
EURASIP Journal on Image
and Video Processing

Mahkonen et al. EURASIP Journal on Image and Video
Processing (2018) 2018:61
https://doi.org/10.1186/s13640-018-0303-9

RESEARCH Open Access

Cascade of Boolean detector
combinations
Katariina Mahkonen* , Tuomas Virtanen and Joni Kämäräinen

Abstract

This paper considers a scenario when we have multiple pre-trained detectors for detecting an event and a small
dataset for training a combined detection system. We build the combined detector as a Boolean function of
thresholded detector scores and implement it as a binary classification cascade. The cascade structure is
computationally efficient by providing the possibility to early termination. For the proposed Boolean combination
function, the computational load of classification is reduced whenever the function becomes determinate before all
the component detectors have been utilized. We also propose an algorithm, which selects all the needed thresholds
for the component detectors within the proposed Boolean combination. We present results on two audio-visual
datasets, which prove the efficiency of the proposed combination framework. We achieve state-of-the-art accuracy
with substantially reduced computation time in laughter detection task, and our algorithm finds better thresholds for
the component detectors within the Boolean combination than the other algorithms found in the literature.

Keywords: Binary classification, Classification cascade, Boolean combination

1 Introduction
Detection and binary classification are fundamental tasks
in many intelligent computational systems. They may be
considered as the same problem, where an input sample
is to be determined into one of two groups, either one
of two predefined classes, or as having some property or
not. In the field of computer vision, face detection, pedes-
trian detection, and car detection are canonical examples
that have received a lot of attention [1, 2]. Event detec-
tion from audio signal is of wide interest [3]. Detection
tasks with multiple measurement modalities available are
present, e.g., in biometric identity verification [4] and for
medical decisions [5].
For detection of observation from a certain category, i.e.,

a class, many different types of detectors, trained with dif-
ferent data with different statistics—possibly even from
different measurement modalities—are often available.
Most of the detectors reported in the literature output a
score, which denotes the likelihood of the existence of the
quested target class, in the input data. A threshold value is
then used to provide the classification “target” or “no tar-
get” for the input. Thus, a threshold value may be used to

*Correspondence: katariina.mahkonen@tut.fi
Tampere University of Technology, Korkeakoulunkatu 1, 33720 Tampere,
Finland

control the false negative-false positive trade-off, i.e., an
operating point of the detector.
The different detectors may have very different per-

formance, and the scores given by them are not fully
correlated. Therefore, the combination of their outputs
provides an opportunity to obtain a combined detector
with performance superior to any of the components.
The cost of classification in terms of time and compu-

tational power, besides accuracy, is an important factor in
many detection problems. Some of the detectors are very
fast to execute while others are computationally heavy. An
effective way to reduce the cost of classification is to use
a sequential decision making process which asks for new
resources only if needed for required accuracy.
We propose a new method for combining multiple sen-

sitivity tunable detectors, i.e., detectors which output like-
lihood scores, to form a computationally efficient binary
classification cascade. The component detectors are not
restricted to be based on a single feature set, but may
even operate on different measurement modalities. They
have preferably been trained with different datasets to
introduce uncorrelatedness in their output scores. For

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0303-9&domain=pdf
http://orcid.org/0000-0003-2412-0990
mailto: katariina.mahkonen@tut.fi
http://creativecommons.org/licenses/by/4.0/

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 2 of 22

combining the available sensitivity tunable detectors, we
propose to utilize a monotone Boolean function built
using AND (∧) and OR (∨) operators in disjunctive nor-
mal form (DNF). A Boolean function (BF) is said to be
monotone, if changing the value of any of the input vari-
ables from 0 to 1 cannot decrease the value of the function
from 1 to 0. For continuous data binarization, we use sim-
ilar procedure as presented in [6]. Thus, a monotone BF
on this data performs a monotone partition of the space
of measurement values.
A BF lends itself naturally to sequential evaluation,

which is an integral property of a decision process of a
classification cascade. Also, by utilizing a BF of thresh-
olded detector scores, we avoid inferring class probabil-
ities from the scores, which would be error prone while
having only a small dataset for combined system train-
ing. In the proposed OR of ANDs function (BOA), each
detector score is compared to multiple threshold levels,
which allows formulating any monotonic decision bound-
ary while making the classification decision in a computa-
tionally efficient way. The BOA cascade detector itself is
trained to be sensitivity controllable as well.
The contributions of the paper are (1) a monotone

Boolean OR of ANDs (BOA) binary classification function
to build a cascaded combination of multiple sensitivity
tunable detectors, (2) an algorithm to train a BOA com-
bination, and (3) utilizing a cascaded decision making
process for audio-visual detection task.
For evaluating the proposed BOA detector cascade and

the training algorithm to set its parameters, we use two
audiovisual databases for two detection tasks, namely
MAHNOB laughter dataset [7] for laughter detection task
and CASA dataset [8] for video context change detec-
tion task. In the laughter detection task, we show that the
accuracy of detection with a BOA cascade is superior to
the other detection accuracies reported in the literature,
while the computation time of detection is remarkably
reduced compared to the other solutions.With three com-
ponent detectors for the video context change detection,
we show that the proposed BOA training algorithm out-
performs alternative Boolean combination training algo-
rithms found in the literature.
In the following section, we introduce the work related

to Boolean detector combinations and algorithms for
training Boolean combination parameters, as well as the
work on cascaded detectors presented in the literature.
The proposed Boolean OR of ANDs combination, and the
algorithm to set its parameters are presented in Section 3.
The experimental setup and the results obtained are pre-
sented in Section 4.

2 Related work
This paper proposes combining multiple tunable detec-
tors robustly utilizing a monotone DNF-BF, named BOA,

the evaluation of which is formulated as a computationally
efficient classification cascade. Thus, we first review the
literature on Boolean detector combinations and BFs in
general. Then, we review the algorithms suitable for train-
ing a Boolean combination. Finally, we discuss the litera-
ture on classification cascades.

2.1 Boolean detector combinations
Using a Boolean conjunction or a Boolean disjunction
for combining multiple detectors has been proposed in
several studies, for example in [9–11]. Sensitivity tunable
detector functions fm : x → R for m = 1 . . .M are uti-
lized within a combination. Each detector function fm(x)
produces a score lm, which denotes likelihood of the target
appearing in the sample x. The Boolean conjunction ofM
sensitivity tunable detectors is

B(x; θ) =
M∧

m=1

(
fm(x) ≥ θAND

m
)
, (1)

and the Boolean disjunction is

B(x; θ) =
M∨

m=1

(
fm(x) ≥ θOR

m
)
, (2)

where θ denotes all the thresholds θ ∗
m used within

the combination. All of the studies [9–11] report that
either a conjunctive or a disjunctive Boolean combi-
nation of detectors do improve the detection accuracy
over component detectors, provided that the thresholds
θ ∗
1 , θ ∗

2 , . . . , θ ∗
M are set appropriately.

Mixtures of AND and OR operators within a Boolean
combination have been investigated in [12]. Utilizing
notation, where the detector function fm(x) identifiers m
are listed in vectors zq, q = 1 . . .Q, each zq containing
Mq identifiers, this kind of Boolean OR of ANDs
combination is

B(x; θ) =
Q∨

q=1

⎡

⎣
Mq∧

i=1

(
fzq(i)(x) ≥ θzq(i)

)
⎤

⎦ . (3)

As a big limitation of (3) proposed in [12], compared to
the BOA combination that we suggest, is that only one
threshold θm for each target likelihood score fm(x) = lm is
allowed.
In addition to AND and OR operators, the Boolean

negation, (NOT), and as a consequence also the exlusive-
OR (XOR) are utilized in the detector combinations in
[13–15]. The 22M possible Boolean combinations that can
be formed by M fixed, i.e., non-tunable, detectors utiliz-
ing AND, OR, XOR, and NOT operators are studied in [13].

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 3 of 22

Boolean detector combinations where each of the avail-
able target likelihood scores fm(x) = lm, m = 1 . . .M
may be cast to Boolean values using multiple thresholds
θ1m, θ2m, . . . are first made use of in [14]. However, the
space of the Boolean combinations generated by their
algorithm is left unspecified.
A question of how to select the best performing Boolean

combination for a certain problem, while having M sen-
sitivity tunable detectors, has been posed in many of
the abovementioned works. To select between conjunc-
tive (1) and disjunctive (2) combinations, in [10, 16], it
is suggested to investigate the class-conditional cross-
correlations of detector scores and to consider whether
the specificity or the sensitivity is more important. The
conjunctive fusion rule (1), which emphasizes specificity,
should be used if there is negative correlation between
detector outputs for samples of the “non-target” class.
If on the other hand the correlation of detector output
scores for samples from the “target” class is weak, disjunc-
tive fusion rule (2) emphasizing sensitivity should be used.
All in all, a Boolean combination is able to exploit negative
or weak correlation of detector scores.
To select among the combinations of the form (3),

rules of thumb have been drawn in [12] according to
average cross-correlations between the scores from the
used detectors. It is shown for three detectors with
Gaussian score distributions and identical pairwise cross-
correlations that either a conjunctive combination (1), a
disjunctive combination (2), or a type (3) combination

B(x; θ) = [(f1(x) ≥ θvote1
) ∧ (f2(x) ≥ θvote2

)] ∨
[(
f1(x) ≥ θvote1

) ∧ (f3(x) ≥ θvote3
)] ∨

[(
f2(x) ≥ θvote2

) ∧ (f3(x) ≥ θvote3
)]

,

which stands for a majority vote rule, is the best and out-
performs the component detectors. The one of those to be
selected depends on class conditional cross-correlations
between detectors.
The Iterative Boolean Combination (IBC) method in

[14] is specifically designed to find the best possible
Boolean combination, not restricted to monotone func-
tions, for a certain sensitivity level of a combination. The
search space of BFs is nevertheless restricted to avoid an
unfeasibly large number of possibilities. The IBC method
results in variety of Boolean detector compounds, but the
study does not provide analysis of the form of the gen-
erated compounds nor characteristics of their resulting
decision boundaries.
Theory of constructing BFs of unrestricted form, specif-

ically in DNF as well as in CNF (conjunctive normal form),
has been studied in depth, e.g., in [17]. BFs for classifica-
tion have been studied vastly under terms logical analysis
and inductive inference. Logical Analysis of Data (LAD)

[18, 19] is a combinatorics- and optimization-based data
analysis method first introduced in [20]. LAD methodol-
ogy focuses on finding DNF-BF-type representations for
classes.
The term inductive inference is used in many early

texts concerning topics of machine learning, many of
those discussing Boolean decision-making, e.g., [21, 22].
Using data binarization, e.g., as proposed in [6], all these
results concerning BFsmay be utilized in conjunction with
continuous valued data.
Any BF may be converted into a binary decision tree,

while the structure of the tree is generally not unique.
In case of the proposed BOA DNF-BF, the correspond-
ing deterministic read-once binary tree has depth ≥
�log2(Nθ + 1)�. In maximally deep node arrangement, the
tree becomes a single branch tree with depth equal to
the number Nθ of thresholds used in the BOA function.
However, this kind of binary tree representation does not
highlight the computational advantages of BOA cascade
that we are interested in.

2.2 Algorithms for training a Boolean combination
The parameter θ of a Boolean combination function
B(x; θ) denotes all the thresholds θnm ∈ θ for m= 1 . . .M,
n=1 . . .Nm used in the combination. For a Boolean com-
bination B(x; θ) to perform well, suitable values for the
set θ of thresholds must be found. Most of the studies
rely on training data-based exhaustive search for select-
ing the threshold values for θ , e.g., [10, 12, 13]. The
computational load of this approach is O

(
T |θ |), where

|θ | = ∑M
m=1Nm is the total number of thresholds in θ

and T is the number of threshold values tested for each
detector. The exhaustive search becomes computationally
prohibitive if there are more than a couple of threshold
values to find. Thus, more efficient algorithms are needed.
In addition to algorithms readily proposed for tunable
classification function training, we shortly review algo-
rithms which have been developed for BF training for
one operating point and their extensions to incremental
learning.
A fast method for finding sets θ of thresholds for differ-

ent sensitivity levels of a Boolean combination B(x; θ) is
presented in [10]. The method exploits the receiver oper-
ating characteristic (ROC) curve of each utilized detector
dm(x, θ) = (

fm(x) ≥ θ
)
. The ROC curve shows the true

positive rate (tpr) against the false positive rate (fpr) at
every operating point, defined by the threshold θ , of the
detector. When θ = −∞, the classification by d(x, θ)

results in tpr = 100% and fpr = 100%. On the other
hand, when θ = +∞, then tpr = fpr = 0. The
method selects the thresholds for the Boolean combina-
tion iteratively by fusing two BF components—individual
detectors or partial BFs—at a time according to their ROC
curves. Formulas for ROC curves of a conjunctive and

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 4 of 22

disjunctive combination of detectors dA and dB, dA �= dB,
are provided as

tpr∧
(
fpr∧

) = max
fprA·fprB=fpr∧

(
tprA(fprA) · tprB(fprB)

)
(4)

and

tpr∨
(
fpr∨

) =
max

fprA+fprB−fprA ·fprB=fpr∨

(
tprA(fprA) + tprB(fprB)−tprA(fprA) · tprB(fprB)

)
,

(5)

where tpr∗(fpr∗) denotes the true positive rate of a detec-
tor d∗(x; θ) at an operating point θ where its false positive
rate is fpr∗.
The efficiency of the method is based on an assump-

tion that the classifications made by different detectors
are independent. Unfortunately, this often does not hold
in practice. If the same measurement set or the same set
of features are used for multiple detectors, or if multiple
thresholds are to be found for a certain target likelihood
lm within a Boolean combination, dependencies between
classifications are very likely. We compare our algorithm
to this Boolean algebra of ROC curves in the Section 4
and use an implementation for BOA training shown in
Appendix 1.
Another algorithm that does not assume independence

of the used detectors was proposed in [11]. It suggests
training the combination iteratively by finding thresholds
for two detectors or partial combinations at a time, sim-
ilarly to the Boolean algebra of ROC curves presented
above. In this approach, the search of the best thresh-
olds for a Boolean combination is done via exhaustive
search over all the possible threshold settings for the two
systems to be merged. In the ROC space, with all the pos-
sible threshold settings, a Boolean combination produces
a constellation of performance points. The left top edge
of this constellation, consisting of the operating points of
superior performance, was introduced by [23] as the con-
vex hull of the ROC constellation. In the algorithm of [11],
before each new component fusion, the set of possible
threshold values for the newly built partial combination is
pruned to constitute of only the thresholds correspond-
ing the performance points at the convex hull of this
ROC constellation. The algorithm is originally designed
for pure conjunctive (1) or disjunctive (2) Boolean combi-
nations, but we have implemented it to deal with a BOA as
described in the Appendix 1, and we use it for comparison
to our algorithm.
In the literature concerning BFs, there are many algo-

rithms, which are designed to find a BF which perfectly
classifies the training data

{
X0,X1} in {0, 1}Nattr . Find-

ing the simplest possible BF to explain some data is an
NP complete optimization problem with 22Nattr possible
solutions. Some of the algorithms are designed assuming

monotonicity of data, the assumption which diminishes
the number of possible solutions remarkably [24]. The
number of possible BFs is further reduced in the case of
continuous data which is binarized as in [6]. In this case,
the data with M � Nattr continuous attributes actually
resides in theM-dimensional manifold of theNattr dimen-
sional space of binarized data. However, the number of
possible BFs is still exponential. A few of the approaches
target finding a BFn with imperfect classification perfor-
mance, which usually is the desirable learning result with
imperfect data.
Because of NP completeness of finding the best BF

to explain some data, most of the algorithms in the lit-
erature operate in iterative manner using some greedy
heuristics. An Aq algorithm [25] and LAD [20]-based
methods construct a DNF-BF via iteratively searching for
good conjunctions, each of which covers a part of pos-
itive training samples, to be combined disjunctively. On
the contrary, OCAT-RA1 -algorithm [26], based on idea
of one-clause-at-a-time (OCAT) [27], builds a CNF-BF via
iterative selection of disjunctions. In case of continuous
data binarized as in [6], algorithms developed for decision
tree learning, e.g., ID3 [28], C4.5 [29], CART [30] are also
suitable for DNF-BF building.
The Aq algorithm and LAD-based methods are to find

two DNF-BFs which provide perfect classification of the
training data. One function is to be used for detection
of the positive class, and the other one for detecting the
negative class. The covers, i.e., subspaces for which BF =
true, of these DNF-BFs are disjoint, leaving part of the
input space uncovered by either function. The algorithms
use different heuristic criteria when searching for suitable
conjunctions, i.e. complexes in terms of Aq.
For Aq algorithm the user may choose the criterion,

one possible choice beings the number of positive sam-
ples covered by the complex, that is, conjunction. For
LADmethodology, different criteria for optimality of con-
junctions, called patterns in LAD, are discussed in [31].
Selectivity criterion favors minterms based on data, and
evidential criterion favors patterns covering as many data
samples as possible. Algorithms for constructing pat-
terns according to these different criteria are given in
[18, 32, 33].
Algorithms for BF inference allowing imperfect classi-

fication, which is generally associated with better gen-
eralization of data with outliers, are for example AQ15
algorithm [34], which is based on Aq, and OCAT-RA1
algorithm proposed in [26]. A procedure for pruning an
overfit DNF-BF representation for better generalization is
provided within AQ15 algorithm. It is based on counts
of samples covered by each conjunction individually and
together with other conjuntions. The conjunctions which
are small in these numbers are the ones to be pruned.
OCAT-RA1 constructs each disjunction of a CNF-BF by

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 5 of 22

iteratively selecting attributes for it based on their rank of
Ntp(a)/Nfp(a), where Ntp(a) (Nfp(a)) is the number of
positive (negative) training samples, which have attribute
a = 1. New attributes are selected until all the positive
samples are covered by their disjunction.
The binary tree building algorithms, which iteratively

build the tree by starting from the root node and per-
forming a new split at every iteration, implicitly facilitate
different level generalizations of data and generate a deci-
sion function of DNF-BF form. The splitting criterion for
selecting attributes for new nodes in ID3, C4.5, and C5.0
is gain in information entropy. ID3 is applicable with bina-
rized data, while C4.5 and C5.0 can handle continuous
data by implicitly performing the binarization by usage of
thresholds. The CART algorithm uses either Gini impu-
rity or Twoing criterion to decide about the attributes
used in nodes of the tree.
Incremental learning algorithms enable updating a clas-

sification function when new data becomes available.
Some of the algorithms keep all the data available for
future updates, while some algorithms discard the orig-
inal data and perform the update based on new data
only. Incremental algorithms, which utilize all the original
training data aside of some new data, for updating a BF are
for example GEM [35] and IOCAT [36].
Both of the algorithms assume a DNF-BF, and their

update procedures consist of two phases. At the first
phase, if some of the new negative samples are misclas-
sified by the original DNF-BF, the faulty conjunctions
are located and specialized to not to cover those new
samples. Both of the algorithms perform this step by
replacing each faulty conjunction by new conjunctions
which are trained using data inside the cover of the orig-
inal conjunction. GEM utilizes Aq algorithm and IOCAT
utilizes OCAT-RA1 algorithm for this re-training. At
the second phase of BF update, the DNF-BF is updated
in terms of the uncovered new positive samples. GEM
generalizes the existing conjunctions to cover the new
positives using Aq.
In IOCAT, for each uncovered new positive sample, a

conjunction, i.e., clause in terms of IOCAT, to be gener-
alized is selected based on ratio Ntp(clause)/Nattr(clause)
of the number of positive samples covered by the clause
Ntp(clause) and the number of attributes in the clause
Nattr(clause). The selected conjunction is then retrained
with non-incremental OCAT-RA1 algorithm using all the
negative samples, the new positive sample and the pos-
itive samples within the space covered by the selected
conjunction.

2.3 Cascade processing for reduced computational load
of classification

The goal in cascaded processing for detection is in reduc-
ing the computational cost of classification. The idea is

to evaluate the input in stages, such that at each cas-
cade stage new information about the input is acquired
and then either the classification is released or the next
cascade stage is entered for new information. Decision
cascades have been investigated mostly in the field of
machine vision starting from [37, 38]. Face detection and
pedestrian detection are the most common application
areas where decision cascades have been used, e.g., in
[39–42]. Decision cascades have been utilized in other
fields, e.g., in [43] for cancer survival prediction and in
[44] for web search.
In the task of object detection from images, the

heavily imbalanced class distribution, as most of the
search windows of different sizes and positions do not
contain the target object, offers great possibilities to
make “non-target” classification with minor examina-
tion. Object detection cascades are designed such that
gradually more and more features are extracted for
increased classification certainty. A class estimate is
released as soon as the classification certainty is high
enough. If this is the case before all the obtainable features
or measurements have been extracted, computational
savings appear.
The first generation object detection cascades, used for

example in [38], are able to make early classification to
the “non-target” class only, as illustrated in Fig. 1 (left). To
classify the input into the “target” class, the input must
pass all tests

(
fs(x) ≥ θs

)
of the cascade stages s= 1 . . . S.

This kind of one-sided cascade performs a conjunctive
Boolean combination function

B(x; θ) =
S∧

s=1

(
fs (x) ≥ θs

)
.

The solution B(x; θ) = true denotes classification to the
“target” class, and B(x; θ) = false denotes classification to
the “non-target” class.
The second generation object detection cascades intro-

duced in [45] and used also in [46] are able to make
the early classification to both the classes, as illustrated
in Fig. 1 (right). They utilize two thresholds on the tar-
get likelihood score fs(x) = ls at each cascade stage
s = 1 . . . S − 1. One threshold, θ

reject
s , is used for early

rejection, i.e., early classification to “non-target” class,
if
(
fs(x) < θ

reject
s

)
= true. Another threshold, θ

accept
s ,

is used for early detection if
(
fs(x) ≥ θ

accept
s

)
= true.

This means that at each stage, either the classification is
released, or the next stage is entered in case that θ

reject
s ≤

ls < θ
accept
s . At the last cascade stage, the classifica-

tion is enforced by θS = θ
reject
S = θ

accept
S . This kind of

symmetrical cascade corresponds to a BF

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 6 of 22

Fig. 1 Two types of binary classification cascades. Typical object detection cascades utilized in computer vision. Left: an asymmetrical type cascade
for classifying efficiently the “non-target” windows. Right: a symmetrical detection cascade which is capable of early classification to both classes

B(x; θ) =
S∨

s=1

s−1∧

m=1

(
fm(x) ≥ θ

reject
m

)
∧
(
fs(x) ≥ θ

accept
s

)
,

(6)

whose output B(x; θ) = true denotes the classification to
the “target” class and B(x; θ) = false denotes classification
to the “non-target” class.
A cascade may be seen as a one branch decision tree, if

the notion of tree is broadened from the traditional def-
inition that a node makes a decision based on only one
input attribute. In a “cascade-tree,” a node function may
utilize multiple input attributes, and the function may
partition the corresponding input space freely to assign
inputs to any of the leaves, i.e., classes, or down the
branch to the next level node (stage of the cascade). In a
cascade, the order of attribute acquisition is fixed in con-
trast to input-dependent order of attribute usage with a
traditional decision tree.
For training, a detection cascade for computer vision

applications, where the detectors to be utilized are
designed having close to infinite pool of image features,
e.g., Haar, HoG, an efficient cascade structure is guaran-
teed by concurrent design of detector functions fs, s =
1 . . . S, their thresholds θ ∗

s and the cascade length S as
proposed in [40, 47]. For a cascade with fixed length S,
a method for concurrent learning of object detectors and
their operating points is proposed in [39]. The methods
proposed in the literature for finding operating points for
pre-trained detectors within a detection cascade mostly
assume strong correlation among detector scores. This
is the case in [48], where an object detection cascade
is designed using cumulative classifier scores, as well as
in [45, 46], where the proposed algorithms are based on
the assumption that the detector scores are highly pos-
itively correlated. If the detector scores are negatively

or not correlated, those cascade training strategies turn
unsuitable.

3 Methods
For combining multiple detector functions fm(x) = lm,
m = 1 . . .M, which output likelihood scores l1, l2, . . . , lM
for the same target class, we propose to use a a BF. The
proposed combination function utilizes Boolean AND (∧)
and OR (∨) operators and it is defined in disjunctive nor-
mal form. The proposed Boolean OR of ANDs function
(BOA) B yields a Boolean output B : x → {false, true}. The
BOA output B(x) = true denotes input x classification to
the “target” class and the BOA output B(x) = false, i.e.,
¬B(x) = true, denotes classification to the “non-target”
class.
Generally, a BF—possibly infinite—over a combina-

tion of thresholded detector scores is capable of pro-
ducing any binary partition of the input space x or
the space of target likelihood scores (l1, l2, . . . , lM).
Due to exclusion of the Boolean NOT rule, a BOA
combination restricts the space of different partitions
such that the spaces

{
(l1, l2, . . . , lM) | B(x)= false

}
and

{ (l1, l2, . . . , lM) | B(x) = true } are simply connected and
the decision boundary is monotonic. This is illustrated in
the example of Fig. 2, where the data points indicate laugh-
ter likelihoods from videos of MAHNOB laughter dataset
[7], which is used in our evaluations.
We build a BOA combination of detector functions

fm(x) = lm, m = 1 . . .M using Boolean OR (∨) and AND
(∧) operators as

B(x; θ) =
Q∨

q=1

Nq∨

n=1

⎡

⎣
Mq∧

i=1

(
fzq(i)(x) ≥ θ

q,n
zq(i)

)
⎤

⎦ , (7)

where in each vector zq ∈ {1 . . .M}Mq there areMq detec-
tor identifiers m ∈ {1 . . .M} for BOA construction. Each

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 7 of 22

Fig. 2 Example of BOA decision boundary. Illustration of classification of MAHNOB Laughter dataset videos with BOA. Data x ∈ X = {X0, X1} from
two classes, “laughter” and “speech,” is represented in terms of two target likelihood scores l1 and l2. The data samples from the “laughter” class X1

are shown with red crosses and the data samples of the “speech” class X0 are shown with blue dots. The resulting decision boundary by the BOA
combination (10) is shown with the bold angular line. Each threshold θ

q,n
m , m=1, 2, q=1, 2, n=1, 2, 3 is illustrated with a thin line. The space of

target likelihood scores where B(x; θ) = true is colored with pink background, and the space where ¬B(x; θ) = true is colored with blue
background. The palest background colors illustrate the subspaces, where the decision is done using the score l1 only

term
[∧Mq

i=1

(
lzq(i) ≥ θ

q,n
zq(i)

)]
in (7) is a conjunction over

the Boolean threshold comparisons of the target likeli-
hood scores {lm | ∃i m = zq(i)}. The multiplicity of a
conjunction type zq is denoted by Nq.
Every conjunction, enumerated by (q, n), operates with

a distinct set of thresholds θ
q,n
zq(i), i=1 . . .Mq.

The negation of the BOA function (7) is used for the
cascade implementation of its evaluation. In the BOA cas-
cade, the classification to the “non-target” class is formu-
lated via the negation of the BOA function—whenever the
negated BOA function equals true. The Boolean negation
of B(x; θ) in (7), in disjunctive normal form, is

¬B(x; θ) =
K∨

k=1

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(I(k,q,n))(x) < θ

q,n
zq(I(k,q,n))

)
⎤

⎦

=
M1∨

i1,1=1

M1∨

i1,2=1

M1∨

i1,3=1
· · ·

M1∨

i1,N1=1
︸ ︷︷ ︸

N1
∨

-operators , i.e.,MN1
1 conjunctions

M2∨

i2,1=1

M2∨

i2,2=1
· · ·

M2∨

i2,N2=1
︸ ︷︷ ︸

N2
∨

-operators, i.e.,MN2
2 conjunctions

· · ·

· · ·
MQ∨

iQ,1=1

MQ∨

iQ,2=1
· · ·

MQ∨

iQ,NQ=1
︸ ︷︷ ︸

NQ
∨

-operators, i.e.,M
NQ
Q conjunctions

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(iq,n)(x) < θ

q,n
zq(iq,n)

)
⎤

⎦ .

(8)

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 8 of 22

where the number of conjunctions is given by K =
∏Q

q=1M
Nq
q , and the index I(k, q, n) of the detector func-

tion identifier m within vector zq of the first representa-
tion is given by

I(k, q, n) =

⎢⎢⎢⎢⎢⎢⎣

⎢⎢⎢⎣ k − 1
∏Q

i=q+1M
Ni
i

⎥⎥⎥⎦

MNq−n
q

⎥⎥⎥⎥⎥⎥⎦modMq + 1, (9)

Figure 2 illustrates the decision boundary using a BOA
combination with z1 = [1] , z2 = [1, 2], and N1 =1, N2 =3,
which is

B(x; θ)=
(
l1 ≥ θ

1,1
1

)
∨

3∨

n=1

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

(10)

and its negation is

¬B(x; θ)=
8∨

k=1

⎡

⎣
2∧

q=1

Nq∧

n=1

(
fzq(I(k,q,n))(x) < θ

q,n
zq(I(k,q,n))

)
⎤

⎦

=
2∨

i1=1

2∨

i2=1

2∨

i3=1

⎡

⎣
(
f1(x)<θ

1,1
1

)
∧

Nq∧

n=1

(
fzq(in)(x)<θ

q,n
zq(in)

)
⎤

⎦

=
[(
l1 < θ

1,1
1

)
∧
(
l1 < θ

2,1
1

)
∧
(
l1 < θ

2,2
1

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l1< θ

2,1
1

)
∧
(
l1< θ

2,2
1

)
∧
(
l2< θ

2,3
2

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l1< θ

2,1
1

)
∧
(
l2< θ

2,2
2

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l1< θ

2,1
1

)
∧
(
l2< θ

2,2
2

)
∧
(
l2< θ

2,3
2

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l1< θ

2,2
1

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l1< θ

2,2
1

)
∧
(
l2< θ

2,3
2

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l2< θ

2,2
2

)
∧
(
l1< θ

2,3
1

)]

∨
[(

l1< θ
1,1
1

)
∧
(
l2< θ

2,1
2

)
∧
(
l2< θ

2,2
2

)
∧
(
l2< θ

2,3
2

)]
.

(11)

The corners of the resulting decision boundary are
formed by the conjunctions (q, n) = (1, 1), (2, 1), (2, 2),
and (2, 3) of (10), which are designated in Fig. 2 by the con-
junction indexes (q, n) next to each corresponding outer
corner of space { (l1, l2) | B(x; θ) = true }. The outer
corners of space { (l1, l2) | ¬B(x; θ) = true }, which
are generated by the conjunctions k = 1 . . . 8 of (11), are
similarly designated in Fig. 2.
There may be redundancy in the BOA equation

or its negation, depending on values of the thresh-
olds selected for θ . A conjunction within a BOA
is redundant, if the BOA decision boundary does

not change by removing that conjunction from the
BOA equation.
Considering a BOA with conjunction lists z1, z2, . . . , zQ

and conjunction multiplicities N1,N2, . . . ,NQ, to find
out whether a conjunction (q, nq) is redundant or not,
its thresholds

{
θ
q,nq
zq(i) | i=1 . . .Mq

}
must be examined.

Each threshold θ
q,nq
zq(i) must be compared to thresholds

θ
p,np
zp(j), zq(i) = zp(j) = m, on the same target likelihood
score lm, which are used within other conjunctions(
p, np

)
of the BOA. The conjunctions

(
p, np

)
to be

considered are those with zp containing m = zq(i)
and possibly other identifiers from zq. The list zp
may not contain identifiers not listed in zq. Formally,{
zp| p �= q and ∃i, j � m=zp(j)=zq(i) and ∀i ∈ {1 . . .Mp

}

∃j � zp(i)=zq(j)
}
. The range of np for (p, np) is naturally

np = 1 . . .Np. For a conjunction (q, nq) to be non-
redundant, one of its thresholds θ

q,nq
zq(i), i=1 . . .Mq must

be smaller than any threshold θ
p,np
zp(j), zq(i)=zp(j)=m, in its

corresponding conjunctions
(
p, np

)
. That is, in conjunc-

tion (q, nq) there must exist at least one threshold θ
q,nq
m for

which θ
q,nq
m < θ

p,np
m of all the corresponding conjunctions(

p, np
)
.

3.1 BOA as a binary classification cascade
Algorithmically, a BF is evaluated in steps, i.e., sequen-
tially. If any of the conjunctions of BOA function (7) or its
negation (8) resolves as true, the entire functions (7) and
(8) become determinate. In other words, as soon as any
of the conjunctions (q, n), q = 1 . . .Q, n = 1 . . .Nq of a
BOA B(x; θ) outputs true, i.e.,

[∧Mq
i=1

(
lzq(i) ≥ θ

q,n
zq(i)

)]
=

true, it means that B(x; θ) = true. Without evaluating
the rest of the BOA conjunctions the detection result
“target event detected” may then be announced. Sim-
ilarly, if any of the conjunctions k = 1 . . .K of the
negation of the BOA ¬B(x; θ) outputs “true,” that is, if[∧Q

q=1
∧Nq

n=1

(
lzq(I(k,n,q)) < θ

q,n
zq(I(k,n,q))

)]
= true, it means

that ¬B(x; θ) = true. The evaluation can then be stopped
and the classification result “non-target” can be released.
Computationally, the heaviest part of BOA evaluation is

the acquisition of target likelihood scores lm for an input
sample x by computing the functions fm(x) = lm, m =
1 . . .M. The cost of threshold comparisons within BOA
may be considered negligible. From computational aspect
of evaluating a BOA, once the likelihood score lm is
acquired, all the Boolean comparisons (lm ≥ θ ∗

m) and
(lm < θ ∗

m), which are based on the score lm, become
immediately available. In case the BOA function (7) or its
negation (8) becomes determinate with the Boolean com-
parisons of already computed subset of scores lm, m =
1 . . .M , the classification may be released without run-
ning the rest of the detector functions at all.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 9 of 22

We have implemented the BOA as a binary classifica-
tion cascade, where a cascade stage s ∈ {1 . . . S} calculates
a score fm(x) = lm = ls using a predefined detector
function fm and offers a possibility for releasing the clas-
sification result, as shown in Fig. 3. Internal decisions at
each stage s = 1, 2, . . . , S of the BOA cascade, whether to
release a class estimate or to enter the next cascade stage,
are made with BFs Bclass

s ((l1, l2, . . . , ls)), s = 1 . . . S, i.e.
B1
1(l1), B

0
1(l1), B

1
2(l1, l2), B

0
2(l1, l2),. . . , B

1
S(l1, l2, . . . , lS) and

B1
S(l1, l2, . . . , lS) . That is, the functions B

1
s and B0

s of cas-
cade stage s utilize the target likelihood scores l1, l2, . . . , ls.
All these functions are partitions of the BOA function
B(x; θ) of (7) and its negation ¬B(x; θ) of (8) such that

B(x; θ) = B1
1 ∨ B1

2 ∨ . . . ∨ B1
S (12)

and

¬B(x; θ) = B0
1 ∨ B0

2 ∨ . . . ∨ B0
S. (13)

Formal expressions for the partition of the BOA function
(7) into functions B1

1,B1
2,,B1

S and the BOA negation (8)
into functions B0

1,B0
2,,B0

S are derived in Appendix 2.
As an example, operation process of BOA cascade

B(x; θ) =
(
l1 ≥ θ

1,1
1

)
∨∨3

n=1

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

for MAHNOB laughter data classification is illustrated
in the Fig. 2 with the background color of the l1-
vs. l2-axis and is as follows. The classification takes
place at the first cascade stage for all the samples x
for whom B1

1(x) =
(
l1 ≥ θ

1,1
1

)
= true or B0

1(x) =
(
l1 < min

(
θ
2,1
1 , θ

2,2
1 , θ

2,3
1

))
=
(
l1 < θ

2,3
1

)
= true. In

the first case, the classification is “Laughter detected,” and
in the second case “No Laughter.” These subspaces of
(l1, l2) on the left and right outskirts of Fig. 2 are indicated
with a pale background color. In the second stage of the
cascade processing, the likelihood f2(x) = l2 is computed
only for the samples with θ

2,3
1 ≤ l1 < θ

1,1
1 , although l2 is

shown for all the samples in the Fig. 2. With the dataset
in the Fig. 2, it means that classification of approximately
65% of the samples are made using the detector function
f1 only.
The computational efficiency of the cascade naturally

depends on the order of detector methods to be utilized
at cascade stages. Generally, the faster methods should be
evaluated first, and the slower ones later. If the methods
fm, m = 1 . . .M have very different computational loads
Lm, m = 1 . . .M, it is very likely that a cascade ordered
such that Ls � Ls+1, s = 1 . . . S − 1 is the most efficient
one. Precisely, the most computationally efficient cascade
structuremay be defined via local inequalities among each
two consecutive stages s and s+ 1 as follows. If we denote
the probability of a sample arriving stage s to be classified
at stage s after computing ls = fs(x) with P1, and the prob-
ability of a sample arriving stage s to be classified at stage s
if the detectormethod fs+1 would be utilized instead of the
method fs with P2, it must hold that P1 ≥ (Ls/Ls+1)P2.
In our work, the computational loads of the detec-

tor methods are very different from each other, i.e.
Ls/Ls+1 � 1. Thus within the BOA cascade the detec-
tor methods fm m=1 . . .M are ordered according to their
computational loads. For notational simplicity we assume
that the detector methods fm used in a BOA cascade are
enumerated such that for their computational loads Lm
it holds that Lm � Lm+1, and now in a BOA cascade
fs = fm. The Table 3 demonstrates the computational
efficiency achieved in our experiments.
For a sample in a dataset X, the computational load of

classification with a BOA cascade is on average

S∑

m=1

⎛

⎝1 −
∣∣∣
{
x ∈ X,

∨m−1
s=1 B1

s (x) ∨ B0
s (x) = true

}∣∣∣
|X|

⎞

⎠·Lm.

Fig. 3 BOA cascade. Classification process with BOA classification cascade. At each stage s of the cascade new target likelihood score fs(x) = ls is
computed and either classification is made, or next stage is entered. The internal Boolean decision makers B11, B

1
2, . . . , B

1
S are partitions of BOA

function (7), and B01, B
0
2, . . . , B

0
S are partitions of (8)

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 10 of 22

To design a specific type of BOA cascade, e.g., one-
sided or symmetrical, the lists zq, q = 1 . . .Q, which
determine the detector functions to be utilized within
the conjunctions of the BOA, must be selected appropri-
ately. For data with clearly unbalanced class distribution,
one-sided cascade is computationally efficient if the early
classification option is available for the prevalent class.
This is the case if the decision-makers Bprevalent

s , s =
q . . . S for the prevalent class are functioning while the
decision-makers Brare

s , s = 1 . . . S − 1 for the rare class
are null/nonexistent as Brare

s (x) = false ∀ x. Thus, for
the usual case, where the “target” class is rare and the
“non-target” class is the prevalent one, to ensure a compu-
tationally efficient one-sided BOA cascade, the BOAmust
be conjunctive, designed with only one conjunction list
z1 = [1, 2, . . . , S]. In case the target likelihood scores are
negated, i.e., −f1(x),−f2(x), . . . ,−fS(x) are used, conjunc-
tion list of every subvector of [1, 2, . . . , S], should be used
to build a one-sided cascade capable of early classification
to “non-target” class. For example in case S = 3, the con-
junction lists would thus be z1 = [1], z2 = [2], z3 = [3],
z4 = [1, 2], z5 = [1, 3], z6 = [2, 3] and z7 = [1, 2, 3].

A symmetrical cascade, which enables early classifica-
tion to both the classes at all the cascade stages, is suitable
for classification tasks with both even and unbalanced
class distributions. The time to decision efficiency of the
cascade depends on capability of all the internal deci-
sion makers B1

s and B0
s for s = 1 . . . S of the cascade to

make early classifications. Functioning decision makers
for all the stages and both the classes to build a sym-
metrical BOA cascade are ensured by constructing the
BOA from cumulative conjunction lists z1 = [1], z2 =
[1, 2] , . . . , zS = [1, 2, . . . , S], that is zs = [1, 2, . . . , s].

3.2 BOA tunability property
Classification performance of the BOA depends on all the
values of thresholds θ

q,n
m , m = 1 . . .M, q = 1 . . .Q, n =

1 . . .Nq in θ . Classifying data X = {
X0,X1} from two

classes with a BOA B(x; θ) results in certain true positive
rate tprθ and false positive rate fprθ , which produces one
point into a space of precision (P) vs. recall (R). Classifying
the data X with the BOA B(x; θ) with all the possible sets
of different threshold values in θ results in a constellation
of performance points in (P,R) space. Best performing
threshold values for the BOA are those corresponding to
the classification performance on the upper frontier of this
(P,R) constellation.
We want to make the BOA sensitivity tunable with a

single parameter in similar way to individual detectors.
For that, we introduce a parameter α ∈ [0 . . . 1], which
denotes the sensitivity setting of a BOA. A value of the
parameter α corresponds to a fixed set θα of the BOA
threshold values such that B(x;α) = B(x; θα). In the

next section, we introduce an algorithm to select thresh-
old values for θα for a range of values of the sensitivity
parameter α. These operating points result in the BOA
performance to be close to the upper frontier of the (P,R)

constellation of BOA performance with all the possible
settings of θ .
The user may then select for a BOA B(x;α) the oper-

ating point α with the most desirable behavior with the
factual costs of a false positive Cfp and a false negative
Cfn of the problem. The operating point α∗ of minimal
expected misclassification cost can be found at

α∗ = min
α

(
P
(
x ∈ X1) · (1 − tprα

) · Cfn + P
(
x ∈ X0) · fprα · Cfp

)
.

where P
(
x∈X1) and P

(
x∈X0) are the prior probabilities

of the classes.

3.3 The proposed algorithm to set parameters of a BOA
We train the BOA B(x;α) by finding suitable values for
thresholds θα for a range of values of α ∈ [0 . . . 1] in terms
of training data X. The possible threshold values ϑm con-
sidered for a target likelihood score lm are given by the
scores of target class samples x ∈ X1 as ϑm = fm(x) = lm.
The proposed algorithm, BOATHRESHOLDSEARCH, for

training a BOA is presented in Algorithm 1. As input, the
algorithm needs training data X = {X0,X1} from two
classes, the conjunction lists z1, z2, . . . , zQ, maximal con-
junction set multiplicities N1,N2, . . .NQ of the BOA and
the maximal number Nmax

S of candidates for θα saved by
the algorithm for each α. The algorithm produces sets
θαt of fixed threshold values for BOA operating points
αt = t

T , t= 0 . . .T , where T equals the number of sam-
ples x ∈ X1. These operating points correspond to true
positive rates 0, 1

T ,
2
T , . . . ,

T−1
T , 1 on training data X. The

algorithm searches for suitable threshold values step by
step starting by selecting values for θ0 for α0 = 0 and
terminating after selecting values for θ1 for αT = 1. The
method is greedy in a sense that when searching for values
for αt at iteration t, the search starts from a potential set of
threshold values for αt−1 provided by iteration t − 1, and
the threshold values are allowed to change only gradually
for minimizing the number of false positives locally.
The algorithm starts by fixing the BOA thresholds for

sensitivity level α0 = 0 to be θα0 = {∞}. The BOA with
parameter setting α0 = 0 does not accept any sample to
the “target” class, i.e., B(x;α0) = false ∀ x ∈ X. Thus,
the algorithm starts with tprα0 = fprα0 = 0. The threshold
setting θα0 and the corresponding number 0 of false posi-
tives are placed into a set S0 as an entry (θ ={∞} , fp=0)

for the next step to start with.
At each step t = 1 . . .T , every threshold setting θ ,

given by entries (θ , fp) in St−1, provided by the step
t − 1, is adjusted. One adjusted set θnew is obtained by
mitigating one or multiple thresholds θ

q,n
m ∈ θ of one

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 11 of 22

Algorithm 1 An algorithm to find thresholds for a BOA
combination
1: procedure BOATHRESHOLDSEARCH
2: input: Z , N,F ,X,Nmax

S
#Z contains the Q conjunction lists z1, . . . , zQ.
N contains the maximal conjunction multiplicities N1, . . . ,NQ .
F contains the detector functions fm , 1=1 . . .M.
X = X0 ∪ X1 is the training data from two classes.
Nmax

S is the maximal size of set St used within the algorithm.

3: form= 1. . .M do
4: Set ϑm = {fm(x) | x ∈ X1}

5: end for
6: Set α0 = 0, θ0 = {∞}, tp0 = 0, fp0 = 0
7: Set S0 = {(θ = {∞}, fp = 0)

}
.

8: for t = 1 . . . |X1| do
9: Set St = ∅

10: for each (θ , fp) ∈ St−1 do
11: for each (q, n) for q = 1 . . .Q, n = 1 . . .Nq

do
12: for each subvector ζ of zq do
13: Set θnew = θ

14: Within θnew, set θ
q,n
m = θ

q,n
m − δm,

for allm=ζ(i), i=1 . . .Mζ

using such δm that B(x; θnew)

accepts exactly one more
sample x ∈ X1 than B(x; θ), and

θ
q,n
m ∈ ϑm.

15: Count the number of false positives
fpnew with B(x; θnew).

16: Set θ
γ ,ν
all = ∞ for every conjunction

(γ , ν) of θnew which is redundant.
17: Set St = St ∪ (θnew, fpnew).
18: end for
19: end for
20: end for
21: Set αt = t

T , tpt = tpt−1 + 1, fpt =
min(θ ,fp)∈St fp

22: Set θ t = θ∗ such that (θ∗, fpt) ∈ St and within
θ∗ the number of

conjunctions (γ , ν) for which θ
γ ,ν
all < ∞ is

the smallest.
23: Prune St by keeping Nmax

S entries with the
smallest fp.

24: end for
25: return: αt , θ t , tpt , fpt ∀ t = 1 . . . | {p} |.
26: end procedure

conjunction (q, n) of the BOA. Within each BOA con-
junction (q, n), there are 2Mq − 1 subsets of thresholds{
θ
q,n
zq(i)| i ⊆ {1 . . .Mq}

}
to search for the best change from

θ to θnew. Thus in the complete BOA function there are

P = ∑Q
q=1Nq · (2Mq − 1

)
possible subsets of thresholds

to change, and thus one θ generates up to P changed
threshold settings θnew.
When mitigating the values of thresholds{
θ
q,n
zq(i) | i ⊆ {1 . . .Mq

} }
of a conjunction (q, n) from their

values in θ for θnew, the amount of changes are such
that B(x; θnew) accepts exactly one more sample x ∈ X1

than B(x; θ). That is, B(x; θ) = B(x; θnew) ∀ x ∈ X1\x∗,
B(x∗; θ) = false and B(x∗; θnew) = true. If redundancy of
BOA function appears with the new threshold set θnew,
all the thresholds θ

q,n
zq(i), i = 1 . . .Mq of the redundant

conjunctions (q, n) are reset to be θ
q,n
∗ = ∞. All the

acquired new settings θnew are saved with their resulting
false positive counts into a set St as entries {(θ , fp)new} to
be potential settings for αt .
After processing every entry (θ , fp) ∈ St−1 and saving all

the generated new entries into St , the best set θ∗ of BOA
thresholds among the entries of St is selected for θαt =
θ∗ to correspond to αt . The best set θ∗ is a selected to
be the one corresponding to the smallest number of false
positives among the entries in St and using as few BOA
conjunctions as possible with non-infinite thresholds. The
set St is then pruned to keep themaximal allowed number
Nmax

S of the best entries for the next step to start with. In
the experiments, we used Nmax

S = 10, as larger number
did not improve the recognition accuracy notably while
making the algorithm run remarkably slower.
Figure 4 illustrates the thresholds θα found by the algo-

rithm with Nmax
S = 1 for a BOA

B(x;α) = B(x; θα) = (l1 ≥ θ11
) ∨ [(l1 ≥ θ21

) ∧ (l2 ≥ θ22
)]

.
(14)

for α = 0, 1
T ,

2
T , . . . ,

T−1
T , 1.

The memory requirement of the algorithm, besides the
training data and the output variables, during the algo-
rithm run is the storage needed for the set St of the
potential operating points to be stored at each iteration.
As maximally Nmax

S operation points are passed from one
iteration to the next one, the number of operation points
to be held in memory during an iteration of the algorithm
run is maximally Nmax

S ×∑Q
q=1Nq

(
2Mq − 1

)
.

Computational complexity of the BOATS algorithm is
O
(

|X1| Nmax
S Nmax

conj 2M
)
. In practice, multiple positive

samples are often selected concurrently, diminishing the
multiplier |X1|. The limit Nmax

S is an input parameter
which allows the user to decide about the accuracy vs time
and memory complexity trade-off of the algorithm. Nmax

conj
is the maximum number of conjunctions in the DNF-BF
BOA-function, which takes place at the operating point of
recall= 1. At operating points with lower recall values, the
true value is generally lower, and using Nmax

conj sets upper

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 12 of 22

Fig. 4 BOA training. The sequence of thresholds θαt = [θ1A , θ2A , θ2V
]
t , t=0 . . . T found by the proposed BOATS algorithm for a BOA (14) with

Nmax
S = 1. Thresholds of the operating point αt with highest accuracy on train data is marked with asterisks

limit for the time complexity. The number 2M is upper
limit of options tested when processing each conjunction,
the true number for each conjunction (q, n) is 2Mq − 1.

4 Results and discussion
In this section, we report our experiments to evaluate the
performance of the proposed BOA cascade of multiple
sensitivity tunable detectors both in terms of detection
accuracy and computational load of classification.We also
analyze the proposed BOA training algorithm to show-
case how good operating points it can find for a BOA
combination. To substantiate the eligibility of our work,
we compare the acquired results with others found in the
literature.
We first introduce the datasets used for the two explored

tasks, namely laughter detection and context change
detection, and discuss the used performance measures.
Then, we contrast our results with the proposed BOA
classifier and a C5.0 -tree classifier in laughter detection
task to results by other solutions found in the literature.
We also compare the proposed BOA training algorithm
to other training algorithms adopted from literature and
explore the detection performance with different BOA
combinations.

4.1 Data and performance measures
4.1.1 MAHNOB Laughter dataset
For laughter detection, i.e., laughter vs speech classifica-
tion, we use data from the MAHNOB Laughter dataset of
[7]. The data consists of 1399 video clips of lengths from
0.15 s to 28 s of 22 different persons. 845 of the video clips
represent speech and 554 of them represent laughter. The
data is recorded in two modilities; frontal closeup video
with frame rate 25 fps, and audio from a lapel microphone
with sampling frequency 44.1 kHz.
A frame from one of the videos is shown in Fig. 5 to

demonstrate the data.
We run the tests using 22-fold cross-validation where

at each fold the videos of one person are left out for test-
ing, and all the rest of the videos are used for training.

We build the BOA combinations using similar classifiers
as are used for the baseline method in [7]. Those are
an audio stream based detector, which provides laugh-
ter likelihood fA(xaudio) = lA, and a video frame based
detector, which provides laughter likelihood fV (xvisual) =
lV for each video clip. The computational load of the
audio stream based detector is very small compared to the
computational load of the visual stream based detector.
The audio stream-based laughter detector utilizes the 6

first MFCC features from audio frames of length 20 ms. A
single output feedforward neural network (NN) is trained
to produce audio frame-wise target class likelihoods la
using mean squared error (MSE) error function. The NN
has one hidden layer with 20 neurons and all the neurons
of the network use tangential sigmoid transfer function.
The target class likelihood lA for a video clip is an average
over the frame-wise values as lA = 1

Na

∑Na
τ=1 la(τ), where

Na is the number of audio frames in the clip.
The video frame-based laughter detector starts with

extracting the 20 face points, shown in Fig. 6, from
each video frame using an algorithm from [49]. The uti-
lized face points correspond to points used in [7]. Then,
the dimensionality of each face point feature vector is

Fig. 5 A video frame from MAHNOB Laughter data set. A video frame
from MAHNOB Laughter data set. This frame is from a video which
contains laughter

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 13 of 22

Fig. 6 Face points. The 20 face points used as features for
laughter-speech classification of MAHNOB Laughter dataset videos

reduced from 40 to 20 by principal component analy-
sis (PCA). For frame-wise laughter likelihood estimates
lv an NN is trained. It is built of 1 hidden layer of 10
neurons. All the neurons use tangential sigmoid transfer
function, and mean squared error (MSE) loss function is
applied for training. Video clipwise laughter likelihood is
given as an average over the frame-wise values as lV =
1
NV

∑NV
τ=1 lv(τ), where NV is the number video frames in

the clip.

4.1.2 CASA dataset
For video context change detection problemwe use CASA
database1 from [8]. Over 7 h of lifelog video material is
filmed with a small pen camera, which operates at frame
rate 15 frames/second and frame size 176×144 pixels. The
stereo sound track is recorded by a pair of in-ear micro-
phones with 44.1 kHz sampling rate and stored without
compression. The database contains video material from
23 different types of environments.
For a context change detection task we created 30 video

files of length 5–20 min. Each file is concatenated on aver-
age of 105 clips of length 1–30 s from the video material
of CASA database. The context—one of the 23 different
environments included in the database—is kept the same
for 1–5 successive clips, otherwise each clip is taken from
a randomly selected video file. There are on average 42
context changes within each created video file. We run
our tests using 6-fold cross-validation, where at each fold
5 files are reserved for testing and the remaining 25 files
are used for system training.

We use three different detectors to spot context changes
in the created videos. Brief descriptions of the used detec-
tors are given here, while the details of them can be found
in [50]. The fastest one of the used detectors operates
on the audio stream of the video. The audio is analyzed
in frames of length 80 ms with 40 ms overlap of suc-
cessive frames. From each audio frame, MFCC features
are computed, and within a sliding window of 125 audio
frames, mean and variance of 20 MFCC coefficients are
computed. Transitions in these statistics are converted to
a context change likelihood l1 for each audio frame. The
computation time of scores l1 on a single CPU desktop
computer is 0.8 ms per audio frame, that is 10 ms per one
second of audio.
Two other utilized context change detectors operate on

the image modality of the video. The faster one of the
detectors on visual modality collects RGB histograms of
video frames and produces the context change likelihood
value l2 for each video frame according to the city block
distance between adjacent RGB histograms. The compu-
tation time of l2 is about 29 ms per video frame, that is
approximately 435 ms per one second of video.
The more accurate one of the used detectors on visual

modality, proposed in [51], counts incidences of SIFT
descriptor codebook elements within each video frame,
and collects a SIFT histogram, i.e., so-called bag-of-words
feature vector, for each video frame. The context change
likelihood value l3 for each video frame is computed as the
city block distance between SIFT-histograms of successive
video frames. The computation time of l3 is about 12.3 s
per video frame, that makes about 184 s per one second of
video.

4.1.3 Performancemeasures
In the literature the performance of detectors is often
presented by a receiver operation characteristic (ROC)
curve. However, in our evaluations, we prefer the curve of
precision vs recall (P-R curve) because in case of imbal-
anced class distributions P-R curve is more faithful to
the absolute number of erroneous classifications than the
ROC -curve of tpr in respect to fpr. To demonstrate the
performance of a certain operating point of a detector, we
use measures like accuracy, F1-score, and computational
load.
Average values of these performance numbers over

cross-validation folds are presented as results. With
MAHNOB laughter dataset, 22-fold cross-validation is
used. In each fold, video files of one speaker are used for
testing, and the rest of the files are used for training the
component detectors and the BOA -cascade. With CASA
dataset, 6-fold cross validation is used similarly. In each
fold, 25 video files are used for training the individual clas-
sifiers and the BOA -combination, and 5 files are used for
testing the system.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 14 of 22

4.2 Comparing BOA cascade to existing work in laughter
vs speech classification

We compare the performance of the proposed BOA cas-
cade to results we obtained with C5.0 -tree building algo-
rithm [52] as well as results obtained by other authors in
laughter vs speech classification, i.e., laughter detection,
with the MAHNOB laughter dataset. For the task, we use
a BOA detector

B(x; θ) = (lA ≥ θ1A
) ∨

N2∨

n=1

[(
lA ≥ θ

2,n
A

)
∧
(
lV ≥ θ

2,n
V

)]
,

(15)

whose threshold parameters θ1A, θ
2,1
A , θ

2,1
V , θ

2,2
A , θ

2,2
V ,

. . . ,θ2,NA , θ
2,N
V are learned by the proposed training algo-

rithm. The Fig. 7 illustrates the BOA cascade of (15).
The computational load of acquiring lA from audio
stream is only a fraction of the load of computing
lV from video frames. Thus, the ratio of samples that
need the computation of lV reflects well the average
computational load of classifying a sample with BOA
cascade of (15).
Table 1 presents results with C5.0 tree building algo-

rithm as well as those found in the literature in con-
trast to our solution. We report performance numbers
with a BOA cascade of (15) with N = 1 and also
with N selected adaptively by the proposed training algo-
rithm. The decision trees obtained with C5.0 algorithm
[52] are converted to DNF-BF -form (15) and evaluated
in cascaded manner similarly to BOA evaluation. The
number N in the DNF-BF (15) of a tree varies accord-
ing to the structure of the tree, which is given by the
algorithm. The minimal leaf size of a tree was defined

by 10-fold cross validation using the training data. The
boosted C5.0 forest contains 10 trees trained with differ-
ent weightings by the training algorithm on training sam-
ples. The classification of the forest is obtained via voting
by the trees.
The C5.0 forest outperforms all the other solutions in

terms of classification accuracy, whereas the performance
of single C5.0 tree is comparable to performance obtained
with BOA classifiers.When a C5.0 tree is evaluated in cas-
caded manner, very similar computational savings as with
a BOA cascade are obtained. Both the BOA detectors out-
perform the solutions of [53, 54], albeit the classifier in
[54] is trained with another database, which likely explains
its lower detection accuracy. The results obtained by [55]
reach similar accuracy and F1-scores than our BOA cas-
cades, but their result is not fully comparable as they use
only a subset of 15 speakers out of 22 used by all the other
authors. However, the computational load of our solution
is significantly lower, compared to all these other mul-
timodal solutions. With our BOA cascade of (15) with
N = 1, only 11% of samples needed the computation of lV ,
thus it is about nine times faster than the other solutions.
The BOA cascade of (15) withN selected by the proposed
training algorithm reaches slightly higher accuracy than
the reference solutions while being still three times faster
than them.

4.3 Comparing training algorithms for BOA combination
We use the CASA lifelog data and the context change
detection task for illustrating the capability of the pro-
posed training algorithm to find successful operating
points for a BOA combination. For context change detec-
tion we use BOA combinations built of three detectors,

Fig. 7 Symmetrical BOA cascade for laughter detection. Symmetrical BOA cascade, which is capable of making early classification to both classes,

realizing of BOA (15) for laughter detection. The conjunction set z2 = {lA , lV } and the threshold θmin
A is θmin

A = min
(
θ1A , θ

2,1
A , θ2,2A , . . . , θ2,NA

)
. B02

contains K = 2N conjunctions, where the first threshold comparison is always
(
lA ≥ θ1A

)
. The comparisons indexed by n=1 . . .N operate either on

lA or lV according to binary (M2-ary) N-digit representation of the conjunction index k=1 . . . K , bin(k). If the n:th digit of bin(k) is 0, lA is used, and lV
is used if the n:th digit of bin(k) is 1

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 15 of 22

Table 1 Results in laughter detection task

acc. Fsp1 Flg1 v.f. %

(lA ≥ θA) 95.1 .944 .927 0%

(lV ≥ θV) 84.4 .818 .795 100%

BOA cascade of (15), N = 1 96.0 .966 .958 11%

BOA cascade of (15), N by BOATS 96.9 .972 .955 33%

C5.0 tree 96.7 .965 .948 23%

Boosted C5.0 forest 97.3 .978 .958 ≈ 100%

[53] 92.7 .943 .905 100%

[54]a 91.7 .932 .893 100%

[55]b 96.9 .973 .963 100%

Comparison of laughter detectors on MAHNOB laughter data. The used measures of
performance are the overall accuracy, F1 -scores for both speech (Fsp1) and laughter

(Flg1), and percentage of video clips, the classification of which utilized also visual
features (v.f.). The BOA detectors are used at the operating point α of the highest
accuracy on training set
aComparison with [54] is not directly comparable, as the classifier in [54] is trained
with another dataset
bResults of [55] are with 15 speakers while the other authors use 22 speakers in their
tests

which are introduced in “Data and performance mea-
sures.” We train the thresholds of a BOA with the pro-
posed training algorithm (BOATS) and two reference
algorithms adapted form literature, and then compare
the resulting F1-scores of classification. The reference
algorithms that we use for this evaluation are iterative
exhaustive search (IES) based on work in [11] and Boolean
algebra of ROC curves (BAROC) introduced in [10].
The implementations of IES and BAROC, adapted for
BOA training, are presented in Algorithms 2, 3 and 4 in
Appendix 1. The iterative framework used of both the
algorithms is presented in Algorithm 2. The Algorithm 3
shows the core operations of IES, and the Algorithm 4
presents the operations for BAROC.
Figure 8 shows the F1-scores with operating points

obtained with three algorithms, BOATS, IES and BAROC,
for a BOA

BAND =
N∨

n=1

[(
l1 ≥ θn1

) ∧ (l2 ≥ θn2 ∧ (l3 ≥ θn3
)]

(16)

with different conjunction multiplicities N . The IES algo-
rithm can be seen to find the best operating point when
N = 1 with its exhaustive search. However, when N
is increased, IES is unable to improve the BOA perfor-
mance due to that the suboptimal operating points of each
individual conjunction, which nevertheless might pro-
duce better performance when used within a disjunctive
combination, are pruned by the algorithm.
The BAROC algorithm performs worse than the other

algorithms due to its assumption of detector indepen-
dence, which does not hold with the two visual stream
based detectors. Moreover, by the definition of the
Boolean algebra of ROC curves in (4) and (5), BAROC
is unable to find the opportunities provided by utilizing
multiple conjunctions over the same conjunction set.
The proposed BOATS algorithm finds suboptimal

operating points for the BOA, but is able to utilize the
opportunities offered by using multiple conjunctions
over the same conjunction set, and thus outperforms
the IES algorithm with N > 1. The performance ceases
to improve when the conjunction multiplicity grows
larger than 7. This is due to both the data characteris-
tics and algorithm behavior favoring small number of
conjunctions, i.e., small N .
In a Table 2, we show the best F1-scores of the oper-

ating points found by the three algorithms for BOA
combinations

BOR = (l1 ≥ θ1) ∨ (l2 ≥ θ2) ∨ (l3 ≥ θ3)

¬B¬OR= ¬
[
(−l1 ≥ θ1) ∨ (−l2 ≥ θ2) ∨ (−l3 ≥ θ3)

]

BAND =
N∨

n=1

[(
l1 ≥ θn1

) ∧ (l2 ≥ θn2
) ∧ (l3 ≥ θn3

)]

(17)

BP =
7∨

q=1

Nq∨

n=1

Mq∧

i=1

(
lzq(i) ≥ θ

q,n
zq(i)

)

¬B¬P = ¬
[7∨

q=1

Nq∨

n=1

Mq∧

i=1

(
−lzq(i) ≥ θ

q,n
zq(i)

)]
.

Fig. 8 Experiments 1. Comparing context change detection performance of BOA BAND (16) with different conjunction multiplicities N when the
thresholds are selected by different algorithms

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 16 of 22

Table 2 Comparison of algorithms for BOA training

BOA BOATS IES BAROC

BOR 68.3 68.6 68.2

BAND,N = 1 75.7 76.5 73.5

¬B¬OR 76.3 73.2 73.2

BAND,N = 6 81.1 77.3 73.3

¬B¬P ,Nq = 1 81.3 73.4 73.7

BP ,Nq = 1 80.0 81.8 80.5

BP ,Nq by BOATS 81.7

Average test F1-score over sixfold cross-validation sets in context change detection
task with BOA combinations (17) trained with different algorithms. The used
operating point of the BOA is the one with highest F1-score on train data separately
for each CV-fold

where the conjunction lists of BP and B¬P are
z1 = [1] , z2 = [2] , z3 = [3] , z4 = [1, 2] , z5 = [1, 3] , z6 =
[2, 3] , z7= [1, 2, 3].
For the disjunctive BOA BOR, the operating points

found by the three algorithms are very similar. The IES
algorithm finds the best operating point for this BOA
with its exhaustive search. The proposed BOATS algo-
rithm does not leave far behind, nor does the Boolean
algebra for ROC curves. The assumption of the BAROC
algorithm about the detector independence, which does
not hold with these detectors, does not impair its perfor-
mance in training the BOA BOR, where only disjunctive
OR -operator is used.
The conjunctive BOA BAND with N = 1 and the dis-

junctive ¬B¬OR have equally expressive decision bound-
aries. Ideally they would result in identical classifiers,
but due to characteristics of the training algorithms they
result in having different thresholds. Similarly the ideal
decision boundaries of BAND with N = 6 and ¬B¬P
coincide. Results with those pairs of BOAs trained with
the BOATS and BAROC algorithms are similar, which
was expected because of the similarity of decision bound-
aries. The iterative exhaustive search does not find as good
operating points for the BOA combinations when nega-
tive scores −lm are used. This is due to the selection of the
threshold values to test, which in this case of using neg-
ative detector scores is done based on “non-target” class
samples, as explained in Section 3.3.
For the BOA BP with Nq = 1, q = 1 . . .Q, the IES

algorithm is able to find the best performing operating
point. The iterative exhaustive search is thus effective
in finding good thresholds for BOAs with different con-
junctions. IES was not run with Nq > 1, because of its
extremely long computation time for such a long BOA.
BAROC algorithm finds a comparable operating point for
the BOA BP with Nq = 1, q = 1 . . .Q. This is proba-
bly due to the abundance of different conjunctions in the
BOA to be combined disjunctively, where the inaccurate
independence assumption of BAROC does not matter so

much. Also for the BAROC -algorithm, the result with the
BOA BP with Nq > 1 is not reported, because it is the
same as with Nq = 1 by definition. The proposed BOATS
algorithm leaves slightly behind IES and BAROC for the
BOA BP with Nq = 1 ∀q. However, when the conjunction
multiplicities Nq are unlimited, BOATS finds an operat-
ing point with similar performance with the best one with
Nq=1 ∀q by IES.

4.4 Computational efficiency of BOA
In this section, we report performance of different BOA
cascades in terms of both F1-score and the average com-
putational load of classification in respect to real time pro-
cessing. The BOA cascades are trained with the proposed
BOATS algorithm for the video context change detection
task which has highly unbalanced class distribution, the
“no change” class being the prevalent one.
The BOA cascades BAND,¬B¬OR, and¬B¬P of (17) cor-

respond to one-sided cascades with early classification
opportunity to the “no change” class. They are assumed to
be computationally efficient with this data, where samples
of “no change” form the large majority of data. The BOA
cascades of BOR and BP are one-sided, having the early
classification opportunity solely to the “target” class. They
are likely to be slow with this data.
For this comparison we use, in addition to the BOA

cascades of (17), symmetrical cascades realizing of

BC2 =
(
l1 ≥ θ11

)
∨

∨

n=1..N

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

BC3 =
(
l1 ≥ θ11

)
∨

∨

n=1..N2

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)]

∨
∨

n=1..N3

[(
l1 ≥ θ

2,n
1

)
∧
(
l2 ≥ θ

2,n
2

)
∧
(
l3 ≥ θ

2,n
3

)]
.

(18)

The BOA cascade of BC2 is similar to the laughter detec-
tion cascade of Fig. 7 with lA = l1 and lV = l2. The
cascade of BC3 with N2 = N3 = 1 is illustrated in Fig. 9.
In Table 3, we show for the different BOA cascades their

best F1-scores as well as their computation times (CT) of
classification using a desktop PC in respect to real time
processing. The individual detectors dm = (lm ≥ θm),
m= 1, 2, 3 have very different computational loads. Com-
pared to real time processing, the detectors d1 and d2 are
very fast, d3 being extremely slow.
The BOA cascade of BC2 with N = 1 has a computa-

tional cost of only a fraction of real time, while achiev-
ing an outstanding improvement of classification perfor-
mance over individual detectors dm = (lm ≥ θm), m =
1, 2, 3. It requires a tiny fraction of the computational load
of d3 and less than 5% of the computational load of d2
while only doubling the time of the fastest detector d1.

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 17 of 22

Fig. 9 BOA cascade example. The BOA cascade of BC3 with N1=N2=N3=1. Threshold θmin
m means θmin

m = min
(
θ2m , θ

3
m

)

At the same time it reaches F1 = .764, which is about
9 percent units higher than .674 of d1, 14 percent units
higher than .525 of d2 and 11 percent units higher than
.553 of d3. With N of BC2 not restricted, the F1-score fur-
ther improves to .778, but the computational benefit over
always computing both l1 and l2 is lost.
The BOA cascade of BC3 utilizes all the three avail-

able detectors. Thus, the F1-scores obtained with it are
all the more improved from those obtained with BC2.
Real time processing is compromised by incorporating
the extremely slow computation of l3. However, with the
cascade processing, the total computational load of BC3

Table 3 Performance comparison of different BOA cascades

BOA F1 CT

d1 = (l1 ≥ θ1) .674 0.01

d2 = (l2 ≥ θ2) .525 0.43

d3 = (l3 ≥ θ3) .553 184

BC2,Nq=1∀q .764 0.02

BC2,Nq by BOATS .778 0.44

BC3,Nq=1∀q .774 2.5

BC3,Nq by BOATS .813 6.9

¬B¬OR .763 4.1

¬B¬P ,Nq=1∀q .813 7.0

BAND,N by BOATS .814 8.5

BOR .683 182.0

BP ,Nq=1∀q .798 153.3

BP ,Nq by BOATS .817 124.3

Results in terms of F1-score and computation time (CT) in respect to video time in
scene detection task with detectors d1, d2, d3 and BOA combinations of (17) and (18).
The BOA thresholds are selected with the proposed BOATS algorithm. The results
are test averages over sixfold cross validation sets. The used operating point of each
BOA is the one with highest F1-score on train data separately for each CV-fold

with N2 = N3 = 1 is reduced to less than 2% of that of
always computing all the scores l1, l2, and l3. At the same
time the F1-score is improved to 0.774. With N2 and N3
unrestricted and selected by the proposed BOA training
algorithm, F1-score improves further to 0.813, the average
computation time being still less than 4% of the time of
always computing all the scores l1, l2 and l3.
When observing the computational loads of different

BOA cascades in Table 3, we may notice that remarkable
computational savings appear whenever the BOA utilizes
the computationally heaviest detector function f3(x) = l3
only by combining it conjunctively with the faster detec-
tor functions f1(x) = l1 and f2(x) = l2. This is the case
in BOA combinations BC2, BC3, BAND,¬B¬OR and ¬B¬P .
The BOA cascades of BOR and BP utilize a conjunction
list z3 = [3], which means using the threshold comparison(
l3 ≥ θ 3

3
)
as an individual conjunction within the BOA

function. Because of this these BOA cascades can not
avoid computing l3 unless the input is accepted to the rare
“context change detected” class by conjunctions using only
scores l1 and l2. The BOA cascade of BOR is computation-
ally the most inefficient, as it is able to avoid computing l3
only if the input is classified as “context change detected”
by threshold comparison (l1 ≥ θ1) or (l2 ≥ θ2). The
BOA cascade of BP is slightly more efficient due to its
conjunctions

∨Nq
n=1

(
l1 ≥ θ

q,n
1
)∧(l2 ≥ θ

q,n
2
)
, based on con-

junction list zq = [1, 2], capable of classifying the input as
“context change detected” with only l1 and l2.
The best F1-score, F1 = .814, among the BOA cascades

not utilizing a conjunction list zq = [3] is achieved with
BAND. Only slightly higher score, F1 = .817, was obtained
with BOA cascade BP , but the computational efficiency
obtainable with a cascade structure is obstructed by its
computationally inefficient BOA design.
Precision vs recall curves of the detectors d1 = (l1 ≥ θ),

d2 = (l2 ≥ θ), and d3 = (l3 ≥ θ), and some BOA

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 18 of 22

combinations of them trained with the BOATS algorithm
are shown in Fig. 10. We can see that all the BOA combi-
nations improve the precision-recall curve over the curves
of the individual detectors remarkably.

5 Conclusions
We proposed to use a monotone Boolean function for
combining multiple binary classifiers and showed how to
implement it as a computationally efficient binary clas-
sification cascade. The proposed Boolean OR of ANDs
(BOA) cascade is defined by a BF over multiple detector
scores, and it is implemented as a classification cascade
for computational efficiency. We also presented an algo-
rithm, BOA threshold search (BOATS), for learning the
thresholds of a BOA cascade.
We showed experimentally that the BOA cascade

achieves the state-of-the-art performance in laughter
detection task with MAHNOB laughter dataset while
requiring much less computational power than the
other solutions found in the literature. We also showed
that the proposed algorithm suits best for learning
thresholds of a BOA combination, compared to other
learning strategies for Boolean combinations found in
the literature. Finally, we explored the detection per-
formance of different BOA cascades in terms of their
F1-scores and computational loads of detection. We
showed that a BOA cascade improves the classifica-
tion accuracy remarkably over the individual detectors
while mostly requiring only a fraction of their combined
computation time.

Endnote
1Demonstration available at http://arg.cs.tut.fi/demo/

CASAbrowser/

Appendix 1
Reference algorithms for BOA training
The Algorithm 2 contains the functionality for training a
Boolean BOA combination iteratively, by fusing two ele-
ments at a time. The symbol� denotes a matrix of thresh-
olds. Each row of � contains one threshold setting for the

corresponding Boolean classifier. The boldface symbols tp
and fp are used to denote vectors of true positives and
false positives resulting with different threshold settings
in � of a corresponding Boolean classifier, respectively.
One conjunction (q, n) of a BOA is built on lines 8–22

within the loop starting from line 7. On lines 23–28, the
newly trained conjunction is combined with the conjunc-
tions trained already.
The algorithm returns thresholds for found operating

points α of the BOA in matrix �B. The corresponding
true positive rates and false positive rates on training data
are returned in vectors tpB fpB We use this framework
for training a BOA with either Boolean algebra of ROC
curves (BAROC) by [10] or iterative exhaustive search
(IES) by [11].
The training algorithm to be used is selected by a vari-

able ALG. If ALG = IES, the combining is performed with
Algorithm 3, and if ALG = BAROC, the combination of
two sets of thresholds is done by Algorithm 4.

Appendix 2
Boolean decision makers at BOA cascade stages
At each stage s = 1 . . . S of a BOA cascade, one target
likelihood score fm(x) = lm = ls,m ∈ {1 . . .M} is com-
puted. All the scores li, i = 1..s are thus available at
cascade stage s tomake the classification or the decision to
enter the next cascade stage. BFs B1

1(l1), B0
1(l1), B1

2(l1, l2),
B0
2(l1, l2),. . . , B

1
S(l1, l2, . . . , lS) and B1

S(l1, l2, . . . , lS) are set
to make these internal decisions of the cascade. As
illustrated in Fig. 3, at each stage s, after computing
the predefined target likelihood score ls, a classification
to the “target” class is made if B1

s (l1, l2, . . . , ls) = true
and a classification to the “non-target” class is made if
Bs(l1, l2, . . . , ls)0 = true. If both the functions, B0

s and B1
s ,

output false, the next cascade stage is entered. The func-
tions B0

S and B1
S at the last cascade stage S are negations of

each other ensuring the classification to be made.
The decision makers B1

s , s=1 . . . S are partitions of the
BOA function (7), and the functions B0

s , s = 1 . . . S are
partitions of the negation (8) of the BOA function. This
ensures that the decision makers B1

s ,B0
s , s = 1 . . . S are

Fig. 10 P-R curves of BOA cascades. Precision vs. recall curves of detectors d1, d2, and d3 and some BOA combinations of them

http://arg.cs.tut.fi/demo/CASAbrowser/
http://arg.cs.tut.fi/demo/CASAbrowser/

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 19 of 22

Algorithm 2 An algorithm to find thresholds for a BOA
combination with IES or BAROC procedure
1: procedure ITERATIVEBC
2: input: Z , N, ,F ,X, ALG

#Z contains z1, z2, . . . , zQ.
N contains N1,N1, . . . ,NQ.
F contains the detector functions fm, m=1 . . .M.
X = X0 ∪ X1 contains the training data.
ALG is either IES or BAROC

3: form = 1 . . .M do
4: Set ϑm = {fm(x) | x ∈ X1}

5: end for
6: Set B(x; θ) = false, �B = ∅, tpB = 0, fpB = 0
7: for q = 1 . . .Q and n = 1 . . .Nq do
8: Setm = zq(1)
9: Set Bconj(x; θ) = (fm(x) ≥ θ

)

10: Set �conj = ϑm
11: tpconj = ∣∣{ x | x ∈ X1, Bconj(x;�conj) =

true }∣∣
12: fpconj = ∣∣{ x | x ∈ X1, Bconj(x;�conj) =

false }∣∣
13: for i = 2, 3, . . . ,Mq do
14: Set n = zq(i)
15: Set �n = ϑn
16: if ALG=IES then
17: Set new�conj, tpconj, fpconj according to

ES2(Bconj, �conj,∧, (ln ≥ θ),�n,
DATA)

18: else if ALG = BAROC then
19: Set new�conj, tpconj, fpconj according to

BA2((|X1|tpconj, |X0|fpconj),�conj,
∧, (|X1|tpn, |X0|fpn

)
,�n)

20: end if
21: Update Bconj(x; θ) = Bconj(x; θ) ∧ (fn(x) ≥ θ)

22: end for
23: if ALG=IES then
24: Set new �B, tpB, fpB according to

ES2(B,�B,∨, Bconj,�conj, DATA)
25: else if ALG=BAROC then
26: Set new �B, tpB, fpB according to

BA2(
(|X1|tpB, |X0|fpB

)
,�B,∨,(

|X1|tpconj, |X0|fpconj
)
,�conj)

27: end if
28: Update B(x; θ) = B(x; θ) ∨ Bconj(x; θ)

29: end for

30: return: �B, tpB, fpB.
31: end procedure

Algorithm 3 Exhaustive search of ROCCH operating
points for a Boolean combination of two detectors
1: procedure ES2
2: input: B1, �1,
,B2,�2, DATA

 is the Boolean operator to be used, eitherAND (∧) orOR (∨)

3: for p = 1 . . . number of sets θ in �1 do
4: for q = 1 . . . number of sets θ in �2 do
5: Set tp(p, q) =∣∣∣
{
x | x∈X1

B1(x;�1(p))
 B2(x;�2(q))=true

} ∣∣∣
6: Set fp(p, q) =∣∣∣
{
x | x∈X0

B1(x;�1(p))
 B2(x;�2(q))=true

} ∣∣∣
7: end for
8: end for
9: for fp = 0 . . . |X0| do

10: Find (p∗, q∗) = argmaxfp(p,q)=fp tp(p, q)
11: Set fpROCCH(fp) = fp
12: Set tpROCCH(fp) = tp(p∗, q∗)
13: Set �ROCCH(fp) = [�1(p∗),�2(q∗)

]

14: end for

15: return: �ROCCH , tpROCCH, fpROCCH.
16: end procedure

consistent. This means that both B1
s and B0

s never output
true concurrently, i.e. if B1

s (x) = true then B0
s (x) = false

and similarly if B0
s (x) = true then B1

s (x) = false. It also
means that if classification is made by B1

s or B0
s at a cascade

stage s, the decision makers B1
r and B0

r of the other stages
r = 1 . . . S, r �= s would not make contradicting classifi-
cations. Formally, if ∃s Bc

s = true then B¬c
r = false ∀r ∈

1 . . . S.
The internal decision makers at BOA cascade stages

s = 1 . . . S for the “target” class are

B1
s (x;α) =

∨

zq
∣∣ ∃j s=zq(j),
�jm=zq(j),m>s

Nq∨

n=1

Mq∧

i=1

(
fzq(i)(x) ≥ θ

q,n
zq(i)

)
.

(19)

That is, B1
s contains the conjunctions (q, n) of the BOA

(7) that utilize the newly computed likelihood score ls and
possibly those computed at earlier stages, but naturally
none of the scores lm, m > s. Examples can be seen in
Figs. 7 and 9.
Similarly, the internal decision makers B0

s , s= 1 . . . S of
the BOA cascade for the “non-target” class are partitioned
from the negated BOA; B0

s contains the conjunctions k of
the BOA (8) that utilize the newly computed likelihood
score ls and possibly those computed at earlier stages,
but none of the scores lm, m > s. The partition of the

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 20 of 22

Algorithm 4 Combining ROC curves of two detectors using the Boolean algebra of ROC curves by [10]
1: procedure BA2
2: input: (tpr1, fpr1), �1,
, (tpr2, fpr2), �2

 is the Boolean operator to be used, eitherAND (∧) orOR (∨)

3: for fpr = 0 . . . 1 do
4: if
 = ∧ then
5: Find (p∗, q∗) = arg max

fpr1(p)·fpr2(q)=fpr
tpr1(p) · tpr2(q)

6: else if
 = ∨ then
7: Find (p∗, q∗) = arg max

fpr1(p)+fpr2(q)−fpr1(p)·fpr2(q)=fpr
tpr1(p) + tpr2(q) − tpr1(p)·tpr2(q)

8: end if
9: Set fpr12(fpr) = fpr

10: Set tpr12(fpr) = tpr1(p∗) · tpr2(q∗)
11: Set �12(fpr) = {�1(p∗),�2(q∗)

}

12: end for

13: return: �12, (tpr12, fpr12).
14: end procedure

K conjunctions of ¬B of (8) is given by a Boolean vari-
able cs(k), which denotes whether the k:th conjunction of
the negated BOA (8) is used for decision maker B0

s . It is
recursively defined as

c0(k) = false ∀ k=1 . . .K

cs(k) =
s−1∧

r=1
¬cr(k) ∧

Q∧

q=1

Nq∧

n=1

S∧

m=s+1
¬ [zq(I(k, q, n)) = m

]
,

(20)

where I(k, q, n) is given by (9). The first part of the Eq. (20)
makes sure that the conjunction k has not been used for
B0
r , r < s, while the rest of the equation checks whether

detector functions beyond fs, i.e., any of fs+1, fs+2, . . . , fS,
are used in the conjunction k of (8) and sets cs(k) = false
if so.
Now, the decision-makers B0

s for the “non-target” class
are

B0
s =

∨

k

∣∣∣∣∣∣

k ∈ {1 . . .K}
cs(k) = true

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(I(k,q,n))(x) < θ

q,n
zq(I(k,q,n))

)
⎤

⎦ ,

(21)

where the detector function indicator index I(k, q, n) is
given by (9), K = ∏Q

q=1M
Nq
q and BOA variables zq,Nq,

for q= 1 . . .Q are adopted from (8). Using the alternative
notation of the ¬B (8), the decision makers B0

s , s=1 . . . S
for the “non-target” class may be written as

B0s (x; θ) =
∨

i1,1=1...M1
z1(i1,1)≤s

∨

i1,2=1...M1
z1(i1,2)≤s

· · ·
∨

i1,N1=1...M1
z1(i1,N1)≤s

∨

i2,1=1...M2
z2(i2,1)≤s

· · ·
∨

i2,N2=1...M2
z2(i2,N2)≤s

∨

iQ,1=1...MQ
zQ(iQ,1)≤s

· · ·
∨

iQ,NQ=1...MQ
zQ(iQ,NQ)≤s

⎡

⎣
Q∧

q=1

Nq∧

n=1

(
fzq(iq,n)(x)< θ

q,n
zq(iq,n)

)
⎤

⎦ .

(22)

This notation, while possibly being more comprehensible,
includes all the decision makers B0

r , r < s in B0
s , however

this redundancy does not affect the functionality.

Abbreviations
BAROC: Boolean algebra of ROC curves; BF: Boolean function; BOA: OR of ANDs
function; BOATS: An algorithm to search thresholds for a BOA detector; CNF:
Conjunctive normal form; CNF-BF: Boolean function in conjunctive normal
form; CPU: Central processing unit; DNF: Disjunctive normal form; DNF-BF:
Boolean function in disjunctive normal form; IBC: Iterative Boolean
combination; IES: Iterative exhaustive search; LAD: Logical analysis of data;
MFCC: Mel-frequency cepstral coefficient; OCAT: One clause at a time; RGB:
Red-green-blue color format; ROC: Receiver operating characteristic curve;
ROCCH: ROC convex hull; SIFT: Scale invariant feature transform

Acknowledgements
Discussions with Prof. Jiří Matas leveraged the research from implementing ad
hoc ideas to doing excogitated research. The authors would also like to thank
prof. Bhaskar Rao on useful discussions related to cascades and BFs.
Furthermore, the authors want to thank the anonymous reviewers for their
well-informed comments for improving the manuscript.

Funding
Funding for this research was provided by the Tampere University of
Technology.

Availability of data andmaterials
Mahnob Laughter dataset is located at https://mahnob-db.eu/laughter/.
CASA dataset is located at http://arg.cs.tut.fi/demo/CASAbrowser/.

https://mahnob-db.eu/laughter/
http://arg.cs.tut.fi/demo/CASAbrowser/

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 21 of 22

Authors’ contributions
KM has written the manuscript and implemented and executed the
experiments. TV has been involved in designing the experiments as a
supervisor and helped KM in writing the manuscript in a solid scientific way. JK
gave the initial idea of utilizing Boolean functions for combining classifiers. He
also provided his help in software related problems. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
People appearing in the videos of Mahnob Laughter dataset have given their
consent for data usage for research purposes.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 2 May 2017 Accepted: 6 July 2018

References
1. S Yang, P Luo, C-C Loy, X Tang, in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). Wider face: A face detection benchmark,
(2016)

2. S Zhang, R Benenson, M Omran, J Hosang, B Schiele, in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). How far are
we from solving pedestrian detection? (2016)

3. T Virtanen, A Mesaros, T Heittola, MD Plumbley, P Foster, E Benetos, M
Lagrange, Proceedings of the Detection and Classification of Acoustic Scenes
and Events 2016Workshop (DCASE2016). (Tampere University of
Technology. Department of Signal Processing, 2016). ISBN (Electronic):
978-952-15-3807-0

4. J Ashbourn, Biometrics: Advanced Identity Verification: the Complete Guide.
(Springer, 2014)

5. A Courbet, D Endy, E Renard, F Molina, J Bonnet, Detection of
pathological biomarkers in human clinical samples via amplifying genetic
switches and logic gates. Sci. Transl. Med. 7(289) (2015)

6. E Boros, PL Hammer, T Ibaraki, A Kogan, Logical analysis of numerical data.
Math. Program. 79(1), 163–190 (1997)

7. S Petridis, B Martinez, M Pantic, The MAHNOB laughter database. Image
Vis. Comput. 31(2), 186–202 (2013)

8. A Mesaros, T Heittola, A Eronen, T Virtanen, in Signal Processing
Conference, 2010 18th European. Acoustic event detection in real life
recordings (IEEE, 2010), pp. 1267–1271

9. J Daugman, Biometric Decision Landscapes, vol. 482. (University of
Cambridge, Computer Laboratory, 2000)

10. ME Oxley, SN Thorsen, CM Schubert, in Information Fusion, 2007 10th
International Conference On. A boolean algebra of receiver operating
characteristic curves (IEEE, 2007), pp. 1–8

11. Q Tao, R Veldhuis, Threshold-optimized decision-level fusion and its
application to biometrics. Pattern Recog. 42(5), 823–836 (2009)

12. K Venkataramani, BV Kumar, inMultimedia Content Representation,
Classification and Security. Role of statistical dependence between
classifier scores in determining the best decision fusion rule for improved
biometric verification (Springer, 2006), pp. 489–496

13. M Barreno, A Cardenas, JD Tygar, in Advances in Neural Information
Processing Systems 20. Optimal roc curve for a combination of classifiers,
(2008), pp. 57–64

14. W Khreich, E Granger, A Miri, R Sabourin, Iterative boolean combination of
classifiers in the roc space: an application to anomaly detection with
hmms. Pattern Recognit. 43(8), 2732–2752 (2010)

15. E Granger, W Khreich, R Sabourin, Fusion of biometric systems using
boolean combination: an application to iris-based authentication. Int. J.
Biometrics. 4(3), 291–315 (2012)

16. C Shen, On the principles of believe the positive and believe the negative
for diagnosis using two continuous tests. J. Data Sci. 6, 189–205 (2008)

17. Y Crama, PL Hammer, Boolean Functions: Theory, Algorithms, and
Applications. Encyclopedia of Mathematics and its Applications. (Cambridge
University Press, 2011)

18. G Alexe, S Alexe, TO Bonates, A Kogan, Logical analysis of data – the vision
of peter l. hammer. Ann. Math. Artif. Intell. 49(1), 265–312 (2007)

19. I Chikalov, V Lozin, I Lozina, M Moshkov, HS Nguyen, A Skowron,
B Zielosko, Logical Analysis of Data: Theory, Methodology and Applications.
(Springer, Berlin, 2013), pp. 147–192

20. PL Hammer, Partially defined boolean functions and cause-effect
relationships. Lecture in International Conference on Multi-attribute
Decision Making Via OR-based Expert Systems (1986)

21. RS Michalski. (RS Michalski, JG Carbonell, TM Mitchell, eds.) (Springer,
Berlin, Heidelberg, 1983), pp. 83–134

22. AP Kamath, NK Karmarkar, KG Ramakrishnan, MGC Resende, A continuous
approach to inductive inference. Math. Program. 57(1), 215–238 (1992)

23. T Fawcett, An introduction to roc analysis. Pattern Recogn. Lett. 27(8),
861–874 (2006)

24. P Hess, Dedekind’s problem: monotone boolean functions on the lattice
of divisors of an integer. Pacific J. Math. 81(2), 411–415 (1979)

25. RS Michalski, in V international Symposium on Information Processing (FCIP
69), Vol A3 (Switching Circuits). On the quasi-minimal solution of the
general covering problem, (1969)

26. AS Deshpande, E Triantaphyllou, A greedy randomized adaptive search
procedure (grasp) for inferring logical clauses from examples in
polynomial time and some extensions. Math. Comput. Model. 27(1),
75–99 (1998)

27. F Pawley, A Syder, The one-clause-at-a-time hypothesis. Perspect. Fluen,
163–199 (2000)

28. JR Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
29. JR Quinlan, C4.5: Programs for Machine Learning. (Morgan Kaufmann

Publishers Inc., San Francisco, 1993)
30. L Breiman, JH Friedman, RA Olshen, CJ Stone, Classification and Regression

Trees. (Chapman & Hall, New York, 1984)
31. PL Hammer, A Kogan, B Simeone, S Szedmák, Pareto-optimal patterns in

logical analysis of data. Discrete Appl. Math. 144(1-2), 79–102 (2004)
32. S Alexe, PL Hammer, Accelerated algorithm for pattern detection in

logical analysis of data. Discret. Appl. Math. 154(7), 1050–1063 (2006).
Discrete Mathematics and Data Mining II (DM and DM II)

33. TO Bonates, PL Hammer, A Kogan, Maximum patterns in datasets. Discret.
Appl. Math. 156(6), 846–861 (2008). Discrete Mathematics and Data
Mining II

34. RS Michalski, I Mozetic, J Hong, N Lavrac, in Proceedings of the Fifth AAAI
National Conference on Artificial Intelligence. AAAI’86. The multi-purpose
incremental learning system aq15 and its testing application to three
medical domains (AAAI Press, 1986), pp. 1041–1045

35. RE Reinke, inMachine Intelligence 11, ed. by JE Hayes, D Michie, and
J Richards. Incremental Learning of Concept. Descriptions: A Method and.
Experimental Results (Clarendon Press Oxford, 1988)

36. SN Sanchez, E Triantaphyllou, J Chen, TW Liao, An incremental learning
algorithm for constructing boolean functions from positive and negative
examples. Comput. Oper. Res. 29(12), 1677–1700 (2002)

37. R Feraund, OJ Bernier, J-E Viallet, M Collobert, A fast and accurate face
detector based on neural networks. IEEE Trans. Pattern Anal. Mach. Intell.
23(1), 42–53 (2001)

38. P Viola, MJ Jones, Robust real-time face detection. Int. J. Comput. Vis.
57(2) (2001)

39. L Lefakis, F Fleuret, in NIPS. Joint cascade optimization using a product of
boosted classifiers, (2010)

40. MJ Saberian, N Vasconcelos, Learning optimal embedded cascades. IEEE
Trans. Pattern Anal. Mach. Intell. 34(10), 2005–2018 (2012)

41. C Shen, P Wang, S Paisitkriangkrai, A van den Hengel, Training effective
node classifiers for cascade classification. Int. J. Comput. Vis. 103, 326–347
(2013)

42. H Li, Z Lin, X Shen, J Brandt, G Hua, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). A convolutional neural network
cascade for face detection, (2015), pp. 5325–5334

43. VC Raykar, B Krishnapuram, S Yu, in ACM SIGKDD Int. Conf. on Knowledge
Discovery and DataMining (KDD). Designing efficient cascaded classifiers:
tradeoff between accuracy and cost, (2010)

44. M Chen, Z Xu, KQ Weinberger, O Chapelle, D Kedem, in AISTATS. Classifier
cascade for minimizing feature evaluation cost, (2012)

Mahkonen et al. EURASIP Journal on Image and Video Processing (2018) 2018:61 Page 22 of 22

45. J Sochman, J Matas, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Waldboost - learning for time constrained sequential
detection, (2005)

46. T Wu, S-C Zhu, in ICCV. Learning near-optimal cost-sensitive decision
policy for object detection, (2013)

47. MM Dundar, J Bi, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Joint optimization of cascaded classifiers for computer
aided detection, (2007)

48. C Zhang, P Viola, in NIPS. Multiple-instance pruning for learning efficient
cascade detectors, (2007)

49. X Zhu, D Ramanan, in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Face detection, pose estimation, and landmark
localization in the wild, (2012), pp. 2879–2886

50. K Mahkonen, J-K Kämäräinen, T Virtanen, in Computer Vision-ACCV 2014
Workshops. Lifelog scene change detection using cascades of audio and
video detectors (Springer, 2014), pp. 434–444

51. J Lankinen, J-K Kämäräinen, in VISAPP (1). Video shot boundary detection
using visual bag-of-words, (2013), pp. 788–791

52. R Research, C5.0. http://rulequest.com/download.html. Accessed 2018
53. O Rudovic, S Petridis, M Pantic, in Proceedings of the 21st ACM International

Conference onMultimedia. Bimodal log-linear regression for fusion of
audio and visual features (ACM, 2013), pp. 789–792

54. S Petridis, V Rajgarhia, M Pantic, Comparison of Single-model and
Multiple-model Prediction-based Audiovisual Fusion, ISCA Speech
Organisation (2015)

55. H Rao, Z Ye, Y Li, MA Clements, A Rozga, JM Rehg, in Joint Conference on
Facial Analysis, Animation and Audio-Visual Speech Processing (FAAVSP).
Combining acoustic and visual features to detect laughter in adults’
speech, (2015), pp. 153–156

http://rulequest.com/download.html

	Abstract
	Keywords

	Introduction
	Related work
	Boolean detector combinations
	Algorithms for training a Boolean combination
	Cascade processing for reduced computational load of classification

	Methods
	BOA as a binary classification cascade
	BOA tunability property
	The proposed algorithm to set parameters of a BOA

	Results and discussion
	Data and performance measures
	MAHNOB Laughter dataset
	CASA dataset
	Performance measures

	Comparing BOA cascade to existing work in laughter vs speech classification
	Comparing training algorithms for BOA combination
	Computational efficiency of BOA

	Conclusions
	Appendix 1
	Reference algorithms for BOA training

	Appendix 2
	Boolean decision makers at BOA cascade stages

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

