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Abstract

Intraocular pressure (IOP) in general refers to the pressure in the eyes. Gradual increase of IOP and high IOP are
conditions/symptoms that may lead to certain diseases such as glaucoma and therefore must be closely monitored.
While the pressure in the eye increases, different parts of the eye may become affected until the eye parts are
damaged. An effective way to prevent rise in eye pressure is by early detection. A new smart healthcare framework
is presented to evaluate the intraocular pressure risk from frontal eye images. The framework monitors the status of
IOP risk by analyzing frontal eye images using image processing and machine learning techniques. A database of
images collected from Princess Basma Hospital in Jordan was used in this work. The database contains 400 eye
images: 200 images with normal IOP and 200 high eye pressure case images. The framework extracts five features
from the frontal eye image: the pupil and iris diameter ratio, mean redness level of the sclera, red area percentage
of the sclera, and two other features measured from the extracted contour of the sclera (contour height and
contour area). Once the features were extracted, a neural network is trained and tested to obtain the status of the
patients in terms of eye pressure. The framework detects the status of IOP (normal or high IOP) and produces
evidence of the relationship between the five extracted frontal eye image features and IOP, which has not
been previously investigated through automated image processing and machine learning techniques using
frontal eye images.

Keywords: Intraocular pressure, Pupil/iris detection, Eye segmentation, Redness of the sclera, Sclera contour,
Neural network

1 Introduction
Rise of IOP is one of the most serious causes of glau-
coma leading to blindness all over the world. It is known
as the silent thief of vision because it can sneak up into
any patient [1]. The blindness caused by IOP is irrevers-
ible as the optic nerve dies [2]. An effective way to pre-
vent pressure rise inside the eye is through early
detection. The earlier the disease is detected, the easier
and more effective the treatment will be [3].
Initially, ophthalmologists label some patients as glau-

coma candidates due to several risk factors and symp-
toms that their eyes may have. One of these factors is

the suspicion of potential rise in IOP [4]. The pressure
can increase inside the eye from a liquid called aqueous
humor that is secreted by the ciliary body into the pos-
terior chamber [5]. After that, the aqueous humor flows
through the pupil into the anterior chamber [6]. Finally,
it drains through a sponge-like structure called the tra-
becular meshwork (TM) [7]. Moreover, the pressure
damages the nerve fibers which can result in patches of
vision loss, and if left untreated, may lead to total blind-
ness. In addition, the rise of eye pressure will dilate the
pupil [8]. As the aqueous humor liquid builds up in the
chamber, other factors can contribute to the onset of the
rise of IOP through medications unrelated to eye dis-
ease. Different drugs that are taken for anxiety or de-
pression affect the brain and physiological composition
of the body [9]. This includes the muscles in the eye that
control the pupil size. The progression of IOP is
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generally preventable by medical treatment, while some
patients continue to progress even after treatment [10].
However, the portion of the vision that is already lost
cannot be restored. That is why it is necessary to detect
early signs of rise in IOP. Generally, regular eye exams
like tonometry test, ophthalmoscopy test, perimetry test,
gonoscopy test, and pachymetry test are conducted at
the clinic for this purpose [11].
In this paper, a new automated detection framework is

developed to detect if the eye has normal or high eye
pressure. Our smart framework is based on image pro-
cessing and machine learning techniques to extract five
features, solely from the frontal eye image: the pupil/iris
diameter or radius ratio, the mean redness level (MRL)
and red area percentage (RAP) of the sclera, and features
of the contour of the sclera (area, height). Table 1 shows
a comparison between the existing clinical methods and
the proposed framework. Once the five features are ex-
tracted from the frontal eye images, neural network
(NN) is applied in order to train and test the extracted
features and obtain a risk assessment result for intraocu-
lar pressure (normal or high IOP). The proposed work
does not directly measure the IOP value in millimeter of
mercury; rather, it determines whether the user/patient’s
IOP is at a risky level (high) or not, further serving as an
initial IOP risk assessment framework that can assist
many individuals, especially those with family history of
IOP and glaucoma, to provide an early warning if their
IOP is beyond the normal range. If the proposed initial
screening framework resulted in high IOP, the patient
must seek/visit the clinic/doctor for further examina-
tions/consultations.

2 Related work
Many researchers have proposed several works on the
issue of IOP detection and analysis of the eye from im-
ages. However, there is a lack of studies regarding IOP
based on frontal eye images in the computer vision field.
Most of the studies focus on fundus images that show
the status of the optic nerve or investigate relevant

feature extraction for purposes other than IOP. More-
over, some studies require additional hardware/devices
with direct contact to the eye to measure IOP.
Mariakakis et al. [12] proposed an approach to assess

intraocular pressure using a smartphone and a hardware
adapter attached to it. The adapter is a clear acrylic cy-
linder that is connected to the camera of the smart-
phone, with a diameter of 8 mm and height of 63 mm.
The authors stated that only trained users must use this
device. The user holds the smartphone perpendicularly
over the patient’s eye and then applies the weight of
acrylic cylinder to it. The smartphone camera would
then start recording the applanation of the eye. Video
analysis is then applied to measure two ellipses, the
acrylic cylinder (outer ellipse) and the applanation sur-
face (inner ellipse). The ellipses are then mapped to ab-
solute measurements of the diameter of the acrylic
cylinder. The final diameter measurement is mapped to
an IOP value using a clinically validated table such as
the one published by Adolph Posner [13]. As stated by
the authors, this device cannot be deployed by ordinary
users and the patient must visit the clinic.
Gisler et al. [14] proposed a glaucoma detection tech-

nique using intraocular pressure monitoring. The data
was supervised by Sensimed Company where contact
lens sensors (CLS) were used to automate recording the
continuous ocular dimensional changes over 24 h. The
CLS system is safe and non-invasive. However, a health
care professional is required to install it and remove it
from the patient. The authors used Java software to
manage the data and feature extraction. The feature ex-
traction was split into two parts. The first part included
statistical features (raw frequency values and filter
banks), and the second part consisted of physiological
features (eye blinks, ocular pulse, and slope of the
curve), which were fed to a support vector machine
(SVM) learning technique and classifier [15].
Shahiri et al. [16] proposed a micro electromechanical

pressure sensor for measuring IOP based on P++silicon.
Finite element analysis (FEA) was used to simulate,

Table 1 Comparison with existing clinical methods

Test name Eye drops Physical contact Examine/measure Clinic

Tonometry Must use Yes, by using air puff
technique and tonometry
device

Pressure inside the eye
Thickness of the cornea

Must be in clinic

Ophthalmoscopy Must use to dilate
the pupil

Yes Shape and color of the optic
nerve

Must be in clinic

Perimetry No No Visual field using LCD screen Must be in clinic

Gonoscopy Must use Yes Angle where the iris and cornea
meet

Must be in clinic

Pachymetry No Yes Thickness of the cornea Must be in clinic

Proposed work No No physical contact IOP risk from frontal eye image
features

Not needed (any room with
lights on)
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optimize, and analyze the mechanical properties of the
device. The authors investigated the deformation in the
Z axis of the diaphragm with a thickness of 4 mm at ap-
plied pressure of 30 mmHg. The authors found that the
deflection of the center of the diaphragm varies linearly
with the range of pressure.
The work in [17, 18] used fundus images to identify

the visual field defect and detect glaucomatous progres-
sion. The authors used the Gaussian mixture model
(GMM) clustering method based on inspection points of
the fundus images to incorporate the distance between
these points.
Table 2 provides a comparison of our IOP risk assess-

ment estimation framework with other related techniques.
It is important to mention that, however, no prior related
work used frontal eye images for IOP risk determination.
Therefore, the table only provides a summary of the re-
lated techniques, the image database, and performance
and/or application. A summarized comparison of the

approaches/devices that used different inputs/sensors
(e.g., fundus images) for a similar purpose or output like
IOP is provided in the table.

3 Material
In this study, we used the image database1 (DB) from
Princess Basma Hospital (Jordan) which was generated
in 2014 and completed in 2016. Four hundred partici-
pants contributed to the database of images. Half of
them were patients with high eye pressure. The other
half of the participants represented normal eye pressure
cases. The age range of the patients was between 40 and
65 years old (which generally represent the age range of
high IOP cases). Each patient’s level of eye pressure was
recorded in the database by ophthalmologists, and the
images were labeled as high or normal IOP. The IOP
range of the 200 normal eye pressure cases were 11–
20 mmHg (with mean of 14.7 mmHg), and the range of
the 200 high eye pressure cases were 21–30 mmHg

Table 2 Summary of related techniques

Algorithm Ref. Characteristics and performance Data type

Smartphone-based system for assessing
intraocular pressure

[12] • Measuring the eye pressure.
• Smartphone used.
• Patient must buy an adapter connected to camera.
• Technique must be operated by a specialist (not
the patient).

• Video recording by smartphone camera.
• Physical contact with eye in order to apply pressure
on the cylinder.

• Accuracy: N/A.

• Video frame images

Glaucoma detection using intraocular
pressure monitoring

[14] • Monitoring IOP.
• Use of special contact lenses with sensor.
• Java software used to manage data and for simulation.
• Specialist must help in order to install and remove the
contact lenses sensor.

• Acuracy: N/A.

• Contact lens sensor

Micro-electromechanical pressure sensor
for measuring intraocular pressure

[16] • Measuring IOP based on P++silicon.
• Finite element analysis (FEA) used for simulation.
• Pressure applied on the eye.
• Accuracy: N/A.

• Pressure sensor

Glaucoma detection progression [17, 18] • Visual field defect.
• Glaucomatous progression.
• Fundus images used.
• Mixture of Gaussian and generalized expectation
maximization (GEM) techniques.

• Specificity 96%, sensitivity 87%; accuracy: N/A.

• Fundus Images

Proposed IOP risk assessment • Segment the iris and pupil with accuracy of 95.30%.
• Extract the sclera.
• Measure the mean redness level with accuracy of
96.06%.

• Measure the red area percentage with accuracy of
98.80%.

• Measure area and height features of the extracted
sclera contour.

• Frontal images used.
• No need for specialist to take the image.
• Controlled environment (closed room with lights on).
• SVM and neural network tested (neural network
adopted).

• 96.0% test phase accuracy.

• Regular camera images
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(with mean of 24.7 mmHg). The IOP cutoff used in this
research is 20 mmHg as advised by the ophthalmolo-
gists. If the participant has IOP ≤ 20 mmHg, it is normal;
otherwise, it is considered as high IOP. All the database
images were taken in a range of 20 cm between the cam-
era and the patients. All eye images were taken in the
same lighting conditions. The normal and high IOP im-
ages were stored in two different folders. Each image
was saved in JPG format. The camera used was a canon
camera model T6K1 with resolution 3241 × 2545. This
resolution can be found in any smartphone nowadays.

4 Methods
In this research, we developed a smart IOP risk estima-
tion framework based on five features extracted from
the frontal eye images. Each eye image first goes through
a preprocessing stage to prepare the images for feature
extraction. The features are pupil/iris ratio, mean red-
ness level (MRL), red area percentage (RAP), and sclera
contour features (area, height). Our final result of the
grade level of IOP risk is displayed as eye status: normal
or high IOP. The final results come from scaled values
computed using a neural network. Figure 1 shows an
overall view of our framework. The development is car-
ried out by MATLAB 2013a software.

4.1 Preprocessing
Prior to feature extraction, the Adaboost face detection
algorithm and Haar cascade eye detection [19, 20] (as
shown in Fig. 2) are applied to the face images in order
to extract the eye image automatically. Each eye area
segment was extracted as a rectangle.
After extracting the eye image, different steps at the

preprocessing stage are applied in order to extract the
pupil, iris, and sclera, as shown in Fig. 3.
In the first step, the image is cropped and resized to

set the height:width ratio to be 1:1.8, respectively. Then,
the red layer I(:,:, 1) image is extracted because it

discards unwanted data and enhances the iris and the
pupil area (we use the red layer here just to detect the
pupil and the iris). After that, a morphological recon-
struction technique [21] is applied on the red layer
image in order to remove the light reflection (which is
often seen as a bright circle) on the pupil. Removing the
light reflection here is considered as an important step
since we will use the circular Hough transform (CHT)
technique [22] to detect the pupil and iris. Then, local
adaptive thresholding [23] is applied to separate the
foreground from the background. Canny edge detection
[24], which is considered as one of the most well-known
techniques to detect edges, is then applied to detect the
edges of the eye image. Canny edge detection, consists
of three main techniques (Gaussian filter [25], non-max
suppressions (NonMaxSup) [26] and hysteresis thresh-
olding (Hysthresh) [27]). After applying several experi-
ments using the canny edge detection function, it has
been observed that the best values for the parameters to
generate edge images are the ones shown in Table 3.
The gamma values for canny edge detection are also

shown in Table 3. The gamma value is part of the adjust
Gamma “adjgamma” function [28] that changes the con-
trast of an image. After applying canny edge detection, a
circular Hough transform (CHT) technique is applied in
order to extract the iris and pupil, as shown in Fig. 4.
The CHT function has one disadvantage. It performs

poorly when a large part of the circle to be detected is
outside the image. This is not a problem for detecting
the pupil or iris circles since both of them are found
completely in the image. However, for detecting the
upper and lower eyelid circles, this issue would come
into picture. To work around this problem, we extend
the images by a black area either from the top (when de-
tecting the lower eyelid) or from the bottom (when de-
tecting the upper eyelid), as shown in Fig. 5.
Moreover, the only circle that is detected without

cropping or deletion is the iris circle, after which we use

Fig. 1 IOP risk assessment framework
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the iris circle parameters to modify edge images and ease
the job of finding other circles. For example, before de-
tecting the pupil, the edge image will be cropped to a
square with the center equal to the iris circle center and
sides just less than the iris radius. This makes the detec-
tion of the pupil circle much easier as we do not need
all the details outside the iris.
Now, the pupil radius/iris radius ratio can directly be

calculated and ready to be used. Sample results are
shown in Fig. 6. The blue circle is for the iris, the red for
the pupil, the yellow for the upper eyelid, and green for
the lower eyelid.
After detecting the circles (iris, upper, and lower eye-

lids), segmenting the sclera becomes more clear. The
sclera would be the area included between the intersec-
tion of the upper and the lower eyelid circles except for
the iris circle. So, for a pixel to be in the sclera region, it
should be inside both the upper and lower eyelid circles
but not in the iris circle. The equation of a circle is:

x−að Þ2 þ y−bð Þ2 ¼ r2 ð1Þ

where (a, b) is the center coordinates and r is the radius.
Since any horizontal line passing by the circle y =

constant will cut the circle into two areas, the locus of
all points of that horizontal line that are inside the circle
will be:

a−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− b−yð Þ2

q
≤x≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− y−bð Þ2

q
þ a ð2Þ

when b − r ≤ y ≤ b + r
In the equation, variable x is replaced by “col” and y is

replaced by “row,” so we can use the above simple for-
mula to get all pixels inside a circle in the image. This
way, we were able to extract the sclera, as shown in Fig. 7
(the sclera image is denoted as S).

4.2 Feature extraction
Once the preprocessing steps are applied to the image,
five features will be measured: pupil/iris ratio, the mean
redness level, the red area percentage, the area of the
sclera contour, and the height of the sclera contour.
The pupil/iris diameter or radius ratio is measured

once the pupil and iris have been detected. Figure 8 il-
lustrates a sample of pupil/iris ratio results.
The mean redness level (MRL) is heavily computed

from the reddish pixel. Each pixel is a combination of
three values (red, green, and blue). Also, there are

Fig. 2 Haar cascade classifier to detect object

Fig. 3 Preprocessing stage to extract the iris and pupil
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millions of combinations that can result in reddish
colors if we assign a large value to the red part of the
pixel. Therefore, the red pixel value should always be lar-
ger than the green and blue pixel values. To prevent the
pixel from being shifted to the yellow or violet colors,
the difference between the green and the blue pixel
values should not be too large. MRL can be calculated
by the proposed formula in Eq. 6:

Mean of red pixels ¼ M RPVð Þ
¼ M Sð:; :; 1ð ÞÞ
¼

Xm

0
S :; :; 1ð Þ=m ð3Þ

Mean of green pixels ¼ M GPVð Þ
¼ M Sð:; :; 2ð ÞÞ
¼

Xm

0
S :; :; 2ð Þ=m ð4Þ

Mean of blue pixels ¼ M BPVð Þ
¼ M Sð:; :; 3ð ÞÞ
¼

Xm

0
S :; :; 3ð Þ=m ð5Þ

So,

MRL ¼ 3�M RPVð Þ−M GPVð Þ−M BPVð Þ
3� 255

ð6Þ

where M(RPV) corresponds to the mean of the red pixel
values, M(GPV) is the mean of the green pixel values,
M(BPV) is the mean of blue pixel values, and m refers
to the total number of pixels in the extracted sclera.

The red area percentage RAP is defined as the mean
of the red pixel percentage in the binary image of the ex-
tracted sclera (P).

RAP ¼
Xn

i¼0
Pi

� �
�m ð7Þ

In Eq. (7), Pi represents the red pixel values in the ex-
tracted sclera, and m represents the total number of
pixels in the extracted sclera. Figure 9 represents sam-
ples of our MRL and RAP results.
The idea of measuring features of the contour of the

sclera is inspired by sonar techniques such as ultrasound
where active trained operators/healthcare personnel are
involved [29]. In order to obtain the contour of the
sclera, first, the “Activecontour” [30] function is
employed in which the 2-D grayscale image A is seg-
mented into foreground (object) and background regions
using the active contour-based segmentation. The black
and white (bw) output image is a binary image where
the foreground is white (logical true) and the back-
ground is black (logical false). In these computations,

Table 3 Typical parameter values of canny edge, gamma,
radius, and thresholding

Iris edge image Pupil edge image Eyelids edge image

Sigma 1 1 1

VERT 0.7 0.7 0.2

HORZ 0.3 0.3 0.8

Gamma 1.3 1.4 2

Radius 1.35 1.5 1.35

T1 0.1 0.1 0.1

T2 0.099 0.099 0.099

Fig. 4 Iris and pupil detection using CHT technique

Fig. 5 Extended eye image
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the mask is a binary image that specifies the initial state
of the active contour. The boundaries of the object re-
gion(s) (white) in the mask define the initial contour
position in order to segment the image, as shown in
Fig. 10. To obtain faster and more accurate segmenta-
tion results, we specify an initial contour position that is
close to the desired object boundaries.
To find the area and height of the contour, the

“regionprops” function is used. The area can be derived
directly from this function, and the height can be calcu-
lated by subtracting the upper extreme and the lower ex-
treme. The area is then divided by the mask area to get
the area ratio, and similarly, the height is divided by the
mask height to obtain the height ratio. These are newly
proposed features from frontal eye images in our work
that have not been previously investigated in the litera-
ture for IOP risk assessment.

4.3 Features representation
Once we extracted the five features from the images, the
results were stored in a feature matrix. The matrix con-
sists of multiple rows that correspond to the five features
and 400 columns (n = 400) that correspond to the num-
ber of images in the database used in this study. To train

a neural network, we need (input and target) data. The
input matrix is organized as shown in Fig. 11.

4.4 Classification
Several machine learning algorithms were applied on the
extracted features. For instance, support vector machine
SVM was tested using the radial basis function (RBF)
kernel along with the neural network classifier [31, 32]
to pick the best accuracy. Neural network classifier
shows the best accuracy and execution time over SVM.
Therefore, the neural network classifier has been used in
the rest of this work. The neural network-based classifi-
cation applied to the extracted features is designed using
the following settings.
Three network layers have been utilized for the classi-

fication purpose. The first layer is the input layer which
has five inputs corresponding to the number of features;
the second layer is one hidden layer that contains 10
nodes, and finally, there is one output layer that shows
the final binary result (normal or high eye pressure). Fig-
ure 12 shows a visual representation of the various layers
used. When the input values are moved from one layer
to another, they get multiplied by weights and this pro-
cedure is repeated all the way to the output layer. The

Fig. 6 Detecting pupil/iris and eyelids

Fig. 7 Extracted sclera
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hidden layer values may be greater than 1, less than zero,
or in between. Therefore, in our research, we used the sig-
moid as an activation function to adjust and scale all the
results to be between 0 and 1 for the output of each node.
Finally, in this framework, if the output layer has a value
of 0.5 or greater, it will be considered as high eye pressure;
otherwise, it will be considered as normal eye pressure.
Hence, the final output of our framework is either normal
or high IOP. We applied 75% of the images in the data-
base for training and 25% for testing. The patient images
used in the testing phase are completely different from the
ones used in the training phase (not different images from
the same patients, but different images for different pa-
tients). The system used the adaptive learning rate as
shown in Fig. 13. We found these as the optimal specifica-
tions yielding best performances for our neural network,
as they were determined after several experiments.

5 Results
The objective of our study is to extract five features from
frontal eye images in an effort to determine the status of

IOP (normal or high). We initially demonstrate the re-
sults that came from each feature.

5.1 Pupil/iris ratio
During the day, the normal adult pupil/iris diameter
range varies (between 2 to 4 mm for the pupil and 11 to
14 mm for the iris [33]). Traditionally, the radius of the
iris and pupil is measured in millimeters. However, ac-
cording to computer vision, it is inaccurate to represent
the radius in millimeters even when images contain in-
formation such as fixed distance and tangible objects.
Therefore, in this study, we rely on both the iris and the
pupil to calculate the ratio for accurate results because
the units will be discarded. In our study, the ratio of the
pupil/iris in daytime hours fall between (0.5, 0.7) for
adults. Table 4 represents a sample of the results after
our pupil/iris ratio detection technique was applied to
the normal and high IOP cases. The table is extended to
include other features as well. The table is split into two
blocks: normal and high IOP. Each block is further split
into five blocks, corresponding to each feature (pupil/iris
ratio, MRL, RAP, contour area, and contour height). The
mean and standard deviation (STD) and median values
are also reported in the last two rows.
The results show that there is a strong relationship be-

tween the pupil/iris ratios and high intraocular pressure.
Once the medical community has this knowledge, we
believe that our smart framework will help in the initial
screening of IOP that may lead to early detection of high
IOP in an effort to circumvent the onset of blindness.

5.2 MRL and RAP
The extraction of the sclera was the most difficult part
of this research since the sclera shares the same features
of the skin. The sclera was extracted, and the mean red-
ness level was calculated according to the proposed Eq.
(6). Red area percentage was also calculated in the

Fig. 8 The ratio of pupil/iris

Fig. 9 Results of MRL and RAP. a Normal IOP. b High IOP
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extracted sclera, as shown in Eq. (7). Table 4 also con-
tains a sample of the results for normal and high IOP
cases based on MRL and RAP measures. The results
show that there is a strong relationship between the
MRL, RAP, and IOP. This information will, also, aid in
automatic IOP screening for early detection of high-risk
IOP, in an effort to help in preventing the blindness.

5.3 Contour features (area, height)
In this section of the results, we report the sclera con-
tour area and height measures for normal and high eye
pressure cases from frontal eye images. Table 4 depicts
these results as well. The sclera contour feature values
are also represented as ratios, as described in the previ-
ous section.

5.4 High-risk IOP determination
The system was prepared based on the settings of neural
network classifier stated in the last section. The status of
the eye (normal or high IOP) came from the activation
function of the neural network implementation. The im-
plementation dictates the type of normalization func-
tions that can be used to bring the activation values in
the range between 0 and 1. These computations are
done in a fashion that sums up all the percentages to 1.
For example, higher values of the pupil/iris ratio could
relate to having a higher value in the range close to 1. It
is important to note that, however, the system does not
count on one feature to make the final decision and ra-
ther depends on five features altogether along with a
neural network machine learning model to provide the
final decision. The value 0.5 from the output range is
used as a cutoff to differentiate between normal and
high IOP. As an example, when the pupil/iris ratio was

equal to 0.7, the resulted scaled value was high and close
to 1. This indicates that if the other features of the same
eye image also result in a high value from the range [0–
1], the eye status is likely to be classified as high IOP.
Tables 5 and 6 show the test phase confusion matrix

for neural network (NN) and SVM, respectively, regard-
ing the proposed framework. The table is split according
to the status of eye pressure (normal, high pressure). At
the beginning, the data was shuffled; then, 65% of the
eye images were taken randomly for the training phase,
25% was taken for the testing phase and 10% for valid-
ation. The technique was run at least 10 times, and the
average values were recorded. We have shown the accur-
acy of the classifier, when properly trained and validated,
for identifying people with high IOP using the five fea-
tures from frontal eye images. In this work, NN was
adopted as it provided better accuracy, and hence, it is
the focal classifier.
There are 200 images in the database that correspond

to normal eye pressure. The 65% training consists of 130
random images representing normal eye pressure and
130 random images representing high eye pressure im-
ages. The 25% testing data consists of 50 random images
that represent the normal eye image, and 50 random im-
ages representing high eye pressure. The 10% validation
data consist of 20 random images. The proposed frame-
work using NN was able to detect 49 normal eye images
as normal pressure, and 1 image that corresponds to
normal eye pressure was detected as high eye pressure.
The accuracy for normal eye pressure is 98.0%. The sec-
ond column represents the high eye pressure cases, and
there are 50 images in the test phase that correspond to
high eye pressure. The proposed framework detected 3
high eye pressure images as normal pressure, and 47

Fig. 10 Active contour

Fig. 11 Feature matrix
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high eye pressure images as high eye pressure, so the ac-
curacy for the high eye pressure is 94.0%. As shown in
the confusion matrix table, the overall accuracy (Acc.)
for the proposed framework is 95.0% and 5.0% corre-
sponds to the overall error (Err.).
The performance of a classifier can be determined by

computing the accuracy, sensitivity, and specificity using
TP, FP, FN, and TN values, where TP refers to true posi-
tives, TN is true negatives, FP is false positives, and FN
is false negatives. The equations of accuracy, sensitivity,
and specificity are shown below [34–36]:

Accuracy ¼ TPþ TNð Þ
TPþ FPþ TNþ FNð Þ ð8Þ

Senstivity ¼ TP
TPþ FNð Þ ð9Þ

Specificity ¼ TN
TPþ FNð Þ ð10Þ

According to Eqs. 8, 9, and 10, the accuracy value is
0.95, the sensitivity value for the proposed framework is
0.95, and the specificity value is 0.97.
For further analysis, Fig. 14 shows the correlation be-

tween the extracted frontal eye features with IOP values
in millimeter of mercury for all participants. The x-axis
represents the feature value of pupil/iris ratio for part
(a), RAP for part (b), MRL for part (c), contour height
for part (d), and contour area for part (e). The y-axis
represents the actual IOP value in millimeter of mercury
that corresponds to each eye with the given features. As
observed, the pupil/iris ratio, RAP, and MRL features are
directly proportional to the IOP values in millimeter of
mercury, while the sclera contour features (height and
area) are inversely proportional to IOP. The curve fitted
graphs for IOP value versus the features are also shown
as an exponential trend displayed as exponential
“Expon.” in each of the five parts of Fig. 14 using regres-
sion models.

6 Discussion
Despite showing promising results in the proposed
framework, some limitations may exist. The efficiency of
the proposed features and the suitable sample size will
be investigated further.
Based on the lighting conditions, the pupil/iris ratio

may vary from an image capture to another for the same
subject. Furthermore, based on Fig. 14, RAP may seem
to be less effective in the classification process. There-
fore, another classifier was applied and tested using only
the MRL, contour height, and contour area features, as
shown in Table 7 (without pupil/iris ratio and RAP fea-
tures). As seen from Tables 5 and 7, the performance of
the five-feature classifier outperforms the one trained
with three features only.
Moreover, to make sure that the utilized sample size is

sufficient for testing, the statistical power analysis is ap-
plied to confirm the accuracy claims. Statistical power
analysis is performed with the aim of estimating the
minimum sample size to be used for the experiment.
To find out what the appropriate sample size would be

or justify a proposed sample size, one would need to
know the following factors [37].

1. Level of significant (p)
2. Effect size (d)

When considering an alpha level of 0.80 from Table 8,
as a large set is used for the t test on means calculation,
the effect size will be “d.”
In this work, with the anticipated effect size of d =

0.80, desired statistical power level of 0.80 and probabil-
ity level of 0.05, using the t test of means:

Fig. 12 Layers of the proposed neural network framework

Fig. 13 Training and testing performance
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Minimum sample size nð Þ
¼ N � p 1−pð Þ

N−1� d2 � z2
� �� �þ p 1−pð Þ� � ð11Þ

where N = 400, p = 80%, d = 5%, and z = 1.96, the sample
size (n) can be calculated as:

n ¼ 400� 0:8� 1� 0:8ð Þð Þ=ð 400� 1ð Þ � ð 0:052
� �

= 1:962
� �Þ þ 0:8� 0:2ð ÞÞ ¼ 152

The equation shows that the minimum sample size is
152. This is while the sample size that we are working

on is 400 images and more than sufficient to confirm
the accuracy claims.
In addition, to date, there is no publicly available data-

set of frontal eye images annotated with IOP that re-
searchers in the field can work on. Having access to or
creating a much larger and comprehensive database with
frontal eye images from diverse populations/conditions
and investigating the efficiency and robustness of the
proposed work is a future plan of our research. Never-
theless, this research provides preliminary findings on
the relationship between frontal eye image features and
IOP using a reasonable size dataset and opens up ave-
nues for further investigation.

Table 4 Sample values of pupil/iris ratio, MRL, RAP, and contour feature (area, height) results for normal, high eye pressure

Normal IOP High IOP

Pupil/iris ratio RAP MRL Contour area Contour height Pupil/iris ratio RAP MRL Contour area Contour height

0.3600 0.1612 0.2937 0.4403 0.6733 0.8556 0.9922 0.6605 0.2595 0.3533

0.3488 0.0710 0.2197 0.5413 0.5267 0.6627 0.9945 0.6059 0.1181 0.3119

0.3774 0.3670 0.3396 0.4485 0.6000 0.6875 0.8143 0.4025 0.3031 0.4833

0.5833 0.4961 0.2319 0.5755 0.8200 0.7600 0.6066 0.6025 0.0622 0.4000

0.3833 0.2269 0.2449 0.5480 0.7444 0.5208 0.7050 0.6536 0.2371 0.2400

0.4182 0.4472 0.3667 0.4730 0.6867 0.7651 0.6582 0.5020 0.2760 0.3000

0.4545 0.0978 0.1757 0.4704 0.7000 0.7310 0.7775 0.6874 0.1299 0.3267

0.4909 0.3499 0.3371 0.4877 0.7933 0.8000 0.5319 0.5493 0.3546 0.2467

0.5000 0.3352 0.2545 0.5819 0.7800 0.6167 0.6075 0.7139 0.3622 0.4133

0.3968 0.4782 0.2007 0.4735 0.6689 0.4792 0.1927 0.6240 0.0632 0.1467

0.3077 0.1925 0.368 0.4935 0.6067 0.6181 0.6663 0.6313 0.1977 0.3000

0.3333 0.0733 0.1416 0.4059 0.7933 0.5556 0.8798 0.5975 0.0594 0.2655

0.2727 0.2183 0.2955 0.4198 0.6800 0.6872 0.8236 0.7031 0.2650 0.3733

0.4182 0.3283 0.2306 0.5174 0.6533 0.7792 0.9174 0.5050 0.1474 0.4324

0.5032 0.0978 0.2449 0.5480 0.7444 0.7263 1.0000 0.6915 0.2359 0.2467

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

0.4491 0.3506 0.2807 0.4553 0.6134 0.6983 0.8550 0.6363 0.2013 0.3147

STD STD STD STD STD STD STD STD STD STD

0.0924 0.1165 0.0677 0.0722 0.1260 0.1010 0.2672 0.0732 0.1182 0.1574

Median Median Median Median Median Median Median Median Median Median

0.4100 0.2320 0.2795 0.4673 0.6451 0.6737 0.6963 0.6984 0.2276 0.3000

Table 5 Test confusion matrix for neural network

Normal High pressure

Normal 49 3

High pressure 1 47

Accuracy 98.0% 94.0% Overall acc. 96.0%

Error 2.0% 6.0% Overall err. 4.0%

Table 6 Test confusion matrix for SVM

Normal High pressure

Normal 45 6

High pressure 5 44

Accuracy 90.0% 88.0% Overall acc. 89.0%

Error 10.0% 12.0% Overall err. 11.0%
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Fig. 14 Correlation between the five features and IOP in millimeter of mercury. a Pupil/iris ratio feature. b Red area percentage feature. c Mean
redness level feature. d Contour height feature. e Contour area feature

Table 7 Test confusion matrix for neural network with three
features (MRL, contour area, and contour height)

Normal High pressure

Normal 45 5

High pressure 1 40

Accuracy 98.2% 88.9% Overall acc. 94.0%

Error 1.8% 11.1% Overall err. 6.0%

Table 8 Cohen table of statistical power analysis

Effect size index Small Medium Large

t test on mean d 0.20 0.50 0.80

t test on correlation r 0.10 0.30 0.50

F test ANOVA f 0.10 0.25 0.40

F test regression f2 0.02 0.15 0.35

Chi-square test w 0.10 0.30 0.50
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To check the robustness and efficiency of the pro-
posed framework, a test has been carried out on over
additional 100 frontal eye images from diverse popula-
tions (including various races and age ranges) with nor-
mal IOP, which have, however, been diagnosed with eye
diseases or conditions other than high IOP (e.g., cata-
ract, eye redness, and trauma) [38, 39]. Since the images
were taken in bright lighting environments, the system
was able to extract the five features, and as shown in
Fig. 15, the tested samples have been accurately classi-
fied as normal IOP. These results also show that the
proposed framework can perform reliably on frontal eye
images captured with different resolutions.

7 Conclusions
In this paper, we have proposed a novel automated
non-contact and non-invasive framework contributing
to smart healthcare for analyzing frontal eye images to
help in the early detection of high-risk IOP. Image pro-
cessing and machine learning techniques were used to
assist in detecting high-risk eye pressure cases.
The dataset used in this study included 200 normal

eye pressure cases and 200 cases with high eye pressure.
The proposed framework was implemented in MATLAB
2013a. Five features (pupil/iris ratio, MRL, RAP, and two
sclera contour features: area and height) were extracted,
and then, a neural network classifier was applied to train
and test the images.
The proposed framework produced evidence of the re-

lationship between the five extracted features and IOP,
which has not been previously investigated through au-
tomated image processing and machine learning tech-
niques on frontal eye images. This research was built on
top of our preliminary data found in [40, 41] to assist
clinicians and patients for early screening of IOP risk.

The scaled neural network computations and classifica-
tion results provided from our framework correlate with
IOP levels and the ground truth of eye images with an
accuracy of 96%.
As a future direction, more analysis will be provided

to optimize the framework in terms of robustness and
efficiency and investigate applying this work to mobile
devices such as smartphones to make this work available
and easily accessible to everyone. The framework can
thus be used to check the patient’s IOP status (normal
or high) over time. The images and results can be fur-
ther registered as a profile for each patient to identify if
risky elevations of IOP have occurred.
Moreover, the framework is now under progress for

further optimization of the work on eye images taken
from different angles. The results of this paper showed
proof of concept based on a reasonable size dataset of
images captured with a certain resolution/environment.
In future work, more frontal eye images including those
from participants of several races will be fed to the
image database. Additional tests and analysis will also be
conducted, so the framework can differentiate between
IOP and other eye diseases like cataract and redness.
Moreover, many core processors can be used to enhance
the efficiency of the proposed framework [42, 43].

8 Endnotes
1IRB approval has been obtained at Princess Basma

Hospital for the human subject samples. The authors
formally requested access to the dataset.
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