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Abstract

Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing.
Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for
accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase
multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system
structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature
classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of
the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of
the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer
region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three
CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of
99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to
Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs
from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work
proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to
other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the
proposed system concerning both tumour detection and localization.

Keywords: Brain tumour diagnosis, MRI segmentation, Tumour detection and localization, Convolutional neural
networks (CNNs)

1 Introduction
Brain tumour is a serious disease in which an abnormal
growth of tissue inside the the brain can disrupt proper
brain function. The National Brain Tumor Foundation
(NBTF) reported that the number of people in devel-
oped countries who have died due to brain tumours has
increased by 300% over the last three decades [1, 2]. Man-
ual brain tumour diagnosis by physicians is a less accurate
yet still time-consuming procedure [3, 4].
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Magnetic resonance imaging is an advanced medical
imaging technique providing rich information about the
human soft tissue anatomy [5]. Automatic brain tumour
detection from magnetic resonance images (MRIs) aims
to classify MRIs into normal and abnormal according to
the absence or presence of a tumour, respectively. Thus,
the diagnosis problem can be addressed as an image clas-
sification challenge. The pervasiveness of brain tumours
has led to the production of a massive amount of MRI
data. Therefore, developing an automatic brain tumour
diagnosis system that achieves high tumour detection and
localization accuracies is a vital need [6]. Machine learn-
ing in general and deep learning approaches in particular
play core roles in computer-assisted brain image analysis,
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segmentation, registration, and tumour tissue classifica-
tion [7, 8].
Recently, deep learning paradigms have received con-

siderable research attention. Deep learning models have
multiple layers that can be trained using either supervised
or unsupervised training approaches [9, 10]. In recent
studies, deep learning models have achieved competi-
tive results compared to the classical learning models in
brain tumour diagnosis and tumour image classification
[11, 12]. In addition, deep learning models like convolu-
tional neural networks (CNNs) have improved the field of
object detection and classification in different applications
[13, 14]. As a deep learning paradigm, CNNs [15] have
been used to extract high-level features from raw image
data [16].
Although several studies have targeted the application

of deep learning methods to brain tumour diagnosis,
a complete system for automatic tumour detection and
localization is not yet available in the literature. In addi-
tion, integrating tumour detection and localization accu-
racy within a single diagnosis system is still an open chal-
lenge. Having brain tumour detection phase preceding the
tumour localization in a single system leads to discarding
the normal images from being processed in the localiza-
tion phase. This opens doors to the real-time deployment
of such automatic tumour diagnosis systems that save
time and computing power from locating tumours in
normal images.
This research addresses the aforementioned challenges

by developing a novel and complete computer-aided diag-
nosis (CAD) system for tumour detection and localization
from MRIs. In the tumour detection phase, the system
combines a CNN, which is used for feature extraction
due to its ability to learn features from raw data, with
an error-correcting output codes support vector machine
(ECOC-SVM), which is used for feature classification.
The system is considered a two-phase multi-model arte-
fact due to its detection and localization abilities using
different CNN models.
Three CNN models, namely, AlexNet, Visual Geome-

try Group (VGG)-16, and VGG-19, have been deployed
and evaluated for tumour detection. A five-layer fully
developed region-based convolutional neural network (R-
CNN) has been used in the second phase for tumour
localization. The accuracy of the developed two-phase
multi-model system has been evaluated using MRIs
extracted from two different databases: the Reference
Image Database to Evaluate Response (RIDER) Neuro
MRI database [17] and the Brain Tumor Segmentation
(BraTS) 2013 database.
The key contributions of this study exist in several

dimensions. First, a complete two-phase multi-model sys-
tem for brain tumour detection and localization that
combines a CNN and an ECOC-SVM is implemented

and evaluated. Although CNNs and SVMs are not new
approaches, the state-of-the-art in this field does not yet
include systems similar to the one developed here, i.e.,
with these specific phases and CNN learning models. Sec-
ond, integrating tumour detection and localization in one
artefact is a good step towards real-time deployment of
the research findings. Third, 349 MRIs from the RIDER
NeuroMRI dataset are extracted andmanually annotated,
and this dataset will be available as a standard benchmark
for other researchers who conduct research on tumour
detection. Fourth, the conducted experimental works have
proven the superiority of the developed system in terms of
tumour detection and tumour localization.
The remainder of this article is organized as follows.

Section 2 is devoted to reporting related work on both
the detection and localization of brain tumours. The
description of the two-phase multi-model tumour diag-
nosis system with respect to design and implementation
is provided in Section 3. The experimental studies and the
simulations for evaluating the whole diagnosis system in
terms of tumour detection and localization accuracy are
documented in Section 4. Finally, concluding remarks are
outlined in Section 5.

2 Related work
Brain tumour detection has received substantial research
attention, and several detection methods have been pre-
sented over the past two decades. In [18], a combina-
tion of morphological filters, discrete wavelet transforms
(DWTs), principal component analysis (PCA), and ker-
nel support vector machines (KSVM) were applied to
classify MRIs as normal and abnormal. Further improve-
ments have been realized to classify an abnormal image
as benign (noncancerous) or malignant (cancerous) by
applying a double classifier Abd-Ellah et al. [19]. Devasena
andHemalatha [20] proposed a CAD system for the detec-
tion of abnormal parts inMRIs using a hybrid abnormality
detection algorithm (HADA).
In [21], Patil and Udupi used preprocessing, segmenta-

tion, feature extraction, and a probabilistic neural network
(PNN) method to identify brain tumours. Arakeri and
Reddy [22] applied three different classifiers: an SVM, an
artificial neural network (ANN), and a k-nearest neigh-
bour (k-NN) algorithm to distinguish between different
types of tumours. Dandıl et al. [23] proposed a system for
brain tumour classification where spatial-fuzzy C-means
(FCM) was applied for brain tumour segmentation, and an
SVM was used in the classification stage.
Goswami and Bhaiya [24] presented a new MRI brain

tumour classification based on an ANN. Histogram
equalization, noise filtering, and edge detection were
applied in the preprocessing stage. The features were
extracted by independent component analysis (ICA).
A self-organizing map neural network (SOMNN) was
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applied in the classification stage. Deepa and Devi [25]
proposed a system consisting of feature extraction, clas-
sification, and tumour segmentation. Optimal texture
features were extracted from tested images using statis-
tical features. A back propagation neural network (BPN)
and a radial basis function neural network (RBFN) were
used in the classification and segmentation stages, respec-
tively. A short comparison of the aforementioned classical
learning-based diagnosis methods is provided in Table 1.
Few deep learning-based methods for brain tumour

diagnosis were found in the state-of-the-art in this field.
In [26], brain CT image classification based on a deep
neural network (DNN) was presented. A gray-level co-
occurrence matrix (GLCM) was used for feature extrac-
tion, and a DNN was applied for classification. The aver-
age accuracy of the reported method was 83%. Gao et al.
[27] introduced a CT brain image classification that inte-
grated both 2D and 3D CNNs. The average classification
accuracy rate was 87.6%, while each network consisted
of seven layers. Yan Xu et al. proposed a method using
deep convolutional activation features for brain tumour
classification and segmentation. The system classification
accuracy was 97.5% [28].
Several deep learning methods for brain tumour local-

ization have been presented in the literature. Havaei et
al. [29] demonstrated automatic brain tumour localization
using a DNN based on the CNNs with an average DICE
score of 0.88.
In [30], a fully convolutional residual neural network

(FCR-NN) combined with a fully convolutional architec-
ture with optimization gains from residual identity was
developed. The network consists of a 22 complex layers,
and the achieved DICE score was 0.87. Casamitjana et al.

Table 1 Comparison of the available traditional classification
approaches used in brain tumour detection

CAD system Total images Classification
method

Accuracy (%)

El-Dahshan
et al. [2]

101 FFBPNN 99.00

Devasena and
Hemalatha [20]

250 HADA 98.8

Arakeri and
Reddy [22]

550 SVM, ANN and
k-NN

99.09

Dandıl et al. [23] 376 KSVM 91.49

Goswami and
Bhaiya
[24]

70 SOMNN 98.60

Deepa and
Devi [25]

42 BPN and RBFN 85.71

Abd-Ellah
et al. [18]

80 KSVM 100

Abd-Ellah
et al. [19]

120 KSVM 100

[31] proposed the use of 3D CNNs for the segmenta-
tion of abnormal parts in MRIs based on a network using
multi-resolution features and reported a DICE score of
0.84.
Zhao et al. [32] used a fully convolutional neural net-

work (FCNN) and conditional random fields (CRFs) as
a post-processing step to segment brain tumours with
an obtained DICE score of 0.87. Pereira et al. in [33]
presented a preliminary study on brain tumour segmen-
tation based on fully convolutional network (FCN) with
standardization of MRI histograms as a preprocessing
stage, which demonstrated a DICE score of 0.85. More
recently, Pereira et al. [34] examined a complete seg-
mentation system that includes preprocessing, CNN, and
post-processing stages. The new system could achieve an
improved DICE score of 0.88 at the expense of increased
system complexity.

3 Methods
Currently, deep learning models are of considerable
research importance. Deep learning methods provide
high efficiency and the ability to process numerous MRIs
from databases [35]. This study focuses on CNNs, which
have gained popularity among researchers for object
recognition and biological image segmentation.
The developed diagnosis system has two phases for

tumour detection and localization. The first phase con-
verts tumour detection into anMRI classification problem
and then categorizes MRIs into normal and abnormal
images. The second phase focuses on tumour localiza-
tion inside the abnormal images. Figure 1 shows a block
diagram of the proposed system. MRIs are delivered to
the system’s input, and then, the preprocessing tasks are
performed. A feature extraction tool is used to select
the relevant features, and a classification tool is applied
to decide whether these features belong to a normal or
an abnormal MRI. To achieve accurate results, the five-
layer R-CNN has been trained and evaluated using MRIs
from BraTS 2013 as a standard benchmark for tumour
localization.

3.1 Brain tumour detection phase
3.1.1 Input image and preprocessing
Due to the ability of magnetic resonance imaging to
provide information about the soft tissues in the brain,
databases of MRIs were used in this study as an input
to the developed system. The goal of the preprocessing
stage is to ensure the MRI readiness for the next stage.
It improves image quality, reduces the noise level, and
enhances the overall image resolution by employing clas-
sical filtering techniques [36]. The preprocessing stage
also adjusts the image size and type to a 227 × 227 RGB
image, which is provided to the trainable CNN in the
feature extraction stage.
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Fig. 1 A flowchart of the developed CNN-based system for brain tumour detection and localization. The flowchart shows the two system phases
(detection and localization phases) and highlights the two different types of convolutional neural network (CNN) used for each system phase. The
AlexNet, VGG-16, and VGG-19 models fit the CNN in the detection phase, and a five-layer fully developed R-CNN was used in the localization phase

3.1.2 Convolutional neural network (CNN)
CNN is the deep learning model that has improved over
the past two decades. CNNs can learn features automati-
cally from input data, especially images, as is the case in
this research [37]. The convolutional layers are used to
convolve the input image with kernels (weights) to obtain
a feature map. The weights of the kernels connect the fea-
ture map units to the previous layer. AlexNet and two
other CNN models, namely, VGG-16 and VGG-19, were
used and evaluated in the tumour detection phase. How-
ever, the focus of the theoretical foundation section is on
the AlexNet model. The AlexNet model was selected due
to its flexibility to be modified, its ability to reduce over-
fitting using a dropout layer, and its capability to train
faster through using a rectified linear unit (ReLU).
The AlexNet model utilized for tumour detection is a

pre-trained network from the MatConvNet toolbox [12].
It consists of 23 layers with weights. The first layer defines
the input dimensions, including an input image size of
227 × 227 × 3. A series of convolutional layers intervene

with ReLU and max-pooling layers. The final layer is a
classification layer with 1000 classes.
The tumour detection phase employs the CNN network

for feature extraction, and there are few layers in the CNN
that are suitable for this goal. The CNN depends on nine
layers, as shown in Fig. 2: an image input, two convolution,
two ReLU, two cross channel normalization (Norm), and
two max-pooling layers. Layers 2 and 6 are convolutional
layers with 11×11×3 and 5×5×48 convolutions, respec-
tively. If we suppose that the input x and the weight w are
realized on integer t, the 2D discrete convolution can be
defined as in Eq. 1:

y(i, j) = x(i, j) ∗w(i, j) =
∑

m

∑

n
x(m, n)w(i−m, j− n)

(1)

wherem ∗ n is the size of the convolution matrix, w and x
are the inputs from the previous layer, and y is the output
of the convolutional layer.

Table 2 The configurations of the MRIs database in the training and testing datasets used in tumour detection phase

Total images
Distribution in the training set Distribution in the testing set

Normal Abnormal Normal Abnormal

349 45 77 64 163
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Fig. 2 The architecture of the CNN used in this study. The name of each network layer is provided. The figure shows a snapshot of the whole
network architecture

To facilitate the convolution process, the dimensions of
the convolutional kernel and the CNN input should be
matched. If the CNN is a multidimensional array, then
the kernel should be a multidimensional array as well.
If the CNN input is a two-dimensional image [38], a
two-dimensional kernel w is used, as presented in Eq. 1.
The output of the convolutional layers, i.e., layers 2

and 6, will apply a sigmoidal activation function to the
obtained convolutional output y in Eq. 1 to provide the
new output f modelled as function of the input y with
Eqs. 2 or 3:

f (y) = tanh(y) (2)

f (y) = 1
1 + e−y (3)

The output of the ReLU layers, i.e., layers 3 and 7, will
apply a linear activation function to the neuron output y
as shown in Eq. 4:

f (y) = max(0, y) (4)

Layers 4 and 8 are the cross-channel normalization lay-
ers with five channels. The 3 × 3 max-pooling layers are
layers 5 and 9. These layers are very simple because they
take a K×K region and output a single value, and then the
output is an N

K × N
K layer. Layer 9 provides the extracted

features in a dimension of 1 × 43264, which are then fed
to the SVM to carry out the image classification.

3.1.3 Error-correcting output codes support vector
machines (ECOC-SVMs)

Dietterich and Bakiri presented an error-correcting out-
put codes (ECOC) approach to correct the data error
when input enters into a channel. The approach uses
error-correcting codes to convert the binary classifiers to
a multi-class classification [39]. It has been successfully
used in many applications, such as face recognition [40],
face verification [41], text recognition [42], and digital
manuscript classification [43].
Error-correcting output codes support vector machines

(ECOC-SVMs) is a method that combines the SVMs and
ECOC. It was proposed to solve the online identification
and feature extraction problems. When applying ECOC-
SVMs to multi-classification, the k classes classification is
transformed to the L classes classification by the ECOC
matrix. ECOC-SVM functions according to the following
steps [44]:

1 Training: The classes are represented in two subsets
(0 or 1) for each row of the coding matrix using the
SVM binary partition. The SVM takes the row with a
value of 0 as the first class and the row with a value of
1 as the second class. The corresponding class assigns
a codeword for each column of the matrix. All of the
L classes are trained according to rows of the ECOC
matrix, where L is the dimensionality of the new
feature space and the length of the codeword.

2 Testing: The test data is fed into the learned
classifier. The L classifiers recognize the samples and
generate output vector Z. The hamming distance
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Fig. 3 Representative images from the MRIs database that was used in the tumour detection phase. Normal MRIs without brain tumours are in the
top row, while abnormal images with brain tumours present are in the bottom row

between each vector in the output vector matrix and
code matrix is shown in Eq. 5. The classifier chooses
the class depending on the minimal distance.

ci = argmind(Z,Hi) =
L∑

j=1
|Zj−Hi,j|, i = 1, 2, ..., k (5)

Table 3 The obtained number of features, the consumed feature
extraction time, and the accuracy of the different CNN layers

Layer number
Evaluation metrics

No. of features Feature extraction time Accuracy (%)

Layer 2 (conv) 290400 0.24 69.16

Layer 3 (ReLU) 290400 0.25 84.58

Layer 4 (norm) 290400 0.33 68.28

Layer 5 (pool) 69984 0.35 66.96

Layer 6 (conv) 186624 0.78 69.16

Layer 7 (ReLU) 186624 0.80 48.01

Layer 8 (norm) 186624 0.83 77.97

Layer 9 (pool) 43264 0.85 99.55

Layer 10 (conv) 64896 1.20 49.33

Layer 11 (ReLU) 64896 1.21 81.93

Layer 12 (conv) 64896 1.40 65.63

Layer 13 (ReLU) 64896 1.41 98.23

Layer 14 (conv) 43264 1.59 88.54

Layer 15 (ReLU) 43264 1.60 96.47

The table indicates that the optimum number of layers with respect to the
consumed time and the achieved accuracy is 9

where H is the code matrix with i rows and j columns.

3.2 Brain tumour localization phase
Since the BraTS 2013 database includes 3DMRIs, we used
its MRIs slice by slice as inputs for the CNN. Our method
handles each slice as a 2D image [29], and T2 images
were selected only with segmented images. In the pre-
processing stage, we detect the tumour region from the
segmented image using a bounding box method. The T2
image with the tumour bounding box are provided to the
R-CNN block to train the network. As a post-processing
step, we measure the properties of regions in the tested
image and select the region most intersected with the
R-CNN as the tumour region.

3.2.1 5-layer region-based convolutional neural network
(R-CNN)

R-CNNs offer high object detection accuracy. The R-
CNN method trains a CNN to classify the image regions
into an object or a background category. It uses the log
loss approach to fine-tune the image regions into objects.
Then, an SVM approach is applied to detect objects [45].

Table 4 Comparison of the performance of the three CNN
models used in the tumour detection phase

Network model Layer number (type) Accuracy (%)

AlexNet Layer 9 (pool) 99.55

VGG-16 Layer 32 (pool) 92.95

VGG-19 Layer 38 (pool) 95.15
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Table 5 Comparison of the obtained tumour detection accuracy from the proposed CNN-based system to previous work in which a
classical approach was used with the same database as a unified benchmark

Detection system
Performance evaluation metrics (%)

Sensitivity Specificity Accuracy BA PPV NPV

Abd-Ellah et al. [18] 83.43 25.00 66.96 54.21 73.91 37.20

Proposed method 99.38 100.0 99.55 99.69 100 98.46

The R-CNN architecture used in the tumour localiza-
tion phase consists of five layers. The network first pro-
cesses the whole image using the image-input layer (layer
1) and then converts the input data with a size of 28×28×1
into a convolutional layer (layer 2) with a filter size of 5 and
filter number of 20 for detecting multiple class-specific
objects. A fully connected layer (layer 3) with two outputs
is used to predict a single-box for tumour localization.
The softmax layer (layer 4) is also known as the normal-
ized exponential. The output unit activation function is
the softmax function [46–48], as presented in Eq. 6:

yr = exp(ar)
∑k

j=1 exp(aj)
(6)

where a is the input vector with k dimensions and y
is the output vector with k dimensions. The denomina-
tor

∑k
j=1 exp(aj) normalizes the output to ensure that

∑k
r=1 yr = 1 and 0 ≤ yr ≤ 1, which can be represented

graphically as a layer with k neurons.
The classification layer used as the final layer is named

after the loss used for the training process. It returns a
neural network classification output. For multi-class clas-
sification, the loss (error) function is the cross entropy
function shown in Eq. 7:

E(θ) = −
n∑

i=1

k∑

j=1
tij ln yj(xi, θ) (7)

where θ is the parameter vector, tij is the indicator that the
i sample belongs to the j class, and yj(xi, θ) is the output
for sample i.

Table 6 Comparison of the proposed CNN-based brain tumour
detection approach against some former state-of-the-art
methods

CAD system Total images Classification method Accuracy (%)

Da et al. [26] 10 DNN 83.0

Gao et al. [27] 285 2D and 3D CNNs 87.6

Yan Xu et al. [28] 45 CNNs 97.50

Proposed method 349 ECOC-SVM 99.55

4 Results and discussion
4.1 Experimental environment setup
The image database used for evaluating the tumour detec-
tion phase was extracted from the RIDER Neuro MRI
database [17]. The input database consists of brain MRIs
from 19 patients. These images were obtained approxi-
mately 2 days apart. T1-weighted and T2-weighted MRIs
were used. The database contains a total of 349 MRIs,
including 109 normal images and 240 abnormal images. A
set of 43264 features was extracted from each MRI image
which later was used to train the SVM. The SVM was
trained using 122×43264 features in total. The specifica-
tions of the utilized database are presented in Table 2.
A sample of the MRIs database used in the experimental
work is shown in Fig. 3.
To evaluate the tumour localization phase, a dataset of

804 3D MRIs extracted from the BraTS 2013 database
was used for the localization accuracy assessment. The
database consists of 20 high-grade (HG) and 10 low-grade
(LG) patients and T1, T1c, T2, and FLAIR type MRI
modalities. A set of 593 MRIs was used for R-CNN train-
ing and validation, and a set of 211 MRIs was used for the
testing dataset. The 3D images were converted into 2D
slices, and the T2 MRI modality was used.

4.2 Accuracy evaluation criteria
To evaluate the two system phases, the following stan-
dard metrics were used: sensitivity, which represents the
proportion of actual positives that are correctly classified;
specificity, which indicates the proportion of negatives

Table 7 Performance analysis of the developed localization
R-CNN-based method compared to other methods in the
literature

Localization method
Performance evaluation metrics (%)

Layers Sensitivity PPV DICE

Havaei et al. [29] 10 87.00 88.00 0.88

Chang [30] 22 – – 0.87

Casamitjana et al. [31] 22 83.08 84.60 0.84

Zhao et al. [32] 16 83.00 92.00 0.87

Pereira et al. [33] 51 93.00 80.00 0.85

Pereira et al. [34] 11 89.00 88.00 0.83

Proposed method 05 95.44 81.80 0.87
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that are correctly classified; and accuracy, which is the
proportion of both true positives and true negatives.
These three metrics were calculated using Eqs. 8, 9, and
10, respectively [18, 19]:

Sensitivity = σ

σ + �
(8)

Specificity = η

η + �
(9)

Accuracy = σ + η

σ + η + � + �
(10)

where true positives (σ ) are the correctly classified pos-
itive cases, true negatives (η) are the correctly classified
negative cases, false positives (�) are the incorrectly
classified positive cases, and false negatives (�) are the
incorrectly classified negative cases.
In addition to sensitivity, accuracy, and specificity, other

parameters have been considered for evaluating tumour
detection and localization phases. The new parame-
ters were balanced accuracy (BA) = (sensitivity + speci-
ficity)/2, positive predictive value (PPV) = σ /(σ + �), and
negative predictive value (NPV) = η/(η + �) [11]. Addi-
tionally, DICE scores are considered a common parameter
for tumour localization approaches.

4.3 Tumour detection accuracy analysis
The performance of the CNN is measured in every net-
work layer. The goal of this step is to identify the optimum

number of network layers for achieving the highest accu-
racy and the shortest feature extraction time. The mea-
sured performance of each layer is recorded in Table 3. It is
demonstrated in Table 3 that setting the number of layers
equal to 9 provided the best performance.
Table 4 shows the best accuracy obtained from the three

CNN models used in this study and the corresponding
layer number. The network size has been optimized to
give the best performance in learning phase and then has
been fixed, with the validation and testing phases using
the same network size as the learning phase. This is to
generalize the CNN model for all data samples.
To further investigate the performance of classical

learning models against the proposed deep CNN-based
model, a classical brain tumour diagnosis method has
been applied and studied using the same database con-
figurations as in Table 2. The proposed CNN system
achieved 99.55% accuracy, while the classical method
accomplished 66.96%. A short comparison between the
performance of the previous classical method and the
newly proposed deep learning system using the same
database is presented in Table 5. The obtained results in
Table 5 show the superiority of the deep learning method
in terms of brain tumour detection accuracy, which is
reflected in the MRI classification.
The proposed CNN-based system has achieved 99.55%

accuracy for tumour diagnosis when selecting nine CNN
layers. To ensure the credibility of the obtained results,

Fig. 4 Visual results in the axial view from the localization phase. The top row shows the T2 modality. The second row shows the ground truth. The
bottom row shows the segmented images
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a comparison with results from the literature was per-
formed. The outcome of the proposed CNN-based system
compared with those of three popular methods reported
in the literature is reported in Table 6.

4.4 Tumour localization accuracy analysis
Simulation experiments have been conducted to show
the performance of the proposed system in fulfiling
the tumour localization task. A comparison with other
studies found in the literature is shown in Table 7.
It is clear that the proposed system is superior to
the others in terms of the network size, sensitivity
and DICE metrics but not the PPV metric. A sample
of visual results from the MRIs database used in the
localization phase of the experimental work is shown
in Fig. 4.

5 Conclusions
This paper has proposed a two-phase multi-model deep
learning-based system for brain tumour detection and
localization from MRIs. The main goals of this study are
to classifyMRIs into normal and abnormal images accord-
ing to the absence or presence of a brain tumour and
to accurately localize the tumour within the abnormal
MRIs. The first system phase employed CNN and ECOC-
SVM approaches for feature extraction and classification,
respectively. A five-layer R-CNN was used for tumour
localization in the second system phase. The tumour
detection phase was evaluated using 349 MRIs extracted
from the RIDER Neuro MRI database. The empirical
work has shown that the method achieved an accuracy
of 99.55%. The tumour localization phase was evaluated
using the BraTS 2013 database, and a DICE score of
0.87 has been achieved using 804 3D MRIs. The accom-
plished results proved the superiority of the proposed
deep learning-based method for tumour detection and
demonstrate the superiority of the whole system’s perfor-
mance concerning both tumour detection and localization
measures.
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