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Abstract

Light-field imaging can capture both spatial and angular information of a 3D scene and is considered as a
prospective acquisition and display solution to supply a more natural and fatigue-free 3D visualization. However,
one problem that occupies an important position to deal with the light-field data is the sheer size of data volume.
In this context, efficient coding schemes for such particular type of image are needed. In this paper, we propose a

mechanism, HEVC SCC

scalable kernel-based minimum mean square error estimation (MMSE) method to further improve the coding
efficiency of light-field image and accelerate the prediction process. The whole prediction procedure is
decomposed into three layers. By using different prediction method in different layers, the coding efficiency of
light-field image is further improved and the computation complexity is reduced both in encoder and decoder
side. In addition, we design a layer management mechanism to determine which layers are to be employed to
perform the prediction of the coding block by using the high correlation between the coding block and its
adjacent known blocks. Experimental results demonstrate the advantage of the proposed compression method in
terms of different quality metrics as well as the visual quality of views rendered from decompressed light-field
content, compared to the HEVC intra-prediction method and several other prediction methods in this field.

Keywords: Light-field image, Image compression, Scalable kernel-based MMSE estimate, Layer management

1 Introduction

Light-field imaging, also referred to as plenoptic im-
aging, holoscopic imaging, and integral imaging, can
capture both spatial and angular information of a 3D
scene and enable new possibilities for digital imaging [1].
Light fields (LFs) captured by the light-field imaging rep-
resent the intensity and direction of the light rays ema-
nated from a 3D scene. The full LFs can be represented
by a seven-dimensional plenoptic function L =L(x,y,
z,0, ¢, A, t) introduced by Adelson and Bergen [2], where
(x,9, 2) is the viewing position, (6, ¢) is the light ray direc-
tions, A is the light ray wavelength, andt is the time. The
seven-dimensional plenoptic function is further simplified
into four dimensions by considering only information
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taken in a region free of occlusions at a single time
instance [3, 4]. The simplified 4D function L = L(x, v, x, y)
can represent a set of light rays by being parametrized as
an intersection of rays with two planes, where uvdescrib-
ing the ray position in aperture (object) plane and xy de-
scribing the rays position in image plane. Under this point
of view, the LFs can be explored from the digital perspec-
tive with the advances in computational photography [5].
There are several techniques that can be utilized to
capture a light-field image, such as by using coded aper-
tures, multi-camera arrays, and micro-lens arrays. In the
micro-lens array-based technique, the most appropriate
way to capture the LF image is by using plenoptic cam-
era which is produced by Lytro. The commercially avail-
able plenoptic cameras can be divided into two
categories: standard plenoptic camera and focused ple-
noptic camera. The focused plenoptic camera can pro-
vide a trade-off between spatial and angular information
by putting the focal plane of microlenses away from the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0291-9&domain=pdf
mailto:zhx.you@gmail.com
mailto:anping@t.shu.edu.cn
http://creativecommons.org/licenses/by/4.0/

You et al. EURASIP Journal on Image and Video Processing (2018) 2018:52

image sensor plane. Since the wide range of possible ap-
plications and the rapid development of light-field tech-
nology, many research groups have considered the
standardization of light-field application. The JPEG
working group starts a new study, known as JPEG Pleno
[6], aiming at richer image capturing, visualization, and
manipulation. The MPEG group has also started the
third phase of free-viewpoint television (FTV) since
2013, targeting super multi-view, free navigation, and
full parallax imaging applications [7].

Since the acquired LF image records both spatial and
angular information of a 3D scene, it can naturally pro-
vide the benefits of rendering views at different view-
points and views at different focused planes, which
expand its applications. However, a vast amount of data
is needed for such a LF image during the acquisition
step for its enhanced features. Even though many image
coding methods [8—11] have been proposed, they cannot
be directly used for LF image. Therefore, efficient com-
pression schemes for such particular type of image are
needed for effective transmission and storage.

According to the available techniques to capture and
visualize LF images, the compression schemes of LF im-
ages can be mainly categorized into two different cat-
egories, where the general diagram of workflow for LF
image acquisition and visualization is depicted in Fig. 1.
The first kind of compression methods, called spatial
correlation-based compression method, is to compress
the acquired lenslet image directly (see Fig. 1a) based on
the fact that the elementary images (EIs) of lenslet image
exhibit repetitive patterns and a large amount of redun-
dancy exists between the neighboring Els, which can be
seen in Fig. 2a. By exploiting the inherent non-local
spatial redundancy of LF image, a coding method com-
bining the locally linear embedding (LLE) is proposed in
[12]. This work is further improved by combining the
LLE based-method and self-similarity (SS)-based com-
pensated prediction method in [13]. Paper [14] puts for-
ward a disparity compensation-based light-field image
coding algorithm by exploring the high spatial correl-
ation existing in the LF images, which is further im-
proved by using kernel-based minimum
mean-square-error estimation prediction [15] and
Gaussian process regression-based prediction method
[16]. In [17], Conti et al. introduced the SS mode into
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HEVC to improve the coding efficiency of light-field
image, which is similar to the intra-block copy (IntraBC)
incorporated into the HEVC range extension to code the
screen contents. To further improve the coding per-
formance, a bi-predicted SS estimation and SS compen-
sation are proposed in [18], where the candidate
predictor can be also devised as a linear combination of
two blocks within the same search window. A displace-
ment intra-prediction scheme for LF contents is pro-
posed in [19], where more than one hypothesis is used
to reduce prediction errors.

The other kind of compression method, called
pseudo-sequence-based compression method, considers
creation of a 4D LF representation of LF image prior to
compression (see Fig. 1b). The pseudo-sequence-based
coding methods try to decompose the LF image into
multiple views, which can be seen in Fig. 2b. The de-
rived multiple views are then organized into a sequence
to make full use of the inter-correlations among various
views. In [20], a sub-aperture images streaming scheme
is proposed to compress the lenslet images, in which ro-
tation scan mapping is adopted to further improve com-
pression efficiency. A pseudo-sequence-based scheme
for LF image compression is proposed in [21], in which
the specific coding order of views, prediction structure,
and rate allocation have been investigated for encoding
the pseudo-sequence. A new LF multi-view video coding
prediction structure by extending the inter-view predic-
tion into a two-directional parallel structure is designed
in [22] to analyze the relationship of the prediction
structure with its coding performance. In [23], a lossless
compression method of the rectified LF images is pre-
sented to exploit the high similarity existing among the
sub-aperture images or view images. A novel
pseudo-sequence-based 2D hierarchical reference struc-
ture for light-field image compression is proposed in
[24], where a 2D hierarchical reference structure is used
with the distance-based reference frame selection and
spatial-coordinate-based motion vector scaling to better
characterize the inter-correlations among the various
views decomposed from the light-field image.

Although the pseudo-sequence-based compression
method can compress the LF image effectively, the
process to derive the 4D LF view images from the raw
sensor data strongly depends on the exact acquisition

A

B

Acquired l

Light Rays Lenslet Image

4D LF View l

Visualization
Images

Fig. 1 General acquisition and display pipeline for LF images
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(2)

Fig. 2 Acquired light-field image seagull: a lenslet image. b 4D LF view images

(b)

device. In contrast, the spatial correlation-based com-
pression method does not need to extract view images
from the LF image, and this kind of method has the po-
tential to achieve a better coding efficiency if we can
take full use of the high spatial correlation between the
adjacent Els. Therefore, in this paper, we follow the
spatial correlation-based compression method and
propose a scalable kernel-based minimum mean square
error estimation (MMSE) estimation method to effect-
ively compress the LF image by exploring such high
spatial correlation. The contributions of this paper are as
follows:

1) Hybrid kernel-based MMSE estimation and intra-
block copy for LF image compression. The kernel-
based MMSE estimation aims to predict the coding
block by using an MMSE estimator where the re-
quired probabilities are obtained through kernel
density estimation (KDE). Although the kernel-
based MMSE estimation method can achieve a high
coding efficiency, it does not always necessarily lead
to a good prediction for the unknown block to be
predicted, especially in non-homogenous texture
areas. Fortunately, the unknown blocks located in
such areas can be better predicted by using a direct
match with the block to be predicted. Therefore, we
combine the kernel-based MMSE estimation
method with the IntraBC mode to further improve
the whole coding efficiency.

2) Scalable kernel-based MMSE estimate to accelerate
LF image compression. The kernel-based MMSE es-
timation method is time-consuming both in en-
coder side and decoder side, and it is much worse
for the hybrid prediction method in the encoder
side. Therefore, we propose a scalable kernel-based
MMSE estimation method to alleviate such short-
comings. In the scalable method, the reconstruction

framework is decomposed into a set of reconstruc-
tion layers ranging from the basic layer that pro-
duces a rough

yet fast estimation to more complex layers yielding
high quality results.

3) Adaptive layer management mechanism. We use
the prediction mode clue and the gradient
information to decide which layer belongs for the
current coding block. The adaptive layer
management mechanism is designed to select which
layer is belong to for a coding block based on how
complex its surrounding area is.

Part of this pork has been published in [25]. In this
paper, we give more details of theoretical analysis and
propose a scalable kernel-based MMSE estimation
method to accelerate LF image compression, and we also
provide an adaptive layer management mechanism. Ex-
perimental results demonstrate the advantage of the pro-
posed scalable compression method in terms of different
quality metrics as well as the visual quality of views ren-
dered from decompressed LF content.

The rest of this paper is organized as follows. An over-
view of the kernel-based MMSE estimation method is
introduced in Section 2. The proposed scalable
kernel-based MMSE estimate and its different recon-
struction layers are described in Section 3. Section 4
gives the details of the layer selection mechanism. Ex-
perimental results are presented and analyzed in Section
5, and the concluding remarks are given in Section 6.

2 Kernel-based MMSE estimation method

The kernel-based MMSE estimation method aims to
predict the current coding block given its neighbor
known context under a kernel-based point of view by
constructing a statistical model and calculating a
kernel-based MMSE estimation. In order to construct
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the statistical model, the pixel values in the coding block
and its neighbor known context are arranged into a
multidimensional formalism. Kernel density estimation
(KDE) is used to estimate the probability density func-
tion (PDF) of the statistical model with a set of observed
vectors. The coding block is then predicted from an
MMSE estimator given the PDF.

Let the pixel values in the current coding block be
stacked in a column vector x,, and the pixel values in its
neighbor templates with template thickness being T are
compacted in a column vector y,, shown in Fig. 3a. The
current coding block and its neighbor templates with
template thickness being T are called the prototype re-
gion in this paper. Therefore, the main goal of the pre-
diction method can be expressed to derive the MMSE
estimate E[x|yo] of vector x, given its context yo. In
order to do so, we arrange the vector X, and y, into a
multidimensional vector z, = (X, o), and a random vec-
tor variable z = (x,y) that has the same configuration as
z is considered to obtain the signal statistical behavior.
If the PDF of z is acquired, the MMSE estimator E[x|yo]
can be derived from it. In the proposed scheme, we
propose to utilize KDE to estimate the PDF of random
variable z given a set of observed vectors {z;| k=1, ...,
K}. Here, the observed vectors are composed of K-NN
patches, the top K closest templates that have the same
configuration as the prototype region in terms of Euclid-
ean distance, derived within the specified horizontal and
vertical search windows, shown in Fig. 3b. Since the cod-
ing block in prototype region is unknown in the K-NN
patches searching procedure, its neighbor blocks are
used for searching. We set the template thickness to T
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which equals to the size of the current coding block to
increase the searching accuracy, shown in Fig. 3b.

Given the observed vectors, the estimator of the PDF
of z using KDE with a Gaussian kernel K(u) = exp(-u’
u/2)/+/2m can be defined by [26],

1 K Z2-Zj 1 K (k)
@) == K(E) = 2> K (@) &y
k=1 k=1

where matrix H is called bandwidth, controlling the
smoothness of the resulting PDF. K (Zk) (z) can be consid-
ered as a multivariate Gaussian with mean z; and covari-
ance matrix H=HH". The covariance matrix H is also
called as bandwidth for simplicity, which can be decom-

posed as

| Hxx Hxy
s

With the knowledge of p(z), we can calculate the
MMSE estimator E[x|yo] of vector xo. We find from Eq.
(1) that p(z)has the form of Gaussian mixture model
(GMM) with a priori probabilities 1/K and covariance
matrixH. Therefore, it is reasonable to utilize the expres-
sions of MMSE estimator under GMM model [26, 27].
The MMSE estimator of the coding block can be
expressed as,

K
%o = E[xly,] = kZ k(Yo iy (Yo) (3)
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where K (;() (y) is the marginal kernel for y, with mean y;
and covariance matrix Hyy. According to Egs. (3)—(5),
we can obtain the prediction of the coding block and the
estimation method is referred as the kernel-based
MMSE (K-MMSE) estimation method. For simplicity,
the K-MMSE estimation can be rewritten as

Xo = Xo + HxyHyy (Yo-¥o) (6)

where Xy and ¥, express the linear predictions of x, and
Yo from the sets of vectors z(k=1, ..., K)by

K K
Xo = or(yo)xk, Vo= @k(yo)yx (7)
k=1 k=1

There are two issues that should be tackled in
K-MMSE estimation method. One is to derive the
weight vector wi(yo). The other is to estimate the kernel
bandwidth matrix H.

In order to derive the weight vector, we adopt a
more direct way. That is to minimize the residual en-
ergy &(w) by solving a squared error function, where
&(w) is given by

g(w) =

(8)

K
Yoo Y @k (Yo)Vs
k=1

In order to estimate the kernel bandwidth matrix, we
propose a new BE method which is based on the analysis
of physical interpretation of the K-MMSE estimation
method. From Eq. (6), we find that the K-MMSE estima-
tor consists of two parts. The first part is a linear predic-
tion of vector xy, and the second part is a correction
vector representing the unpredictable part of yj is trans-
formed into subspace x [26]. The physical interpretation
of the second part can be understood as the vector x,
being close to vector yy is likely to have a similar unpre-
dictable part as vector y,. The matrix HyyHj} can be
regarded as a transfer matrix used to transfer the unpre-
dictable part of y, to subspace x. It is reasonable to infer
that the bandwidth matrix H in K-MMSE estimation is
used to measure the similarity of the subspace x and
subspace y. Therefore, we propose to utilize Eq. (9) to
estimate the bandwidth matrix H approximately.

H= ;72(1 + xTy) (9)

where 7 is a hyper parameter and is specified to 1.0 in
the proposed system.

Page 5 of 14

3 Scalable kernel-based MMSE (SK-MMSE)
estimation

The kernel-based MMSE estimation method is a
powerful prediction method and can achieve a better
prediction accuracy for LF contents in the
homogenous texture areas. However, some shortcom-
ings still exist. Firstly, since such method predicts the
coding blocks given their neighbor known contexts, it
does not always necessarily lead to a good prediction
for the unknown block in some non-homogenous tex-
ture areas. Secondly, the kernel-based MMSE estima-
tion method is time-consuming, especially in the
decoder side. Thirdly, for some visually flat regions in
homogenous texture areas, applying kernel-based
MMSE estimation method would be an overkill since
similar reconstruction quality could be achieved by
simpler (and, therefore, faster) estimators when deal-
ing with relatively simple structures. To this end, this
paper proposes a scalable kernel-based MMSE estima-
tion method, also called SK-MMSE, that aims at fur-
ther improving the coding efficiency and accelerating
the prediction process by decomposing the prediction
procedure into different layers. The proposed
SK-MMSE algorithm is comprised by three prediction
layers. The layer division is based on the contents of
the previously encoded blocks adjacent to the coding
block. The higher the layer within the scalable hier-
archy, the higher the computational complexity. The
scalable layers are introduced in the next subsections,
and the layer management mechanism will be illus-
trated in the next section.

3.1 Hybrid prediction layer (HPL)

We have mentioned above that the K-MMSE estima-
tion method does not always necessarily lead to a good
prediction for the wunknown blocks in the
non-homogenous texture areas. In order to improve
the prediction accuracy for the blocks in such texture
areas, we propose to use the hybrid kernel-based
MMSE estimation and IntraBC method (hybrid predic-
tion method) to predict the coding blocks and the cod-
ing blocks in such texture areas construct the hybrid
prediction layer. The hybrid prediction method is based
on the HEVC screen content coding (HEVC-SCC)
framework. In the hybrid prediction method, the
K-MMSE estimation method, IntraBC prediction, and
the intra-directional prediction are all used as the com-
peting prediction modes. The proposed hybrid predic-
tion explores the idea of using the IntraBC scheme or
intra-directional prediction to find the best prediction
of the coding block f(ffp L when K-MMSE estimation
method fails based on the rate-distortion optimization
(RDO) procedure. In other word, the hybrid prediction
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method uses the “try all then select best” intra-mode
decision method to find the best prediction mode and
optimal depth for each coding block.

It is worth to notice that the K-MMSE estimation
method is introduced into HEVC SCC by replacing one of
the existing 35 intra-directional prediction modes in order
to avoid the modification of bit stream structure, which
means the prediction samples that generated by the
K-MMSE estimation method will replace the outputs pro-
duced by the substituted intra-directional prediction mode.

3.2 K-MMSE prediction layer (KPL)
Other than the non-homogenous texture areas, in many
cases, we are dealing with the homogenous texture
areas. In these areas, the coding block and its adjacent
reconstructed blocks have the similar texture structure,
which means that the coding block and its adjacent re-
constructed blocks have a high correlation. For such
areas, we propose to use the K-MMSE estimation
method to predict the coding blocks, as described in
Section 2, and the coding blocks in such texture areas
construct the K-MMSE prediction layer. Since the high
correlation is existed between the subspace x and sub-
space vy, the current coding block is likely to have a simi-
lar unpredictable part as its adjacent reconstructed
blocks. Therefore, we can achieve a higher prediction ac-
curacy by using the K-MMSE estimation method for the
coding blocks in KPL. The estimator of the coding
blocks in the homogenous texture areas can be
expressed as
x5 = %o + HxyHyy (Yo—Yo) (10)

As mentioned earlier, the K-MMSE estimation method
is also implemented in the HEVC-SCC framework. For
coding blocks in the HPL, the “try all then select best”
intra-mode decision method is used to find the best pre-
diction mode and optimal depth. However, for the cod-
ing blocks in KPL, we will skip the IntraBC mode and
only to derive the best prediction mode and optimal
depth among the K-MMSE mode (K-MMSE estimation
method) and the other 34 intra-directional prediction
modes to reduce the computation complexity. Moreover,
since the LF image is composed of numerous Els and
the texture-homogeneous areas hardly prevail in the LF
image, the coding unit size 64 x 64 is seldom chosen as
the optimal block size. Consequently, for K-MMSE esti-
mation method, we only choose four coding block sizes
ranging from 32 x 32 to 4 x 4.

3.3 Linear prediction layer (LPL)

There is a special case in the KPL, that is the visually flat
regions, such as the skies and walls. In such flat regions,
the luminance information of the coding block and its
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adjacent reconstructed blocks is simple. In the K-MMSE
estimation method, the coding block is predicted by
using two terms, shown in Eq. (6). The first term is a lin-
ear prediction of vector Xxq, and the second term is a cor-
rection vector representing the unpredictable part of y,
is transformed into subspace x [26]. Since the luminance
information in the flat regions is simple, the unpredict-
able part of y, can be neglected with negligible effect to
the prediction accuracy. This means that we can predict
the coding blocks in such flat regions by directly using a
linear prediction and do not need to compute the cor-
rection vector. Likewise, the coding blocks in the visually
flat regions construct the LPL and the estimator of the
coding blocks in such regions can be derived by

K
5™ = %o = Y oxlyo)X« (11)
k=1

The weight vector wi(yo) is achieved by using Eq. (8).
The used linear prediction method is implemented in
the HEVC-SCC framework by using the same way as the
K-MMSE estimation method.

In this section, we have introduced three prediction
layers according to the contents of the coding blocks
and their adjacent reconstructed blocks, which comprise
the proposed SK-MMSE estimation method. The main
idea is to further improve the coding efficiency and ac-
celerate the prediction process. The three prediction
layers are summarized as follows.

1) HPL consists of the non-homogenous texture areas
and hybrid prediction method is used to predict the
coding blocks in such layer.

2) KPL consists of the homogenous texture areas
where the texture information is abundant. For
KPL, the K-MMSE estimation method is utilized to
predict the coding blocks.

3) LPL consists of the visually flat regions in
homogenous texture areas, and a linear
prediction method is used to predict the coding
blocks which is a simplified form of the K-
MMSE estimation method by discarding the
correction vector.

4 Layer switching and management mechanism

The goal of the proposed SK-MMSE is to further im-
prove the coding efficiency and accelerate the predic-
tion process. In order to do so, we propose a content
adaptive layer selection scheme. Since the current
coding block is unknown, we propose to utilize the
contents of the neighbor known blocks adjacent to
the coding block to decide which layer is belonged to
for the current coding block. Since the contents of
the coding block and its neighbor known blocks are
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Table 1 The accuracy of PMc=PM, = PMy = PMy, if PM, = PMy=PM, in each depth level

Images Depth 0 (%) Depth 1 (%) Depth 2 (%) Depth 3 (%) Average (%)
Bike 69.3 91.2 84.2 71.8 79.1
Fountain 674 79.6 82.8 81.2 77.8
Laura 726 859 85.6 84.0 820
Seagull 74.8 84.7 82.5 85.0 81.8
104_Stone_Pillars_Outside 814 883 835 712 81.1
106_Ankylosaurus_& Diplodocus_1 954 954 954 889 938
108_Magnets_1 919 97.5 92.7 84.4 91.6
111_Color_Chart_1 91.0 98.0 94.3 884 929

closely linked, it is feasible to use the contents of the
neighbor known blocks to determine which layers are
to be employed to perform the prediction of the cod-
ing block. In order to achieve the goal, two assump-
tions are taken into consideration:

1) Given that the HPL is used to improve the whole
coding efficiency, to decide accurately which coding
blocks belong to this layer is of great importance.
The decision criterion should take into account the
contents of the coding blocks.

2) In order to accelerate the prediction process, the
LPL is expected to perform well for the visually flat
regions in homogenous texture areas. The visual
flatness should be considered as the decision
criterion, and the decision criterion should be
simple and fast.

In order to consider the two assumptions, we propose
to use the prediction mode correlation to decide which

blocks belong to HPL and use the gradient information
to measure the visual flatness. The following will intro-
duce the two layer switching mechanism.

For homogenous texture areas, the coding blocks
and their neighboring blocks are closed linked. In
most cases, they have the similar texture information
and structural characteristics. As a results, the predic-
tion modes of the coding blocks should be similar to
their neighboring known blocks in the homogenous
texture areas. Consequently, we can apply the predic-
tion mode information to decide whether the coding
block belongs to the homogenous texture areas and
further determine whether the coding block belongs
to HPL or KPL. Since the prediction mode informa-
tion of the current coding block is unknown, the pre-
diction mode information of its neighboring known
blocks are utilized in the decision criterion.

Suppose the optimal prediction modes of the current
coding block and its left neighboring block, up neighbor-
ing block, and up-left neighboring block are denoted by

KPL

Split into
coding blocks
1

Y

YT

LF image

TSRy
ST AT AR AR
)

AR EErER
PP BEEEE
P P EEEE

Reconstructed
LF image

S KPL
Compute X,

S HPL
Compute X,

SLPL
Compute X;

Fig. 4 Flow graph explaining SK-MMSE prediction algorithm
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Fig. 5 The central rendered views from each LF test image: a Fredo, b Jeff, ¢ Sergio, d ZhengyunT, e 101_Bikes, f 102_Danger_de_Mort, g
103_Flowers, h 105_Vespa, i 107_Desktop, j 109_Fountain_&_Vincent_2, k 110_Friends_1, 1 112_ISO_Chart_12

PMc, PMy, PM, PMy;. We define a flag flagcp used to
determine whether the coding block belongs to HPL or
KPL, which is defined as

fag. — 4 1 if (PMy=PMy = PMuy)
3B =10  Otherwise

From Eq. (12), we see that if PM;=PM;=PMy;,
the flagcp is set to 1 and the current coding block is
determined to belong to KPL. Otherwise, flagcp is set
to 0 and the current coding block is determined to
belong to HPL. The main reason is that if PM; =
PMy;=PM,;;, the current coding block is likely to
have the same prediction mode as its neighboring
blocks (left neighboring block, up neighboring block,
and up-left neighboring block), which indicates that
the current coding block and its neighboring blocks
have a similar texture information and structural
characteristics and they belong to the homogenous
texture areas. Therefore, the current coding block is
grouped into KPL. If the flagcp is equal to 0, which
means that the current coding block is quite different
from its neighboring blocks, the current coding block
is grouped into HPL.

In order to verify the decision accuracy, Table 1 shows
the accuracy of PMc=PM;=PM;=PMy; if PM;=
PM;;=PMy; in each depth level. The accuracy means
that the probability of PMc = PM; = PM;; = PM;;; across
all the test QPs when PM; = PM;; = PM,;;. From Table 1,
we see that the average accuracy of PM¢c = PM; = PMy; =
PMy; if PMy=PM;=PMy; in each depth level across
all the depth levels is from 77.8 to 93.8%, 85.0% on aver-
age. This means that if PM; = PM;; = PM,;, the predic-
tion mode of the current coding block can be
considered to be the same as its neighboring blocks.
Therefore, we can use such prediction mode information
to decide whether the current coding block is located at

(12)

the homogenous texture areas. From Table 1, we also
find that the average accuracy is lower for rectangular
lens LF images (e.g., bike, fountain, Laura, and seagull)
for depth O than other depth level. The reason is that
the size of EI image in rectangular lens LF image is ap-
proximate to the coding block size for depth 0. Since the
Els exhibit repetitive patterns, the homogenous texture
areas hardly prevail in such depth level. Fortunately, the
average accuracy across all the depth level is approxi-
mate to 80% and it is feasible to use the prediction mode
information of the neighboring known blocks to decide
whether the current coding block is located at the
homogenous texture areas.

We have mentioned above that there is a special case
in the KPL, that is the visually flat regions. If we can find

Table 2 Y-rate-distortion gains of three coding methods over HEVC

Images HEVC-SCC K-MMSE SK-MMSE
BD-PSNR BD rate  BD-PSNR BD rate  BD-PSNR BD rate
(dB) (%) (dB) (%) (dB) (%)
Fredo 2.73 —4040 3.11 —43.07 352 — 4859
Jeff 1.58 —2422 231 —3292 247 —35.76
Sergio 236 —3299 294 —3861 3.8 -41.99
Zhengyunl 1.70 —2956 224 —36.24 241 —39.63
I01_LF 047 -1034 064 -1394 0.77 —16.60
102_LF 0.36 -856 043 —1007 059 - 1356
103_LF 0.13 -302 017 —-404 023 —542
105_LF 0.55 -1641 089 —2603 1.00 —29.72
107_LF 0.65 —1707 064 -1707 083 -21.72
109_LF 1.26 —2430 203 -3663 213 —3840
IT0_LF 0.17 -592 028 -990 031 -10.73
112_LF 097 —2652 155 —4000 1.72 —44.14
Average 1.08 —1994 144 =2571 161 — 2885
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Table 3 YUV-rate-distortion gains of three coding methods

over HEVC
Images HEVC-SCC K-MMSE SK-MMSE
BD-PSNR  BD rate  BD-PSNR BD rate  BD-PSNR BD rate
(dB) (%) (dB) (%) (dB) (%)
Fredo 2.54 —-40.52 290 —-4322 329 —4878
Jeff 142 —2391 216 —3335 231 -36.17
Sergio 2.13 —-3293 273 —-3929 295 —42.73
Zhengyunl 1.5 —-29.16 214 -3686 229 -40.18
01_LF 0.36 -924 052 -13.13 063 —15.64
102_LF 0.27 -751 033 -9.19 046 —-12.38
I03_LF 0.10 —-254 012 -325 017 —4.52
I05_LF 043 —1493 074 —-2511 082 - 2767
107_LF 0.50 -1509 051 -1569 067 —20.15
109_LF 1.01 —23.10 169 -36.17 178 -3797
[T0_LF 0.12 -450 023 -907 025 -9.56
N2_LF 0.76 —2462 128 -39.18 143 —4342
Average 0.93 —-19.00 1.28 —-2529 142 —28.26

the coding blocks that belong to these regions and use a
simpler and faster method to predict these coding blocks
with negligible effect to the prediction accuracy, the
computational complexity can be reduced, especially in
decoder side. To this end, we utilize the gradient infor-
mation of the top nearest patch of the prototype region
in K-NN patch set to judge whether the coding block
belong to the LPL. Let z; = (x, y;) be the vector form of
the top nearest patch of the prototype region in K-NN
patch set. Suppose G,1, G, and G,; represent the gradi-
ent of vector z;, X;, and y;, respectively, we also define a
flag flagis. If |Gy, — G,1ll < G4, the coding block and its
neighboring blocks are considered to be located at the
visually flat regions and the flag/ is set to 1. Otherwise,
flagl is set to 0, and the coding block is considered to
belong to the KPL. The flag flagi; is defined by

1, if ||Gu-Gyull < Ga
flages = {O, Otherwise

The proposed algorithm is summarized by the flow
graph in Fig. 4. It is shown that the SK-MMSE algo-
rithm is a scalable LF image coding method, where
the whole coding blocks are divided into three layers.
The HPL is used to improve the prediction accuracy
for coding blocks in the non-homogenous texture
areas while the KPL is applied to ensure the coding
efficiency for the coding blocks in the homogenous
texture areas where the texture information is abun-
dant. Regarding to the LPL, a simplified prediction
method is adopted to further reduce the whole com-
putational complexity with negligible effect to the
prediction accuracy, especially for the decoder side.

(13)
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Note that, the proposed framework can also be used
to predict chrominance blocks.

5 Experimental results and discussion

In order to validate the efficiency of the proposed
method, 12 LF test images including eight circular
lens LF test images provided by the ICME 2016 grand
challenge in light-field image compression [28] and
four rectangular lens LF test images provided by Dr.
T. Georgiev [29] are used in the test set. The used
LF test images are all captured by the focused ple-
noptic camera. The resolution of the circular lens LF
test images is 7728 x 5368. The original resolution of
the rectangular lens LF test images is 7240 x 5432,
and we cut the four test images into size of 3840 x
2160 for simplicity. The size of each EI in rectangular
lens LF image is 75 x75. All the LF test images are
transformed into YUV 4:2:0 format. The central ren-
dered views from each LF test image are shown in
Fig. 5.

The HEVC SCC reference software SCM-3.0 [30] is
modified for the proposed hybrid codec architecture.
The coding configurations were set as the “All Intra,”
which is defined in [31]. Four tested quantization param-
eters 22, 27, 32, and 37 are used. The proposed hybrid
prediction method (referred to as SK-MMSE) is com-
pared with three prediction schemes: the original HEVC
(referred to as HEVC), the screen content coding exten-
sion Ver. 3.0 to HEVC (referred to as HEVC-SCC), and
the kernel-based minimum mean-square-error estima-
tion method [15] (referred to as K-MMSE). The
K-MMSE method is realized in the HEVC SCC reference
software SCM-3.0. The Y-PSNR and YUV-PSNR be-
tween the original LF image and decoded LF image
shown in [28] are used as the objective quality metric.

The template thickness T in Fig. 3a is set to 4. The
dimensions of the searching windows used in the
SK-MMSE and K-MMSE method is given by V=128,
H =128, shown in Fig. 3b. We have mentioned that
the K-MMSE method is integrated into the HEVC
SCC standard by replacing one of the 35
intra-directional prediction modes in SK-MMSE
method. In our experiment, the intra-prediction mode
“4” is replaced and K is set to 6.

Table 2 gives the rate-distortion gains of the three predic-
tion methods over HEVC intra-standard with Y-PSNR as
the objective quality metric. From Table 2, we see that the
proposed SK-MMSE is clearly superior to the other
methods. An average gain of up to 1.61 dB has been
achieved by SK-MMSE to HEVC intra-standard. Compared
to HEVC-SCC, around 30.9% BD-rate can be saved in aver-
age by using SK-MMSE. This is because integrating the
K-MMSE method to the HEVC-SCC standard can effect-
ively improve the prediction accuracy. When compared to
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K-MMSE, the proposed SK-MMSE can achieve about
0.17 dB average gains. The main reason is that the
K-MMSE do not work well for the blocks in
non-homogenous texture area. By combining the IBC
mode, the proposed SK-MMSE can achieve a better predic-
tion of the coding block in such non-homogenous texture
area. From Table 2, we can also observe that the K-MMSE
method allows an average of 22.4% rate saving compared to
the HEVC-SCC, which means that K-MMSE mode can ob-
tain a better prediction and is selected as the best predic-
tion mode in most cases. Figure 6 shows the rate-distortion
curve of the test image set using different coding schemes
with Y-PSNR as the objective quality metric, which further
confirms that the proposed SK-MMSE performs better
than other prediction methods.

The rate-distortion gains of the three prediction
methods over HEVC intra-standard with YUV-PSNR as
the objective quality metric are given in Table 3. From
Table 3, we can achieve a consistent conclusion as Table 2.
Compared to HEVC intra-standard, an average gain of up
to 1.42 dB has been achieved by the proposed SK-MMSE
method. Likewise, around 10.5 and 32.8% BD rate can be
saved in average by using SK-MMSE when compared to
K-MMSE and HEVC-SCC method, respectively. This also
validates that the proposed SK-MMSE architecture can ef-
fectively compress the LF data. Figure 7 gives the
rate-distortion curve of the test image set using different
coding schemes with YUV-PSNR as the objective quality
metric, which further proves the validity of the proposed
SK-MMSE.

Table 4 shows the execution time ratios of three coding
methods to HEVC intra-standard both in encoder side
and decoder side. From Table 4, we observe that the
K-MMSE method requires the most execution time both

Table 4 Encoding and decoding time ratio to HEVC
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in encoder side and decoder side. The main reason is that
the calculation of kernel bandwidth matrix H is
time-consuming for all the coding blocks. Since the de-
coder side has to do the same prediction procedure, the
K-MMSE method needs 49.1 times execution time to the
HEVC intra-standard. In order to reduce the computation
complexity, we propose the SK-MMSE method. Table 4
also shows the effectiveness of the proposed SK-MMSE in
computation complexity. From Table 4, we see that pro-
posed SK-MMSE achieves 16.4 and 70.5% average coding
time saving when compared to K-MMSE method in en-
coder side and decoder side, respectively. The main reason
mainly lies in two aspects. One is that the coding blocks is
divided into three layers, and by using a simpler and faster
prediction method to LPL with negligible effect to the pre-
diction accuracy, the computation complexity is reduced
in the encoder side. The other is by dividing the coding
blocks into three layers, the IntraBC mode and linear pre-
diction mode (linear prediction method) are selected as
the optimal prediction mode by many coding blocks.
These two modes cost much less than the K-MMSE
mode, especially in the decoder side. Although the com-
putation complexity of the SK-MMSE is less than the
K-MMSE, it still needs around two times execution time
to HEVC-SCC in the encoder side.

Since LF image captures both spatial and angular
information of a scene, view images can be rendered
from the LF image data. In order to further validate
the validity of the proposed coding scheme, we give a
visual quality investigation of rendered view image
from the decoded LF image in Fig. 8. As shown in
Fig. 8, the proposed SK-MMSE can obtain a better
visual quality, especially in some texture regions. The
main reason mainly lies in two aspects. One is that

Images HEVC-SCC K-MMSE SK-MMSE
Encoder side Decoder side Encoder side Decoder side Encoder side Decoder side

Fredo 4.1 0.84 189 76.6 14.8 24.0
Jeff 4.8 091 187 752 16.5 289
Sergio 4.8 0.74 17.8 67.3 16.0 25.2
Zhengyun1 4.7 0.64 18.2 524 16.7 194
I01_LF 8.1 0.92 174 469 14.5 10.2
102_LF 7.7 1.00 16.1 44.8 13.8 9.3
I03_LF 70 0.62 133 164 123 3.7
105_LF 48 0.81 193 514 104 105
107_LF 52 0.60 155 232 10.3 46
109_LF 20.3 0.68 20.7 452 276 18.1
IT0_LF 42 0.84 120 254 7.0 4.1
[12_LF 115 0.69 239 64.0 174 15.7
Average 7.3 0.77 177 49.1 14.8 14.5
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Fig. 8 Visual rendering views from the decoded LF images at a similar bit-rate: a the original image, b HEVC intra-standard, ¢ HEVC-SCC standard,
and d the proposed SK-MMSE prediction method. The bit-rate for Jeff is 0.11 bpp and the bit-rate for 109_Fountain_&_Vincent_2 is 0.102 bpp

the proposed scheme can achieve a better coding effi-
ciency compared to other coding methods. The other
is that the proposed SK-MMSE prediction method
can keep the detail information of Els in the predic-
tion process effectively.

6 Conclusions

In this paper, we propose a scalable kernel-based MMSE
estimation method to effectively compress the LF image.
The coding blocks are divided into three layers. In the
HPL, a hybrid kernel-based MMSE estimation and IntraBC
method are proposed to predict the coding blocks to im-
prove the prediction accuracy of coding blocks in
non-homogenous texture area, which explores the idea of
using the IntraBC scheme or intra-directional prediction to
find the best prediction of the coding block when K-MMSE
estimation method fails based on the rate-distortion
optimization (RDO) procedure. In the KPL, we propose to
use the K-MMSE estimation method to predict the coding
blocks to ensure the coding efficiency for homogenous tex-
ture area. In the LPL, we propose to predict the coding
blocks by directly using a linear prediction method and do
not compute the correction vector. The linear prediction
method can be seen as a simplified form of the K-MMSE
estimation method. In order to decide which layer is
belonged to for the current coding block accurately, we
propose to use the prediction mode correlation to decide
which blocks belong to HPL and use the gradient informa-
tion to measure the visual flatness.

The experimental results demonstrate that the proposed
SK-MMSE method can compress the light-field image
efficiency. It outperforms the HEVC intra-standard with
1.61 and 142 dB average quality improvements with
Y-PSNR and YUV-PSNR as the objective quality metric,

respectively. With regard to the computation complexity,
the proposed SK-MMSE method can save around 16.4 and
70.5% average coding time than the K-MMSE estimation
method in encoder side and decoder side, respectively.

Future work will include complexity reduction and
how to further improve the prediction accuracy for tex-
ture and edge regions.
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