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Abstract

Robust and automated surgical workflow detection in real time is a core component of the future intelligent operating
room. Based on this technology, it can help medical staff to automate and intelligently complete many routine activities
during surgery. Recognition of surgical workflow based on traditional pattern recognition methods requires a large
number of labeled surgical video data. However, the labeled surgical video data requires expert knowledge and it is
difficult and time consuming to collect a sufficient number of labeled surgical video data in the medical field. Therefore,
this paper proposes a semi-supervised spatio-temporal convolutional network for the recognition of surgical workflow
based on convolutional neural networks and temporal-recursive networks. Firstly, we build a spatial convolutional
extraction feature network based on unsupervised generative adversarial learning. Then, we build a bridge between low-
level surgical video features and high-level surgical workflow semantics based on an unsupervised temporal-ordered
network learning approach. Finally, we use the semi-supervised learning method to integrate the spatial model and the
temporal model to fine-tune the network, and realize the intelligent recognition of the surgical workflow at a low cost to
efficiently determine the progress of the surgical workflow. We performed some experiments for validating the mode
based on m2cai16-workflow dataset. It shows that the proposed model can effectively extract the surgical feature and
determine the surgical workflow. The Jaccard score of the model reaches 71.3%, and the accuracy of the model reaches
85.8%.
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1 Introduction
According to the Statistical Yearbook for health and fam-
ily planning in China [1], in 2016, the total number of
patients treated by Chinese medical and health institutions
was 7.932 billion, of which 227 million were hospitalized
and 50.822 million were inpatients, among which the
mortality rate was 0.4%. See Fig. 1 for the detailed data.
With the development of modern artificial intelligence

medical technology, whether scientific and technological
progress can be used to improve the efficiency of surgery.
In computer-aided surgery (CAS), intelligent recognition
of surgical procedures is an important issue in recent
years, which has attracted widespread attention from re-
searchers in the field of computer vision [2]. In recent
years, operating rooms (ORs) have undergone tremendous
changes with the increase of available technology to

support and assist surgical teams. One of the targeted
goals is the development of context-aware systems [3] that
continuously monitor the activities performed in the ORs
in order to provide an accurate and reliable support. The
key challenge in developing these new methods is to
process the data coming from sensors and real-time detec-
tion systems in order to provide useful information and
support decision-making. This task is challenging because
of the complexity of the ORs’ environment and the high
variability of surgical interventions due to patient abnor-
malities, surgeon experience, and ORs’ specific con-
straints. But it is very important, because it is the basis for
realizing the intelligence of surgery and related activities
[4]. For example, based on this basic technology, it can
achieve surgical task detection [5], early warning of critical
events [6], surgeon skills assessment [7], automatic index-
ing of surgical video [8], automatic generation of surgical
records [9], surgery remaining time estimate [10], and so
on. Intelligent perception of surgeons’ behavior and accur-
ate and efficient determination of the progress of the
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operation process can effectively reduce the risk of sur-
gery, improve the efficiency of the doctor’s operation, and
better save the lives of patients. Many methods have been
proposed to solve the problem of automatic recognition of
surgical procedures. In [11–14], the authors use instru-
ments and sensor data directly to recognition of surgical
activities. However, these methods require some special
sensors and usually connected to a surgical instrument or
a surgeon’s hand, which may interfere with the normal
operation of the operation. In the literature [15], surgical
workflow was identified by integrating surgical instru-
ments, anatomical organs, and surgical behavior. However,
these features require manual design and cannot adapt to
different procedures. Recently, the deep convolution
neural network (DCNN) has made historic progress in the
computer vision problem of image classification [16] and
semantic segmentation [17], using deep learning to iden-
tify the process workflow [18, 19]. Although avoiding fea-
ture engineering and achieving good results, training the
model requires a large number of training datasets, which
requires a lot of manpower and material resources to
pre-label the surgical data. Surgical video is more massive
unlabeled data and a small number of labeled data exist
simultaneously. Therefore, how to automate the recogni-
tion of surgical procedures by using only a small amount
of labeled data and a large amount of unlabeled data is
particularly important.
Therefore, this paper proposes a semi-supervised

spatio-temporal convolution network for recognition of
surgical workflow, taking laparoscopic cholecystectomy
surgical video data as the research object, based on deep
learning theory spatio-temporal convolution network
model as the research foundation, and adopting unsuper-
vised generative adversarial network learning methods to
non-structured surgical video data structured to construct
a spatial convolution feature network, using an unsuper-
vised temporal recursive network learning approach to

construct a bridge between low-level surgical video fea-
tures and semantics of high-level surgical procedures. We
try to achieve intelligent detection of surgical video pro-
cesses at a low cost. The model is shown in Fig. 2 and
described in detail below. The result of the recognition is
shown in Fig. 3.

2 Review of related work
Within this field, the development of new methods for
analyzing procedures is an important issue. Many re-
searches have been conducted for developing methods for
recognition of surgical workflow. Bardram et al. [20] pro-
posed a system using embedded and body-worn sensor
data to train a decision tree in order to predict surgical
phases. They studied sensor significance in order to iden-
tity the most important features for surgical phase predic-
tion. Stauder et al. [21] used Random Forest (i.e., a bag of
decision trees) to predict surgical phases from sensors
measurement. Other models like hidden Markov model
(HMM) were also considered by Padoy et al. [22, 23] for
online recognition of surgical steps. In this work, surgical
activities were extracted using image processing tech-
niques on laparoscopic camera. Similarly, Bouarfa et al.
[24] used HMM with a pre-processing on the input sensor
data in order to improve the detection of high-level surgi-
cal tasks. SVM classifier was also considered by Lalys et al.
[25] to detect phases and low-level surgical tasks using
cameras in pituitary surgery. Varadarajan et al. [26] used
HMM to recognize and segment surgical gestures for sur-
gical assessment and training. Learning the topology of an
HMM is however still challenging and improving this step
continues to be investigated [27].
This paper is mainly based on video analysis and un-

derstanding of surgical procedure. The following is a
brief review of progress related to this field. In [28],
Padoy roughly classified laparoscopic cholecystectomy
into six stages and use evolutionary reinforcement

Fig. 1 2013–2017 national medical service data
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learning to extract feature for recognition for the first
time. The accuracy was about 50%. Blum et al. [29] of the
Technical University of Munich, Germany, took pictures
from the video of laparoscopic surgery and adopted
dimensionality-reduced features, based on hidden Markov
model (HMM), dynamic time warping algorithm (DTW),
and other methods for phase detection. DTW algorithm
produces the best performance detection accuracy 76.8%.
Dergachyova et al. [30] based on the dataset of laparo-
scopic cholecystectomy [2] combined surgical instrument
data to detect surgical procedures. This method firstly
models the surgical process, performs feature extraction
on visual and surgical instruments, classifies the features

using AdaBoost, and finally generates the decision using a
hidden Markov model. Based on the visual features, the
accuracy of the algorithm is close to 68%, and the accur-
acy of the fusion surgical instruments is close to 90%.
Recent studies [2] proposed the Endonet framework, a
CNN based on the AlexNet architecture, to identify the
online and offline learning processes. This method is still
based on laparoscopic cholecystectomy performed on two
large datasets (Cholec 80 and EndoVis) and achieves bet-
ter performance. Offline analysis has the highest average
accuracy of 92.2% (Cholec80) and 86% (EndoVis).
The surgical procedure detection based on the super-

vised learning method described above needs to learn

Fig. 2 (Left) Our model contains three components. The spatial, temporal, and fine-tune. (Top right) The spatial component of our model. (Bottom right)
The temporal component of our model

Fig. 3 This figure shows the experimental results of the model proposed in this paper. The ground truth displayed on top of the picture, and the
length of the small rectangular box indicate the probability of recognition for each phase
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from a large amount of data. In order to train this
method, a large amount of labeled surgical video data is
required. However, the labeling of surgical video data re-
quires expert knowledge and it is difficult and time con-
suming to collect a sufficient number of labeled surgical
video data in the medical field. Therefore, we propose a
semi-supervised method for surgical workflow. The rest of
the paper is composed of Section 2 where we present our
semi-supervised spatio-temporal CNN method, Section 3
where we evaluate the proposed method, and Section 4
which concludes this study and gives the directions for
the future work.

3 Method
This section describes the method proposed for surgical
workflow recognition. This paper attempts to adopt an
unsupervised feature extraction method to achieve auto-
matic recognition of the surgical process phase in order
to efficiently determine the progress of surgery, reduce
the risk of surgery, and provide the core algorithms and
techniques for computer-assisted surgical systems. The
proposed model consists of unsupervised spatial feature
extraction and temporal feature extraction. Finally, the
full model is completed by merging two parts. Each sec-
tion is described in detail as follows.

3.1 Unsupervised spatio generative adversarial learning
Generative adversarial networks (GANs) [2] a clever new
way to leverage the power of discriminative models to
get good generative models. At their heart, GANs rely
on the idea that a data generator is good if people can-
not tell fake data apart from real data. There are two
pieces to GANs. First off, the method needs a network
that might potentially be able to generate data that looks
just like the real thing. The authors call this the gener-
ator network. The second component is the discrimin-
ator network. It attempts to distinguish fake and real
data from each other. Both networks are in competition
with each other. The generator network attempts to fool
the discriminator network. At that point, the discrimin-
ator network adapts to the new fake data. This informa-
tion, in turn is used to improve the generator network,
and so on.
Generator maps vectors z from the noise space Nz

with a known distribution Pz to the image space Nx.The
generator’s goal is to model the distribution Pdata of the
image space Nx (in this work, Pdata is the distribution of
all possible surgical workflow images).
Discriminator The discriminator’s goal is to distinguish

real surgical workflow images coming from the image
distribution Pdata and synthetic images produced by the
generator.
In short, there are two optimization problems running

simultaneously, and the author adjust parameters for G

to minimize log(1 -D (G (z)) and adjust parameters for
D to minimize log (D (X)),as if they are following the
two-player min-max game with value function V (G, D).
See Fig. 4 in detail. The loss function of the model con-
tains two parts. Based on the backpropagation algorithm,
the model is continuously optimized by updating z.

min
G

max
D

V D;Gð Þ ¼ Ex∼pdata logD xð Þ½ �
þ Ez∼pz zð Þ log 1−D G zð Þð Þð Þ½ �

The recognition of surgical workflow based on deep
learning requires a large number of labeled data. How-
ever, surgical video is more massive unlabeled data and a
small number of labeled data. By generative adversarial
networks, we can not only effectively utilize a large
number of unlabeled surgical video to pre-train the
models, but also generate surgical video samples [31].
This paper draws on the idea of unsupervised generative
adversarial networks, trains a generative network based
on surgical data sets, and then uses the discriminant net-
work as the spatial feature extraction model in this
paper. The spatial feature of the surgical workflow is
mainly the image feature of the surgical video. By train-
ing the generative adversarial networks, the discriminant
network can effectively understand the image features of
the surgical workflow, so the network can be used as
spatial feature extraction for surgical workflow. Our im-
plementation is mainly learned from the [31], and details
are shown in the experimental part of this paper.

3.2 Unsupervised temporal context learning
The temporal information is very important for recogni-
tion of surgical workflow; in order to distinguish between
different phases of surgery, we need to combine context
to make logical decisions. Surgery has a relatively stable
sequence in logic. An operation process must precede or
follow a certain surgical process phase. In this section, we
present our method for training unsupervised temporal
model using unlabeled videos. We accomplish this by
solving a task that requires the long short-term memory
(LSTM) [32] to sort two given frames into the correct
temporal order. LSTM is a temporal-recursive neural net-
work, which is suitable for processing and predicting time
series tasks. We assume that the features learned while
solving the sorting task enable the LSTM to distinguish
frames based on their temporal context. See Fig. 5.
The long short-term memory network can capture tem-

poral information well, and the surgical workflow is a
logical process with temporal sequence. See Fig. 5. Given
two surgical video frames, firstly, we extract the spatial fea-
ture from spatial model according to the sequence and then
send them to the LSTM network for sorting tasks and
finally enter a sigmoid function to determine. If the order is
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true, otherwise, it is false. The network identifies the surgi-
cal workflow by the sequence of the operation, which is
judging the correctness of the operation process through
the network and training the model. The process is per-
formed in an unsupervised manner as well as the extraction
of surgical spatial features. Training process is generated by
unlabeled surgical video sequences, and the details are
shown in the experimental section.

3.3 Fine-tuning model
Surgical video can be well represented by the extraction
model of spatial and temporal features. The fusion of
two features can be a good classification of the surgical
video. In this section, we combine spatial model and
temporal model to fine-tune the surgical phase recogni-
tion. Each type of surgery can be decomposed into dif-
ferent stages according to the granularity. Each stage is
in a different state of operation and doctors treat
patients differently. The recognition of intelligent surgi-
cal workflow is based on the analysis of surgical video to
determine which stage the operation is in. Therefore, the
recognition of surgical workflow can be regarded as a
multiple classification problems. After the extraction of
spatial and temporal features, multiple classifications are
performed. We use the softmax multinomial logistic
function, which is an extension of the cross-entropy
function, to compute the loss. The function is formu-
lated as:

L ¼ −1
Ni

XNi

i¼1

XNp

p¼1

lip log φ wi
p

� �� �

where p ∈ {1, , , , , ,Np} is the phase index and Np = 8 is
the number of phases, lip∈f0; 1g and wi

p are respectively

the ground truth of the phases and the output of layer of
the model corresponding to phase p and image i, and
φ(⋅) ∈ [0, 1] is the softmax function.
Surgical video representation is extracted by

pre-trained spatial and temporal feature model, and the
features are input into multi-classification functions to
identify and judge the surgical workflow. This part inte-
grates surgical video feature extraction and recognition
to fine-tune training. The specific process is shown in
Fig. 1, and the details of implementation are shown in
the experimental section.

Fig. 4 Given a GAN model trained on real images, update z to find the closest mapping on the latent image manifold, based on the designed
loss functions

Fig. 5 Temporal model
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4 Experimental results and discussion
4.1 Dataset
The experiment in this paper is based on
m2cai16-workflow dataset. It contains 41 videos of
cholecystectomy procedures from University Hospital of
Strasbourg/IRCAD (Strasbourg, France) and Hospital
Klinikum Rechts der Isar (Munich, Germany). The data-
set is split into two parts: training subset (containing 27
videos) and testing subset (14 videos). The videos are re-
corded at 25 fps. All the frames are fully annotated with
eight defined phases: (1) trocarplacement, (2) prepar-
ation, (3) calot triangle dissection, (4) clipping and cut-
ting, (5) gallbladder dissection, (6) gallbladder packaging,
(7) cleaning and coagulation, and (8) gallbladder retrac-
tion. The list of phases in the dataset is shown in Table 1.
The distribution of the phases in dataset is shown in
Fig. 6.

4.2 Evaluation metrics
There are many different stages in each surgical work-
flow and each stage is continuous, so we use the Jaccard
score to evaluate the recognition model, which is com-
puted as follows:

J GT ; Pð Þ ¼ GTI ∩P
GTY ∪P

where GT and P are respectively the ground truth and
prediction for each phase. There are eight stages in our
paper. In addition to that, we will also show the accuracy
and recall of the methods. The accuracy is the percent-
age of correct samples in a process stage is the percent-
age of positive samples. The recall is the percentage of
correct samples in a process stage and is the percentage
of all positive samples.

4.3 Experiments
Firstly, we train the spatial model and downsampled the
original 25 fps video into 1 fps and resized them into the
resolution of 64 × 64. The images were further aug-
mented with cropping and mirroring before input to the

model. And normalize all pixel values to the [0,1] range.
Paper use binary cross entropy and L1 loss as loss func-
tions. L1 loss can be used to capture low frequencies in
images. The model was trained using Adam optimizer
with mini-batches of size 32 and initialized the network’s
parameters by sampling from a normal distribution with
standard deviation 0.02 and then train the temporal
model through the unsupervised sorting task. The model
was trained using RMSprop optimizer with mini-batches
of size 32 and initialized the network’s parameters by
sampling from a normal distribution with standard devi-
ation 0.01 based on spatial feature and finally integrated
the space model and the temporal model to fine tune
the overall model, which used SGD optimizer and fixed
space model and temporal model weights.
In order to verify the validity of the model, we are go-

ing to compare the performances of the following net-
works based on datasets. The relevant experimental
results are shown in Table 2 and Fig. 7

cnn-lstm-net: the model does not use unsupervised
learning for pre-training, but direct supervision training
and the network structure of the model is the same as
the spatio-temporal model
Spatial-net: spatial model we proposed in this paper
spatio-tempora-Net: full model we proposed in this
paper

We show the surgical recognition results in Table 2
and Fig. 7. From Table 2, it can be seen that the
spatio-tempora-Net yield significantly better results
than cnn-lstm-net and spatial-net. The Jaccard score
of the model reaches 71.3%, and the accuracy of the
model reaches 85.8%. This shows that our unsuper-
vised pre-training method is effective. It also shows
that through unsupervised spatial feature learning, the
model can learn the spatial pixel-level features of sur-
gical videos. Through unsupervised temporal feature
learning, the model can learn the temporal features of
surgical procedures. There is a decrease in perform-
ance for preparation and cleaning and coagulation
phase. This might be due to the fact that these two
phases have the smallest amount of training data (see
Fig. 4), as it only appears shortly in the surgeries.
From Fig. 7, it can be observed that through un-

supervised learning, the fine-tuning model converges
faster and after the model iterates 10 times, the
model starts to converge. This also shows the effect-
iveness of unsupervised pre-training on the model. To
illustrate the effectiveness of the space model, we
generated a surgical video image using a generative
network; as shown in Fig. 8, the generators can gen-
erate clear picture on the datasets, which shows that
our model is feasible.

Table 1 List of phases in the dataset

ID Phase

P0 Trocar placement

P1 Preparation

P2 Calot triangle dissection

P3 Clipping and cutting

P4 Gallbladder dissection

P5 Gallbladder packaging

P6 Cleaning and coagulation

P7 Gallbladder retraction
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Through the experiment results, we can draw the fol-
lowing conclusions: Unsupervised pre-training can
greatly improve the recognition effect of the model, and
it can accelerate the convergence of the model; un-
labeled surgical video data can be effectively utilized
through unsupervised learning; recognition of surgical
workflow requires fusion of spatial and temporal fea-
tures. Only spatial features cannot capture the logical
features of surgery, which leads to poor recognition
results.

5 Conclusions
This paper proposes a semi-supervised spatio-temporal
convolutional network for the recognition of surgical
workflow based on convolutional neural networks and
temporal-recursive networks. Firstly, we build a spatial
convolutional extraction feature network based on un-
supervised generative adversarial learning. Then, we
build a bridge between low-level surgical video features
and high-level surgical workflow semantics based on an
unsupervised temporal-ordered network learning ap-
proach. Finally, we use the semi-supervised learning

method to integrate the spatial model and the temporal
model to fine-tune the network, and realize the intelli-
gent recognition of the surgical workflow at a low cost
to efficiently determine the progress of the surgical
workflow. We performed some experiments for validat-
ing the mode based on m2cai16-workflow dataset. It
shows that the proposed model can effectively extract
the surgical feature and determine the surgical workflow.
The Jaccard score of the model reaches 71.3%, and the
accuracy of the model reaches 85.8%. The medical sur-
gery scene has special spatial information. The doctors,
nurses, etc. in the operating room rarely move during

Fig. 6 Phase distribution (training data at 1 fps)

Table 2 Phase recognition results

Model type cnn-lstm-net Spatial-net spatio-tempora-Net

Phase Jacc Prec Rec Jacc Prec Rec Jacc Prec Rec

P0 51.4 67.0 70.3 53.2 65.4 75.3 72.5 87.3 78.2

P1 38.9 43.8 71.4 52.3 67.7 65.3 67.1 80.3 80.2

P2 59.0 68.5 67.8 68.3 82.2 70.3 72.6 95.5 73.2

P3 57.3 62.2 73.5 62.1 76.6 76.7 72.7 83.7 78.6

P4 54.1 61.2 76.6 63.4 70.2 70.2 64.6 85.2 74.3

P5 42.1 52.8 78.3 64.7 79.3 74.5 75.9 93.0 68.4

P6 51.4 61.4 62.8 53.9 65.6 77.3 66.3 73.2 70.3

P7 61.2 59.5 67.4 79.4 73.6 74.3 71.6 83.1 76.5

Average value 52.8 60.8 72.2 64.4 73.4 72.9 71.3 85.8 74.9 Fig. 7 Loss and accuracy of three different models
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the entire operation. The spatial model proposed in this
paper is feature extraction of the entire scene, not focusing
on the specific behavior of doctors and nurses. Therefore,
it is not enough to capture the features of complicated
movements during the surgery in subtle scenes with chan-
ging background appearance. In view of this, the future
work of this paper will be based on the understanding of
fine-grained surgical movements to detect surgical proce-
dures. First, the basic operation of the surgery is decom-
posed, such as cutting, threading, suturing, and hooking.
Then, each surgical procedure is detected and understood
based on the movement. It is hoped that this method can
improve the understanding of the surgical procedure and
the detection accuracy. The doctors can be operated effi-
ciently and save the patient’s life time.

Abbreviations
CAS: Computer-aided surgery; DCNN: Deep convolution neural network;
DTW: Dynamic time warping algorithm; GANs: Generative adversarial
networks; HMM: Hidden Markov model; ORs: Operating rooms

Acknowledgements
The authors thank the editor and anonymous reviewers for their helpful
comments and valuable suggestions.

Funding
This work is supported by National Defense Science and technology innovation
project (No. 17-163-12-ZT-002-070-01) and Technical innovation project of
Southwest Hospital (No. SWH2017ZDCX4102).

Availability of data and materials
Please contact the authors for data requests.

Authors’ contributions
CYW and ZKH conceived and designed the study. CYW, SQL, and ZKH
performed the experiments. CYW wrote the paper. ZKH and SQL reviewed
and edited the manuscript. All authors read and approved the manuscript.

Authors’ information
Chen Yuwen (1985–present) is a male, master assistant research fellow
whose main research directions are computer vision and video
understanding.
Sun Qilong (1984–present) is a male associate researcher and has long been
engaged in the research of supercomputing application technology, data
mining, machine learning, and other fields.
Zhong Kunhua (1984–present) is a male assistant researcher and has been
engaged in machine learning, data mining, and statistical learning for a long
time.

Ethics approval and consent to participate
Approved.

Consent for publication
Approved.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1University of Chinese Academy of Sciences, Beijing, China. 2Chengdu
Information Technology of Chinese Academy of Sciences COLTD, Chengdu,
China. 3Chongqing Institute of Green and Intelligent, CAS, Chongqing, China.

Received: 27 June 2018 Accepted: 10 August 2018

References
1. National Statistical Bureau, China Statistical Yearbook (China Statistics Press,

Beijing, 2013–2017)
2. AP Twinanda, S Shehata, D Mutter, et al., EndoNet: a deep architecture for

recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1),
86–97 (2016)

3. N Bricon-Souf, E Conchon, Context awareness for medical applications.
Medical applications of artificial intelligence, vol 355 (2013)

Fig. 8 (Left) Original dataset cholecystectomy surgical workflow images. (Right) Generative cholecystectomy surgical workflow images

Chen et al. EURASIP Journal on Image and Video Processing  (2018) 2018:76 Page 8 of 9



4. K Cleary, HY Chung, SK Mun, in CARS, volume 1268 of International Congress
Series. Or 2020 workshop overview: operating room of the future (2004),
pp. 847–852

5. M Guggenberger, M Riegler, M Lux, in 1st ACM international workshop on
human centered event understanding from multimedia. Event Understanding
in Endoscopic Surgery Videos[C]//HuEvent 2014 ACM MM (ACM, Orlando,
2014), pp. 17–22

6. N Padoy, T Blum, SA Ahmadi, H Feussner, MO Berger, N Navab, Statistical
modeling and recognition of surgical workflow. Med. Image Anal. 16(3),
632–641 (2012)

7. C Loukas, Video content analysis of surgical procedures. Surg. Endosc. 3,
1–16 (2017)

8. K Schoeffmann, C Beecks, M Lux, et al., in SPIE medical imaging: Image-
guided procedures, robotic interventions, and modeling. Content-based
retrieval in videos from laparoscopic surgery[C]//SPIE Medical Imaging,
97861 vol. (San Diego, 2016), pp. 1–10

9. SK Agarwal, AJ et Tim Finin. Context-Aware System to Create Electronic
Medical Encounter Records. PhD thesis (University of Maryland, Baltimore
County, 2006), p. 10

10. I Pernek, A Ferscha, A survey of context recognition in surgery. Med. Biol.
Eng. Comput. 1-6, 2–4 (2017)

11. R Stauder, E Kayis, N Navab. Learning-based surgical workflow detection
from intra-operative signals. 2017

12. JE Bardram, A Doryab, RM Jensen, et al. Phase recognition during surgical
procedures using embedded and body-worn sensors. IEEE International
Conference on Pervasive Computing and Communications. IEEE Comput.
Soc. 8, 45–53 (2011)

13. A Nara, C Allen, K Izumi, in D Griffith, Y Chun, D Dean, editors. Advances in
Geocomputation. Advances in Geographic Information Science. Surgical Phase
Recognition using Movement Data from Video Imagery and Location
Sensor Data (Springer, Cham, 2017)

14. O Dergachyova, D Bouget, A Huaulmé, et al., Automatic data-driven real-
time segmentation and recognition of surgical workflow. Int. J. Comput.
Assist. Radiol. Surg. 11(6), 1–9 (2016)

15. X Du, M Allan, A Dore, et al., Combined 2D and 3D tracking of surgical
instruments for minimally invasive and robotic-assisted surgery. Int. J.
Comput. Assist. Radiol. Surg. 11(6), 1109–1119 (2016)

16. A Krizhevsky, I Sutskever, GE Hinton, in Advances in Neural Information
Processing Systems (NIPS). Imagenet classification with deep convolutional
neural networks (2012), pp. 1097–1105

17. J Long, E Shelhamer, T Darrell, in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Fully convolutional networks for semantic
segmentation (Boston, IEEE Computer Society, 2015), pp. 3431–3440

18. AP Twinanda, D Mutter, J Marescaux, et al. Single- and multi-task
architecture for surgical workflow at M2CAI 2016. 2016

19. P Jannin, X Morandi, Surgical models for computer-assisted neurosurgery.
Neuroimage 37(3), 783–791 (2007)

20. JE Bardram, A Doryab, RM Jensen, PM Lange, KL Nielsen, ST Petersen, in IEEE
International Conference on Pervasive Computing and Communications. Phase
recognition during surgical procedures using embedded and body-worn
sensors (2011), pp. 45–53

21. R Stauder, A Okur, L Peter, A Schneider, M Kranzfelder, H Feussner, N Navab,
in Information Processing in Computer-Assisted Interventions. Random forests
for phase detection in surgical workflow analysis (Springer, 2014),
pp. 148–157

22. N Padoy, T Blum, H Feussner, MO Berger, N Navab, in AAAI. On-line
recognition of surgical activity for monitoring in the operating room (2008),
pp. 1718–1724

23. N Padoy, D Mateus, D Weinland, MO Berger, N Navab, in IEEE International
Conference on Computer VisionWorkshops. Workflow monitoring based on
3d motion features (2009), pp. 585–592

24. L Bouarfa, PP Jonker, J Dankelman, Discovery of high-level tasks in the
operating room. J. Biomed. Inform. 44(3), 455–462 (2011)

25. F Lalys, L Riffaud, X Morandi, P Jannin, in N Navab, P Jannin, editors.
Information processing in computer-assisted interventions. IPCAI 2010. Lecture
Notes in Computer Science. Automatic phases recognition in pituitary
surgeries by microscope images classification, vol 6135 (Springer, Berlin,
Heidelberg, 2010), pp. 34–44

26. B Varadarajan, C Reiley, H Lin, S Khudanpur, G Hager, in GZ Yang, D Hawkes,
D Rueckert, A Noble, C Taylor, editors. Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2009. MICCAI 2009. Lecture Notes in

Computer Science, vol 5761. Data-derived models for segmentation with
application to surgical assessment and training (Springer, Berlin, Heidelberg,
2009), pp. 426–434

27. Y Shi, A Bobick, I Essa, in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on. Learning temporal sequence model from
partially labeled data, vol 2 (IEEE, 2006), pp. 1631–1638

28. U Klank, N Padoy, H Feussner, N Navab, Automatic feature generation in
endoscopic images. Int. J. Comput. Assist. Radiol. Surg. 3, 331–339 (2008)

29. T Blum, H Feussner, N Navab, Modeling and segmentation of surgical
workflow from laparoscopic video. Lect. Notes Comput. Sci. 6363, 400–407
(2010)

30. O Dergachyova, D Bouget, A Huaulmé, X Morandi, P Jannin, Automatic
data-driven real-time segmentation and recognition of surgical workflow.
Int. J. Comput. Assist. Radiol. Surg. 11, 1081–1089 (2016)

31. Y Chen, K Zhong, F Wang, in International conference on artificial intelligence
and big data. Surgical workflow image generation based on generative
adversarial networks (China, IEEE, 2018), p. 4

32. S Hochreiter, J Schmidhuber, Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

Chen et al. EURASIP Journal on Image and Video Processing  (2018) 2018:76 Page 9 of 9


	Abstract
	Introduction
	Review of related work
	Method
	Unsupervised spatio generative adversarial learning
	Unsupervised temporal context learning
	Fine-tuning model

	Experimental results and discussion
	Dataset
	Evaluation metrics
	Experiments

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

