:

βd ¼ max χð Þ s:t:
Eχ
d

Hd
< 0:01; χ∈ 1::128½ �;

; d ¼ 0; 1; 2
ð9Þ

where Hd is the number of CUs at depth level d that is

not optimal partition, and Eβ
d is the number of CUs at

depth level d that is not optimally partitioned and satisfy
the former conditions with β (β=1,2,3,…, 128). The βd
values for different training sequences under different QP
are listed in Table 2.
According to the average value, we obtain the thresh-

old by Gaussian fitting:

β ¼
49:88e−

Q−62:85
32:07ð Þ2 ; if d ¼ 0

30:34e−
Q−51:4
25:42ð Þ2 ; if d ¼ 1

181e−
Q−88:99
38:04ð Þ2 ; if d ¼ 2

8
>><

>>:
ð10Þ

Table 2 βd under different QPs
Sequence QP = 22 QP = 27 QP = 32 QP = 37

d = 0 d = 1 d = 2 d = 0 d = 1 d = 2 d = 0 d = 1 d = 2 d = 0 d = 1 d = 2

BasketballPass 9 7 9 14 11 15 27 23 20 41 27 33

BQSquare 22 9 9 29 17 15 35 27 27 51 41 45

BasketballDrill 10 9 8 15 13 12 23 18 17 29 21 20

BQMall 10 10 9 16 15 15 26 20 22 33 25 33

Johnny 9 7 7 11 9 11 14 11 16 16 14 20

Vidyo1 8 6 7 8 8 11 11 9 14 13 13 20

BasketballDrive 9 8 8 10 9 12 11 12 16 13 14 19

BQTerrace 5 5 9 7 12 15 9 18 22 11 22 30

Average 10 8 8 14 12 13 20 17 19 26 22 28
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where Q is QP value of current sequence and β is the
threshold under different d as Q changes.
According to statistical analysis of the optimal CU

mode that satisfies the abovementioned condition, the
probability of the optimal mode being inter 2N × 2N
is not less than 93.5%. Hence, after testing the inter
2N × 2N mode, the current CU is judged. If the con-
dition is satisfied, then the traversal of the remaining
modes and the RDO process are terminated.
The CSD method is summarized as follows:

1) Test the inter 2N × 2N mode and obtain the
absolute difference between the original pixel value
and the predicted pixel value of the current CU as
well as the motion vector information.

2) Obtain β from the current CU depth and QP value.
3) If the absolute difference between the original value

and the predicted value of any pixel in the CU is
less than β, and the motion vector is 0, then the
traversal of the remaining modes and the RDO
process are terminated.

3.4 Adaptive upper and lower bit threshold decision
On the one hand, due to the strict conditions of the
CSD method, the time saving cannot reach to the
target time. On the other hand, in the CCA method,
the CU depth decision will lead to rate distortion
performance degradation. Hence, we should further
regulate the computational complexity on the basis of
the CSD and CCA methods.
In [14], it has been shown that the greater the cor-

responding bit of the current CU, the greater is the
probability that it is not optimal partition. For further
analyzing the relationship between bit of the current
CU and the probability that it is not optimal parti-
tion, we used the same experimental environment and
training sequences described in Section 3.3. Figure 7a,
b shows the statistical results of probability for the
2nd to the 3rd GOP and the 2nd to the 38th GOP,
respectively. In these figures, Fd

Y ðBitÞ and Fd
NðBitÞ de-

note the probability of the CU being optimal and
non-optimal partition, respectively, when its bit is
smaller than or equal to Bit with CU depth level d.
The probability functions for other depths (i.e., 1, 2)
are similar, and the same to other training sequences.
According to the figure, the variation ranges of the
two image probability functions are highly consistent.
The function Fd

Y ðBitÞ varies sharply over the interval
close to 0, and the function Fd

N ðBitÞ changes grad-
ually over a wide range. Statistical analysis of different
sequences shows the same trend as that in Fig. 7.
Therefore, the early termination or continuous parti-
tion threshold can be determined adaptively by the

functions Fd
NðBitÞ and Fd

Y ðBitÞ using the normal cod-
ing information statistics of the 2nd to the 3rd GOP.
The lower bit bounds Nd and Yd of the extremely
smooth interval of functions Fd

NðBitÞ and Fd
Y ðBitÞ at

different depths are used as the reference bits of the
lower and upper thresholds, respectively. The upper
threshold Hd is obtained by multiplying Yd with 0.7,
and the lower threshold Ld is obtained by multiplying
Nd with μ, which is defined as

μ ¼ 0:209e−
Tc−0:3987

0:393ð Þ2 ð11Þ

The adaptive upper and lower bit threshold decision
method is summarized as follows.

a

b
Fig. 7 Illustration of the probability function F0NðBitÞ and F0YðBitÞ for
Bit of CU at depth 0 for sequence BasketballDrill. a 2nd to 3rd GOP.
b 2nd to 38th GOP

Table 3 Typical configuration of HM-13.0

CTU size 64×64

Maximal CTU depth 3

SAO 1

FEN 1

FDM 1

Intra period -1

GOP structure IPPP
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1) According to normal coding of the 2nd to the 3rd
GOP, Yd and Nd under different depths are obtained.

2) μ is obtained by the target complexity proportion;
then, Hd and Ld are obtained.

3) When the depth is d and Bitd corresponding to the
optimal mode of the CU is smaller than Ld, RDO
traversal is terminated. When Bitd is greater than
Hd and the current depth is not less than dmax

allocated by the CCA method, the current CU
continues the RDO process.

4 Results and discussions
To evaluate the performance of the proposed algo-
rithm, the rate distortion performance and the com-
plexity control precision are verified via
implementation on HM-13.0, with QP values of 22,
27, 32, and 37. The test conditions follow the recom-
mendations provided in [18], and our all experiments
only consider the low delay P main configuration.

The detailed coding parameter is summarized in
Table 3.
To verify the effectiveness of the proposed algo-

rithm, the actual time saving TS is used as a measure
of complexity reduction:

TS ¼ TOriginal−TProposed

TOriginal
� 100%; ð12Þ

where TOriginal denotes the normal encoding time and
TProposed denotes the actual encoding time with a cer-
tain Tc in our algorithm. The mean control error
(MCE) is used as a measure of complexity control ac-
curacy and calculated as follows:

MCE ¼ 1
n

Xn

i¼1

TSi−Tcj j; ð13Þ

where n is the number of test sequences and TSi is
the TS of the i-th test sequence.

Table 4 Coding performance of the proposed algorithm under different target complexities

Sequence (resolution) Tc = 90% Tc = 80% Tc = 70% Tc = 60% Tc = 50%

ΔBR/ΔPSNR/TS
(%/dB/%)

ΔBR/ΔPSNR/TS
(%/dB/%)

ΔBR/ΔPSNR/TS
(%/dB/%)

ΔBR/ΔPSNR/TS
(%/dB/%)

ΔBR/ΔPSNR/TS
(%/dB/%)

BasketballPass (416 × 240) 0.76/− 0.01/10.07 1.74/− 0.02/20.00 3.57/− 0.06/29.86 4.72/− 0.07/39.79 6.24/− 0.10/49.75

BlowingBubbles (416 × 240) 0.99/− 0.01/13.77 1.45/− 0.02/22.13 1.92/− 0.06/31.31 2.21/− 0.09/40.22 2.51/− 0.13/49.41

BQSquare (416 × 240) 0.68/− 0.00/10.08 1.46/− 0.03/19.93 1.39/− 0.08/30.30 2.82/− 0.08/39.74 2.61/− 0.15/49.37

RaceHorses (416 × 240) 0.77/− 0.00/13.28 2.07/− 0.04/22.46 3.28/− 0.07/31.80 4.21/− 0.10/40.95 5.44/− 0.14/50.02

BasketballDrill (832 × 480) 0.51/− 0.01/10.16 1.64/− 0.02/20.05 2.82/− 0.04/30.13 3.86/− 0.06/39.75 5.04/− 0.09/49.74

BasketballDrillText (832 × 480) 0.59/− 0.01/10.26 1.62/− 0.02/19.90 2.74/− 0.06/30.24 3.69/− 0.07/39.81 4.92/− 0.10/49.66

BQMall (832 × 480) 0.54/− 0.01/10.44 1.72/− 0.02/22.34 3.32/− 0.05/30.29 4.41/− 0.08/40.14 5.73/− 0.11/49.93

PartyScene (832 × 480) 0.76/− 0.00/11.21 1.33/− 0.02/20.16 1.84/− 0.07/30.19 2.07/− 0.12/39.72 2.58/− 0.17/49.69

ChinaSpeed (1024 × 768) 0.44/− 0.01/10.09 1.00/− 0.02/20.10 1.32/− 0.09/30.00 2.30/− 0.11/39.74 3.20/− 0.18/49.78

FourPeople (1280 × 720) 0.10/− 0.00/10.15 0.24/− 0.01/20.09 0.93/− 0.02/30.14 0.83/− 0.01/39.80 1.81/− 0.03/49.84

Johnny (1280 × 720) − 0.16/− 0.01/11.72 0.13/− 0.01/21.38 0.10/− 0.02/31.21 0.51/− 0.01/40.80 0.80/− 0.03/50.03

KrustebAndSara (1280 × 720) 0.07/− 0.01/9.98 0.46/− 0.01/20.02 0.61/− 0.03/30.06 1.07/− 0.02/39.71 1.80/− 0.05/49.50

SlideEditing (1280 × 720) 0.49/− 0.01/13.62 0.44/− 0.01/23.15 3.14/− 0.04/32.25 2.87/− 0.07/41.48 5.93/− 0.12/50.47

SlideShow (1280 × 720) 0.09/− 0.01/11.44 0.75/− 0.04/20.91 3.00/− 0.09/30.74 3.50/− 0.13/40.81 6.98/− 0.21/49.89

Vidyo1 (1280 × 720) − 0.08/− 0.01/10.99 0.04/− 0.01/20.81 0.43/− 0.02/30.45 0.32/− 0.02/40.12 0.75/− 0.04/49.62

Vidyo3 (1280 × 720) − 0.11/− 0.01/12.75 0.08/− 0.01/22.13 0.73/− 0.03/31.02 1.10/− 0.02/40.67 1.81/− 0.06/50.04

Vidyo4 (1280 × 720) 0.16/− 0.00/13.00 0.13/− 0.01/22.56 0.66/− 0.02/31.27 0.83/− 0.03/40.76 1.48/− 0.04/49.98

BasketballDrive (1920 × 1080) 1.25/− 0.01/10.55 2.32/− 0.02/20.37 3.04/− 0.03/30.24 3.76/− 0.05/39.85 4.63/− 0.06/49.62

BQTerrace (1920 × 1080) 0.64/− 0.00/10.47 0.58/− 0.02/20.52 − 0.06/− 0.03/30.34 1.19/− 0.05/40.10 1.16/− 0.07/49.90

Cactus (1920 × 1080) 0.33/− 0.00/11.03 0.65/− 0.01/20.27 1.68/− 0.04/30.18 3.06/− 0.06/40.10 3.35/− 0.07/49.84

Kimono (1920 × 1080) 1.08/− 0.01/10.92 0.95/− 0.02/21.19 2.17/− 0.02/30.84 3.27/− 0.03/40.50 4.21/− 0.04/50.21

ParkScene (1920 × 1080) 1.02/− 0.00/10.80 1.98/− 0.01/20.30 2.21/− 0.04/30.33 4.59/− 0.08/40.19 3.69/− 0.07/49.97

Average 0.50/− 0.01/11.22 1.04/− 0.02/20.85 1.86/− 0.05/30.60 2.60/− 0.06/40.22 3.48/− 0.09/49.83

MCE 1.22% 0.87% 0.61% 0.41% 0.24%
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The bit rate increase (ΔBR) and PSNR reduction
(ΔPSNR) are used as measures of the rate distortion
performance of the complexity control algorithm. The
proposed algorithm tests and analyzes five target com-
plexity levels, Tc(%) = {90, 80, 70, 60, 50}.
Table 4 summarizes the performance of the pro-

posed algorithm in terms of ΔPSNR, ΔBR, and TS for
different sequences under different Tc. The experi-
mental results presented in Table 4 indicate that the
actual coding complexity of the proposed algorithm is
quite close to the target complexity. This means that
our algorithm can smoothly code most of the se-
quences under limited computing power. Although
the individual sequence deviation is large (when Tc =
90%, the maximal complexity deviation is 3.77%), the
MCE is small, with a maximum of 1.22%. For Tc =

90%, 80%, 70%, 60%, and 50%, the average ΔPSNR is
− 0.01 dB, − 0.02 dB, − 0.05 dB, − 0.06 dB, and −
0.09 dB, the average ΔBR is 0.50%, 1.04%, 1.86%,
2.60%, and 3.48%, and the MCE is 1.22%, 0.87%,
0.61%, 0.41%, and 0.24%, respectively. From the view-
point of the degree of attenuation of the average ΔPSNR
and ΔBR with decreasing Tc, the decrease of our algorithm
is relatively smooth; however, the decrease of individual
sequences is sharper (e.g., the sequence SlideShow, most
of whose frames are smooth, except for some frames that
have strong motion). This is because the frames with
strong motion influence the CCA method, which depends
on the encoding complexity of the previous frame.
Figure 8 shows rate distortion curves of the se-

quence BasketballPass and Vidyo1 for the five differ-
ent Tc. The rate distortion performance of the
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sequence BasketballPass with strong motion is not as
good as the sequence Vidyo1, which has little scene
changes. The conclusions also can be drawn from
Table 4.
To demonstrate the effectiveness of our frame level

complexity allocation method, two frame level com-
plexity allocation methods are compared in Tc =
90%. One of the methods is proposed in this paper,
and the other is to get the target encoding time of
the frame layer by equally dividing the target encod-
ing time of the GOP layer. The same experimental
environment described in first paragraph of this sec-
tion was used for analyzing the performance of two
methods, and the experimental results of the com-
parison method are obtained by modifying the frame
level complexity allocation method of the proposed
algorithm. As shown in Fig. 9, our method exhibits
better rate distortion performance, which proves that
it can balance the complexity and rate distortion
effectively in the frame layer.
To evaluate the performance of the proposed algo-

rithm more intuitively, we compared our algorithm
with three state-of-the-art algorithms [14, 16, 17].
The results are listed in Tables 5, 6, and 7. Because
the minimal controllable target complexity propor-
tions of [17] and our algorithm is 60% and 50%,
respectively, the performance is compared under the
target complexity proportions, 80% and 60%.
Regarding losses in rate distortion performance, we

can find in Tables 5 and 7 that the average ΔBR of
our algorithm is slightly higher than [14, 17], and
the average ΔPSNR difference between our algorithm
and the algorithms [14, 17] is negligible when Tc =
80%. When Tc = 60%, the average rate distortion
performance of our algorithm is better than those of
[14, 17]. Specially, for a few sequences, such as
Johnny, for which the performance our algorithm is
slightly worse than that of [14, 17] in terms of both
ΔPSNR and ΔBR. It mainly benefits from the fact
that algorithms [14, 17] can effectively skip unneces-
sary higher CU depths for little motion videos.
Moreover, we can find in Table 6 that the average
BDBR [19] of algorithm [16] is better than our algo-
rithm, but the rate distortion performance of our al-
gorithm is better in sequences of class E like Johnny
and FourPeople.
The control accuracy is an important index to

validate the performance of complexity control
algorithm, and the overall control accuracy of our
algorithm and other three algorithms is compared by
MCE. From Tables 5, 6, and 7, we can obviously see
that the MCE of our algorithm is lower than [14, 16,
17], which means that our algorithm can achieve
steady complexity control for different test sequences.

5 Conclusions
This paper proposed a hierarchical complexity control
algorithm based on the coding unit depth decision to
guarantee the rate distortion performance during
real-time coding when the computing power of a
device is limited. First, we get the reference time by
periodical updating strategy. Second, the GOP layer
and frame layer complexity allocation and control
method based on the target complexity are used to
control the coding time of these layers. Then, the
RDO process at unnecessary CU depths layer is
skipped by using the correlation between ESAD and
the optimal depth and by establishing the ECDM
model to adaptive allocate the maximum CTU depth.
Next, based on the CU smoothness decision and the
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Table 5 Performance comparison between the proposed algorithm and [14]

Sequence (class) Our HM13.0 [14] HM16.0

Tc = 80% Tc = 60% Tc = 80% Tc = 60%

ΔBR/ΔPSNR/TS (%/dB/%) ΔBR/ΔPSNR/TS (%/dB/%) ΔBR/ΔPSNR/TS (%/dB/%) ΔBR/ΔPSNR/TS (%/dB/%)

BasketballDrive (B) 2.32/− 0.02/20.37 3.76/− 0.05/39.85 0.33/− 0.03/21.42 2.02/− 0.15/39.76

BQTerrace (B) 0.58/− 0.02/20.52 1.19/− 0.05/40.10 0.33/− 0.02/20.25 3.20/− 0.08/38.10

ParkScene (B) 1.98/− 0.01/20.30 4.59/− 0.08/40.19 0.60/− 0.03/20.00 5.87/− 0.14/38.73

Johnny (E) 0.13/− 0.01/21.38 0.51/− 0.01/40.80 − 0.05/0.00/19.16 0.02/0.00/40.90

FourPeople (E) 0.24/− 0.01/20.09 0.83/− 0.01/39.80 0.13/0.00/19.07 0.44/− 0.01/39.77

Vidyo1 (E) 0.04/− 0.01/20.81 0.32/− 0.02/40.12 0.03/0.00/18.02 0.62/− 0.02/37.81

Vidyo3 (E) 0.08/− 0.01/22.13 1.10/− 0.02/40.67 0.04/0.00/18.89 1.55/− 0.05/36.64

Vidyo4 (E) 0.13/− 0.01/22.56 0.83/− 0.03/40.76 0.15/0.00/17.72 0.21/− 0.01/38.99

PartyScene (C) 1.33/− 0.02/20.16 2.07/− 0.12/39.72 2.53/− 0.10/21.27 8.29/− 0.25/39.50

RaceHorsesC (C) 1.48/− 0.03/22.45 2.86/− 0.07/40.93 1.56/− 0.08/21.69 7.37/− 0.45/41.87

BasketballDrill (C) 1.64/− 0.02/20.05 3.86/− 0.06/39.75 0.46/− 0.02/17.25 4.85/− 0.18/37.29

SlideEditing (F) 0.44/− 0.01/23.15 2.87/− 0.07/41.48 0.42/−0.03/18.47 3.32/− 0.30/38.94

SlideShow (F) 0.75/− 0.04/20.91 3.50/− 0.13/40.81 0.40/− 0.03/19.82 0.58/− 0.06/38.00

Average 0.86/− 0.02/21.14 2.18/− 0.06/40.38 0.53/− 0.02/19.46 2.95/− 0.13/38.95

MCE 1.14% 0.52% 1.25% 1.48%

Table 6 Performance comparison between the proposed algorithm and [16]

Sequence (class) Our HM13.0 [16] HM16.9

Tc = 80% Tc = 60% Tc = 80% Tc = 60%

BDBR/TS (%/%) BDBR/TS (%/%) BDBR/TS (%/%) BDBR/TS (%/%)

Kimono (B) 1.84/21.19 4.18/40.50 0.44/23.39 0.98/41.65

ParkScene (B) 2.05/20.30 5.79/40.19 0.32/24.60 1.76/42.79

Cactus (B) 1.07/20.27 5.59/40.10 0.17/24.54 1.72/42.59

BasketballDrive (B) 3.34/20.37 5.95/39.85 0.23/21.20 1.95/38.99

BQTerrace (B) 1.67/20.52 3.96/40.10 0.28/21.67 2.02/40.43

BasketballDrill (B) 2.24/20.05 5.38/39.85 0.29/20.56 2.60/39.54

BQMall (C) 2.27/22.34 6.60/40.14 0.59/24.59 2.98/42.90

PartyScene (C) 1.83/20.16 5.31/39.72 0.17/21.28 1.43/39.92

RaceHorsesC (C) 2.08/22.45 4.64/40.93 0.30/23.39 1.95/41.57

BasketballPass (D) 2.32/20.00 6.30/39.79 0.64/26.90 2.08/44.21

BQSquare (D) 2.08/19.93 4.89/39.74 0.02/19.08 1.44/38.65

BlowingBubbles (D) 1.96/22.13 4.56/40.22 0.42/22.71 1.90/40.73

RaceHorses (E) 2.93/22.46 6.72/40.95 0.52/23.40 1.35/41.73

FourPeople (E) 0.50/20.09 1.06/39.80 1.24/19.90 3.06/39.11

Johnny (E) 0.32/21.38 0.86/40.80 1.32/19.29 2.64/38.04

KristenAndSara (E) 0.45/20.02 1.55/39.71 1.10/19.47 2.58/39.07

Average 1.81/20.85 4.58/40.15 0.50/22.27 2.03/40.75

MCE 0.86% 0.34% 2.53% 1.58%
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adaptive low bit threshold decision, the redundant
traversal process within the allocated maximal depth
is reduced to further save the time. Finally, the adap-
tive upper bit threshold is used to guarantee the qual-
ity of important CUs by performing the RDO process
at depths larger than the maximal depth allocated by
the CCA method. The experimental results showed
that the minimum target complexity of our algorithm
can reach 50% with smooth attenuation of ΔPSNR
and ΔBR as Tc decreases. Compared with other
state-of-the-art complexity control algorithms, our al-
gorithm outperforms better in control accuracy. In
the future, we will design an effective mode decision
method to save more time. In addition, we will fur-
ther investigate the frame layer complexity allocation
and improve the frame layer control accuracy.
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