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Abstract

Feature selection, which aims to select an optimal feature subset to avoid the “curse of dimensionality,”
is an important research topic in many real-world applications. To select informative features from a high-
dimensional dataset, we propose a novel unsupervised feature selection algorithm called Double Regularized Matrix
Factorization Feature Selection (DRMFFS) in this paper. DRMFFS is based on the feature selection framework of matrix
factorization, but extends this framework by introducing double regularizations (i.e., graph regularization and inner
product regularization). There are three major contributions to our approach. First, for the sake of preserving the useful
underlying geometric structure information of the feature space of the data, we introduce the graph regularization to
guide the learning of the feature selection matrix, making it more effective. Second, in order to take into account the
correlations among features, an inner product regularization term is imposed on the objective function
of matrix factorization. Therefore, the selected features by DRMFFS cannot only represent the original
high-dimensional data well but also contain low redundancy. Third, we design an efficient iteratively
update algorithm to solve our approach and also prove its convergence. Experiments on six benchmark
databases demonstrate that the proposed approach outperforms the state-of-the-art approaches in terms
of both the classification and clustering performance.

Keywords: Unsupervised feature selection, Matrix factorization, Feature manifold structure, Sparse and
low redundancy

1 Introduction
The dimensionality of the gathered data has been
increasingly large due to the rapid development
of modern sensing systems [1]. However, the
high-dimensional data are hard to deal with since
high computational complexity and memory
requirements. Meanwhile, some irrelevant, redundant,
and noisy features will be incorporated into
high-dimensional data, which will adversely affect the
performance. Hence, reducing the dimension of the
data is an essential step for subsequent processing.
Feature extraction [2, 3] and feature selection [4] can
be regarded as two main techniques for dimensional-
ity reduction. For feature extraction approaches, they
obtain the features by mapping the original data
into a new low-dimensional subspace using a

transformation matrix or projection. Nevertheless, the
obtained features have relatively poor interpretability
[3]. In comparison, feature selection approaches aim
at selecting several optimal features from the original
data by a series of criteria [5]. Therefore, the obtained
low-dimensional representation is interpretable [4].
More importantly, feature selection approaches just
need to collect these optimal features during data ac-
quisition, and they perform better than feature extrac-
tion approaches, which need to utilize all the features
for dimensionality reduction. In this paper, we focus
on feature selection.
Many feature selection approaches have been pro-

posed in recent years. According to the availability of
class label information, they can be categorized into
three classes, including supervised feature selection [6],
semi-supervised feature selection [7], and unsupervised
feature selection [8, 9]. Supervised-based feature selec-
tion approaches search the optimal feature subset with
the guidance of the class label information. However, in
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many real applications, there are small amount of la-
beled data or labeling all the data requires quite expen-
sive human labor and computational costs. Therefore,
supervised-based feature selection approaches are not
feasible in the case of partially labeled data. Under this
circumstance, a series of semi-supervised feature selec-
tion approaches have been designed, which take the in-
formation of the labeled and unlabeled data into
account. Compared with the aforementioned feature se-
lection techniques, unsupervised feature selection ap-
proaches determine an optimal feature subset, without
any label information, and only depend on maintaining
or revealing the intrinsic structures of the original data.
Hence, how to incorporate the intrinsic structure infor-
mation of the data into unsupervised feature selection is
very critical.
A series of unsupervised feature selection approaches

have been proposed. Among them, Variance Score (VS)
might be the simplest unsupervised feature selection al-
gorithm [10], which selects features based on their vari-
ance. After that, He et al. took advantage of
locality-preservation ability of features and proposed an
unsupervised feature selection approach called Laplacian
Score (LS) [11]. The features selected by LS can main-
tain the manifold structure of the original data. In the
sequel, Zhao and Liu combined the spectral graph the-
ory into feature selection and presented Spectral Feature
Selection (SPEC) [12]. In essence, VS, LS, and SPEC esti-
mate the quality of features independently, ignoring the
correlation among features.
In order to address the aforementioned issue, a

series of sparsity regularization-based approaches have
been presented [8, 9, 13–23] for unsupervised feature
selection. For instance, Cai et al. presented
Multi-Cluster Feature Selection (MCFS) [8] by com-
bining spectral analysis (manifold learning) and sparse
regression based on l1-norm regularization. In MCFS,
spectral analysis and sparse regression are two inde-
pendent processes, and thereby, the effectiveness is
degraded. To address such limitation, a series of stud-
ies which simultaneously perform the spectral analysis
and sparse regression have been presented for un-
supervised feature selection [9, 13–23]. Yang et al.
proposed Unsupervised Discriminative Feature Selec-
tion (UDFS) [9] to select the most discriminative fea-
tures for data representation. Similar to UDFS, Cong
et al. proposed Unsupervised Deep Sparse Feature Se-
lection (UDSFS) [13], which integrates the group
sparsity of feature dimensions and feature units based
on an l2, 1-norm minimization into a unified frame-
work to select the most discriminative features. Li et
al. presented Nonnegative Discriminative Feature Se-
lection (NDFS) [14], which performs non-negative
spectral analysis and feature selection together. Yang

et al. suggested Unsupervised Maximum Margin Fea-
ture Selection (UMMFSSC) [15]. In UMMFSSC, the
clustering process and feature selection process are
combined into a coherent framework to adaptively se-
lect the most discriminative subspace. Since the data
always contain noise or outliers, Qian et al. proposed
Robust Unsupervised Feature Selection (RUFS) [16] to
address it, where robust clustering and robust feature
selection are simultaneously performed by joint l2,
1-norm minimization. Recently, self-representation
property has been extensively utilized and many re-
lated approaches have been proposed [17]. In [18],
Zhu et al. assumed that each feature can be repre-
sented as a linear combination of other features and
proposed Regularized Self-Representation (RSR). Al-
though good performance can be achieved by RSR,
the structure preserving ability of features is neglected
in it. To remedy it, a variety of extensions based on
RSR have been put forward, i.e., Graph Regularized
Nonnegative Self-Representation (GRNSR) [19] and
Structure Preserving Nonnegative Feature
Self-Representation (SPNFSR) [20]. Besides, Zhu et al.
combined manifold learning and sparse regression to-
gether and proposed Joint Graph Sparse Coding
(JGSC) [21]. In JGSC, a dictionary is firstly learned
from the training data; then, the feature weight
matrix can be obtained automatically via the learned
dictionary. Since real-world data always contain lots
of noise samples and features, the learned dictionary
may be unrealizable to subsequent feature selection
process [22]. Different from most of the aforemen-
tioned approaches which only utilize the geometric
information of the data space, Shang et al. employed
the manifold information of both the data space and
the feature space simultaneously and proposed
Non-Negative Spectral Learning with Sparse
Regression-Based Dual-graph regularized feature se-
lection (NSSRD) [23]. Through the experimental re-
sults in [23], it can be seen that the geometry
information of the feature space plays a crucial role
for further improving the quality of feature selection.
Apart from the above sparsity regularization-based un-

supervised feature selection approaches, a series of
matrix factorization-based approaches have been pre-
sented. Well-known examples of such methods include
Principal Components Analysis (PCA) [24],
Non-negative Matrix Factorization (NMF) [25], and Sin-
gular Value Decomposition (SVD) [26]. Nevertheless,
these approaches are all designed for feature extraction
rather than feature selection. Therefore, the
low-dimensional features obtained by these approaches
lack interpretability. To remedy this shortcoming, Wang
et al. incorporated matrix factorization technique into
the feature selection process and proposed a novel
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approach named Matrix Factorization based Feature Se-
lection (MFFS) [27]. In MFFS, the feature selection can
be regarded as the process of matrix factorization and
the optimal feature subset is selected by introducing an
orthogonality constraint into its objective function. Con-
sidering that MFFS conducts feature selection by inte-
grating matrix factorization with an orthogonality
constraint together, the orthogonality constraint is too
strict to be satisfied in practice [23, 28, 29].
As previously mentioned, there are mainly two issues

to these approaches. On the one hand, most of the
state-of-the-art unsupervised feature selection ap-
proaches (e.g., LS, SPEC, MCFS, UDFS, UDSFS, NDFS,
UMMFSSC, RUFS, GRNSR, SPNFSR, JGSC) can only
take the geometric and discrimination information of
the data space into consideration, while neglecting the
useful underlying geometric structure information of the
feature space during the process of dimensionality re-
duction [23]. Hence, some potentially valuable informa-
tion is not fully exploited, reducing the performance of
the algorithm. On the other hand, the majority of the
existing approaches (e.g., MCFS, UDFS, UDSFS, NDFS,
UMMFSSC, RUFS, RSR, GRNSR, SPNFSR, JGSC, and
NSSRD) impose the l1-norm regularization or l2, 1-norm
regularization on the feature weight matrix aiming to
perform feature selection in a batch manner. Neverthe-
less, the l1-norm or l2, 1-norm neglect the redundancy
measurement, so methods using l1-norm regularization
or l2, 1-norm regularization might get into trouble when
dealing with some informative but redundant features
[30]. In general, the use of the l1-norm or l2, 1-norm
regularization cannot achieve both sparsity and low re-
dundancy simultaneously.
To address the above issues, this paper presents a

novel approach called Double Regularized Matrix
Factorization Feature Selection (DRMFFS) for conduct-
ing classification and clustering on high-dimensional
data. Compared with the existing feature selection ap-
proaches, our main contributions lie in the following
three-fold. First, to preserve the manifold information of
the feature space, graph regularization which is a feature
map constructed on the feature space, is imposed on the
feature selection framework of matrix factorization.
With the use of it, the learning of the coefficient matrix
in error reconstruction term and the feature selection
matrix can be guided. Therefore, it cannot only select a
feature subset that can approximately represent the fea-
tures, but also preserve the local geometrical informa-
tion of the feature space. Second, to ensure the sparsity
and low redundancy simultaneously, we introduce an
inner product regularization term that can be regarded
as a combination of the l1-norm and l2-norm on the ob-
jective function of matrix factorization. Third, a simple
yet effective iteration update algorithm is proposed to

optimize our model and a detailed analysis of its conver-
gence is also given. Experiments on six databases, in-
cluding Extended YaleB [31], CMU PIE [32], AR [33],
JAFFE [34], ORL [35], and COIL20 [36] demonstrate
that the proposed approach is effective.
The rest of this article is organized as follows: Section

2 presents the proposed method in detail. The experi-
mental results and discussion are shown in Section 3. In
the end, the conclusions are given in Section 4.

2 Methods
Firstly, the proposed DRMFFS model is given in detail.
Secondly, we design an efficient iterative update algo-
rithm to solve our model. Thirdly, we analyze its conver-
gence. Finally, we compare the proposed approach with
the related approaches to demonstrate its effectiveness.
Table 1 gives some notation that is frequently used in
this paper, which aims to facilitate the presentation.

2.1 The DRMFFS model
Let X = [x1; x2;…; xn] ∈ R

n × dbe the high-dimensional un-
labeled input data matrix, where n and d, respectively,
represent the number and dimension of samples. The
proposed approach aims to select a handful of optimal
features that can approximately represent the entire set
of features. Therefore, the distance between the spaces
spanned by the original high-dimensional data samples
and the selected features can be evaluated. According to
[27], this problem can be converted into the following
matrix factorization problem:

arg min
P;A

X−XPAk k2F
s:t: P≥0 ;A≥0; PTP ¼ Iu�u;

ð1Þ

where A = [a1, a2,…, ad] ∈ R
u × d is the coefficient

matrix used to project the original features into a new
feature subspace spanned by the selected features, Iu × uis
the u × u identity matrix, P = [p1, p2, p3,…, pd]

T ∈ Rd × u

denotes the feature weight matrix, and u denotes the

Table 1 Some notation used in the paper

Notation Description

n The number of samples

d The number of features

u The number of the selected features

P ∈ Rd × u The feature weight matrix

Pi ∈ R
1 × u The ith row of P

Aij The (i, j)th entry of matrix A

A ∈ Ru × d The coefficient matrix

Aji The (j, i)th entry of matrix A

Iu × u The u-by-u identity matrix

1d × d The d-by-d all-ones matrix

Zhou et al. EURASIP Journal on Image and Video Processing  (2018) 2018:49 Page 3 of 19



count of the selected features. The constraint PTP = Iu × u

is used to ensure that the elements in P are ones or
zeros. Here, we regard the matrix P as an indicator
matrix of the selected features.
Although Eq. (1) can accomplish the feature selec-

tion task, there remain two drawbacks. First, the
underlying geometric information of the feature space
is neglected, which weakens the quality of feature se-
lection. Second, the orthogonality constraint in Eq.
(1) is too strict [23], which ignores the correlations
among features.
Actually, local structure information plays an im-

portant role in feature selection. Therefore, many fea-
ture selection algorithms using local structure
information have been proposed and achieve good
performance. For example, Laplacian Score (LS) [11],
Spectral Feature Selection (SPEC) [12], and
Multi-Cluster Feature Selection (MCFS) [8] are three
well-known algorithms. Meanwhile, some researchers
have shown that the manifold information of the data
is distributed not only in the data space but also in
the feature space [37–40]. Therefore, the feature
manifold also contains the underlying geometric
structure information, which is beneficial for feature
selection. Inspired by [37–40], we incorporate the
local structure information of the feature space of the
data into our algorithm to address the first shortcom-
ing of Eq. (1). First, we build a k-nearest neighbor
graph G = (V, E) based on the given sample matrix X.
Here, each row vector of X corresponds to a feature,
i.e., fjis the jth feature of X. Then, we can rewrite X
asX = [f1; f2;…; fd] ∈ Rd × n. For a graph G, we denote
the set of feature points and the weights of the edges
between the vertices, as V = [f1, f2,…, fd] and E = [E1,
E2,…, Ed], respectively. Specifically, we can regard the
weight of the edge as the similarity between the two
features, namely, the higher the weight, the more
similar the features.
To ensure that the selected features retain the geom-

etry information of the features in the original
high-dimensional feature space, we can minimize the
following equation:

J ¼ arg min
A

1
2

Xd
i¼1

Xd
j¼1

ai−aj

�� ��2
2Sij ð2Þ

where ai is the low-dimensional representation of fi,
and Sij represents the similarity between features fi and
fj, (i, j = 1, 2,…, d).
Since Gaussian heat kernel function is a simple and

effective approach to discover the intrinsic geomet-
rical structure of the data [3, 41, 42], this paper uti-
lizes it to measure the closeness between features,
which is defined as:

Sij ¼ exp − f i− f j
���

���
2

2
=σ2

� �
; if f i∈N f j

� �
or f j∈N f ið Þ

0 otherwise;

8<
:

ð3Þ

where N(fi) is the k-nearest neighbor set of feature fi
and σis a kernel parameter. If features fi and fj are close
in the original high-dimensional feature space, the corre-
sponding Sij will be large, and vice versa.
By simple algebraic manipulation, Eq. (2) can be re-

written to:

J ¼ arg min
A

1
2

Xd
i¼1

Xd
j¼1

ai−aj

�� ��2
2Sij

¼ arg min
A

tr A D−Sð ÞAT
� �

¼ arg min
A

tr ALAT
� �

;

ð4Þ

where D is a diagonal matrix and Dii = ∑jSij. The
matrix L =D-S is the graph Laplacian matrix of feature
space. According to Eq. (3), it is easy to see that if two
features, e.g., fi and fj, are close to each other, then the
similarity measurement Sij is large. Actually, by minimiz-
ing Eq. (4), we tend to find such a matrix A that ensures
that if the nearby features, e.g., fi and fj, are related to
each other, and their corresponding low-dimensional
representations, i.e., ai and aj, should still have the same
and similar relations.
The second shortcoming of Eq. (1) is the strict orthog-

onality constraint. A straightforward way to address it is
to introduce the existing regularization terms, such as
the l1-norm or l2, 1-norm with respect to P in Eq. (1).
Nevertheless, the characteristics of sparsity and low re-
dundancy could not be achieved simultaneously [37] by
these regularization terms. Recently, Han et al. designed
a regularization term that can directly characterize the
independence and saliency of variables [37]. Inspired by
[37], in this paper, we utilize the absolute values of the
inner product between feature weight vectors as the
regularization term to relax the strict orthogonality con-
straint of Eq. (1), i.e., ∣ < pi, pj > ∣, in which pj ∈ R

1 × u(j =
1, 2,…, d) is the jth row vector of P. Therefore, we can
rewrite the regularization in our DRMFFS as:

Ω Pð Þ ¼
Xd
i¼1

Xd
j¼1; j≠i

j< pi; pj >j

¼
Xd
i¼1

Xd
j¼1

j< pi; pj >j −
Xd
i¼1

j< pi; pi >j

¼
Xd
i¼1

Xd
j¼1

j< pi; pj >j −
Xd
i¼1

pik k22:

ð5Þ

Then, we rewrite the Eq. (5) as:
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Ω Pð Þ ¼ PPT
�� ��

1−tr PTP
� �� �

¼ PPT
�� ��

1
− Pk k22

� �
:

ð6Þ

Finally, we expect the metric in Eq. (6) to be as small
as possible [37], and the weights that correspond to the
redundant and uninformative features will be reduced to
very small values or even zeros, which makes the feature
selection more discriminative.
Next, through combining Eqs. (4) and (6) with the

matrix factorization, the objective function of our
DRMFFS algorithm can be obtained as:

min
P;A

X−XPAk k2F þ αtr ALAT
� �þ βΩ Pð Þ

¼ min
P;A

X−XPAk k2F þ αtr ALAT
� �

þβ
Xd
i¼1

Xd
j¼1; j≠i

j< pi; pj >j s:t: P≥0; A≥0;

ð7Þ

where α ≥ 0 and β ≥ 0 are two balance parameters. The
first term measures the ability of the selected features;
the second term aims at ensuring that the selected fea-
tures can maintain the geometry structure information
of the features in the original high-dimensional feature
space; the third term is used to make the feature weight
matrix sparse and of low redundancy.
By optimizing the proposed objective function, the fea-

ture weight matrix P = [p1; p2;…; pd] can be learned.
Then, we can rank all the features in terms of ‖pi‖2 in
descending order and select the first u features to form
the optimal feature subset.

2.2 Iterative updating algorithm
In Eq. (7), it contains two variables, i.e., P and A. Con-
sidering that Eq. (7) is not convex, we give an iterative
update algorithm to optimize Eq. (7).
Let F(P, A) be the value of the objective function of Eq.

(7), that is,

F P;Að Þ ¼ X−XPAk k2F þ αtr ALAT
� �

þβ
Xd
i¼1

Xd
j¼1; j≠i

j< pi; p j >j¼ X−XPAk k2F

þαtr ALAT
� �þ β PPT

�� ��
1− Pk k22

� �
s:t:

P≥0;A≥0:

ð8Þ

After some algebraic manipulations, we can rewrite
Eq. (8) as

F P;Að Þ ¼ X−XPAk k2F þ αtr ALAT
� �þ β PPT

�� ��
1‐ Pk k22

� �

¼ tr X‐XPAð ÞT X‐XPAð Þ
� �

þ αtr ALAT
� �

þβ tr 1d�dPP
T

� �
‐tr PTP

� �� � ¼ tr XTX
� �

‐2tr ATPTXTX
� �þ tr ATPTXTXPA

� �

þαtr ALAT
� �þ β tr 1d�dPP

T
� �

‐tr PTP
� �� �

;

ð9Þ

where 1d × dis a d × d matrix with all the elements
equal to 1.
Next, we introduce two Lagrange multipliers λ ∈ Rd ×

uand ϑ ∈ Ru × d to constrain P ≥ 0andA ≥ 0, respectively.
So Eq. (9) can be rewritten as Lagrange’s function:

L F ; λ; ϑð Þ ¼ F P;Að Þ þ tr λPð Þ þ tr ϑAð Þ
¼ tr XTX

� �
−2tr ATPTXTX

� �
þ tr ATPTXTXPA

� �þ αtr ALAT
� �þ βðtr 1d�dPP

T
� �

−tr PTP
� �Þ þ tr λPð Þ þ tr ϑAð Þ:

ð10Þ

By taking the derivatives of Eq. (10) with respect to P
and A, and setting them equal to zero, we get:

∂L
∂P

¼ −2XTXAT þ 2XTXPAAT þ 2β 1d�dP−Pð Þ
þ λ

¼ 0 ð11Þ

∂L
∂A

¼ −2PTXTX þ 2PTXTXPAþ 2αA D−Sð Þ
þ ϑ

¼ 0: ð12Þ

Using the Karush-Kuhn-Tucker (KKT) [43] conditions
λijPij = 0 and ϑjiAji = 0, we obtain:

Pij←Pij

XTXAT þ βP
� �

ij

XTXPAAT þ β1d�dP
� �

ij

; ð13Þ

Aji←Aji

PTXTX þ αAS
� �

ji

PTXTXPAþ αAD
� �

ji

: ð14Þ

The whole procedure of our algorithm is summarized
in Algorithm 1. First, we need to calculate the similarity
matrix among features, whose computation complexity
is Ο(d2n). Then, the time complexity of each iteration in
Algorithm 1 is equal to Ο(u2d + nd2 + ud2). Note that
the number of the selected features u is smaller than the
number of original features d. So, the total time com-
plexity of our algorithm equals to Ο(Tnd2), in which T is
the number of iterations.
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2.3 Convergence analysis
The convergence of the update criteria in Eqs. (13) and
(14) are given as follows:

2.3.0.1 Theorem 1. ForP ≥ 0, A ≥ 0, the value of the ob-
jective function in Eq. (8) is non-increasing and has a
lower boundary under the update rules in Eq. (13) and
Eq. (14).
Here, we incorporate an auxiliary function to prove

Theorem 1, which is defined as follows:

2.3.0.2 Definition 1. ϕ(v, v') is an auxiliary function of
ψ(v) if conditions ϕ(v, v') ≥ ψ(v)and ϕ(v, v) = ψ(v) are satis-
fied [25].
The auxiliary function is very useful because of the fol-

lowing lemma:

2.3.0.3 Lemma 1. Suppose that ϕ is an auxiliary func-
tion of ψ; then, ψis non-increasing under the following
update rule:

v tþ1ð Þ ¼ arg min
v

ϕ v; v tð Þ
� �

; ð15Þ

where t indicates the tth iteration.
Proof ψ(v(t + 1)) ≤ ϕ(v(t + 1), v(t)) ≤ ϕ(v(t), v(t)) = ψ(v(t)).□
First, it is necessary to prove that the update criterion

for P in Eq. (13) is consistent with Eq. (15) when an aux-
iliary function is properly designed. We defineψij(Pij)as
the part of Eq. (8) that is only related toPij. Therefore,
we have:

ψij Pij
� � ¼ ð−2ATPTXTX þ ATPTXTXPA

þ β1d�dPP
T−βPTPÞij;

ð16Þ

∇ψij Pij
� � ¼ ð−2XTXAT þ 2XTXPAAT

þ 2β1d�dP−2βPÞij; ð17Þ

∇ 2ψij Pij
� � ¼ 2 XTX

� �
ii A

TA
� �

jj þ 2β 1d�d−Ið Þii; ð18Þ

where ∇ψij(Pij) and ∇2ψij(Pij) represent the first-order
and second-order derivatives, respectively, of the object-
ive function ψijwith respect toPij.

2.3.0.4 Lemma 2. The function in Eq. (19) is a reason-
able auxiliary function of ψij(Pij).

ϕ Pij; P
tð Þ
ij

� �
¼ ψij P tð Þ

ij

� �
þ ∇ψij P tð Þ

ij

� �
Pij−P

tð Þ
ij

� �

þ
XTXPAAT þ β1d�dP
� �

ij

P tð Þ
ij

Pij−P
tð Þ
ij

� �2
:

ð19Þ

Proof Through the Taylor series expansion of ψij(Pij),
we obtain:

ψij Pij
� � ¼ ψij P tð Þ

ij

� �
þ ∇ψij P tð Þ

ij

� �
Pij−P

tð Þ
ij

� �

þ 1
2
∇ 2ψij P tð Þ

ij

� �
Pij−P

tð Þ
ij

� �2

¼ ψij P tð Þ
ij

� �
þ ∇ψij P tð Þ

ij

� �
Pij−P

tð Þ
ij

� �

þ XTX
� �

ii A
TA

� �
jj þ β 1d�d−Ið Þii

n o
Pij−P

tð Þ
ij

� �2
:

ð20Þ

Through integrating Eq. (19) with Eq. (20), we can

learn that ϕðPij;P
ðtÞ
ij Þ≥ψijðPijÞ is equivalent to:

XTXPAAT þ β1d�dP
� �

ij

P tð Þ
ij

≥ XTX
� �

ii A
TA

� �
jj

þ β 1d�d−Ið Þii: ð21Þ

In according with linear algebra, we can obtain:

XTXPAAT
� �

ij ¼
Xu

l¼1

XTXP tð Þ
� �

il
ATA
� �

lj≥ XTXP tð Þ
� �

ij
ATA
� �

jj

≥
Xd

l¼1

XTX
� �

ilP
tð Þ
lj AAT
� �

jj

≥ XTX
� �

iiP
tð Þ
ij AAT
� �

jj ¼ P tð Þ
ij XTX
� �

ii AA
T

� �
jj:

ð22Þ
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β 1d�dPð Þij ¼ β
Xd

l¼1

1d�dð ÞilP tð Þ
lj ≥β

Xd

l¼1

1d�d−Ið ÞilP tð Þ
lj

≥β 1d�d−Ið ÞiiP tð Þ
ij :

ð23Þ

From Eqs. (22) and (23), we observe that Eq. (21)

holds and ϕðPij; P
ðtÞ
ij Þ≥ψijðPijÞ . In addition, ϕðPij; P

ðtÞ
ij Þ

¼ ψijðPijÞ is obvious. Thus, Lemma 2 is proved. □
Next, we employ the similar method as that described

above to analyze the variable A. We use ψji(Aji) to de-
note the part of Eq. (8) and obtain:

ψji Aji
� � ¼ −2ATPTXTX þ ATPTXTXPAþ 2αALAT

� �
ji

ð24Þ

∇ψji Aji
� � ¼ −2PTXTX þ 2PTXTXPAþ 2αAL

� �
ji

ð25Þ

∇ 2ψji Aji
� � ¼ 2 PTXTXP

� �
jj þ Lð Þii ð26Þ

where ∇ψji(Aji) and ∇2ψji(Aji) represent the first-order
and second-order derivatives of ψjiwith respect to Aji.

2.3.0.5 Lemma 3. The following function in Eq. (27) is
a reasonable auxiliary function of ψji(Aji).

ϕ Aji;Aji
tð Þ

� �
¼ ψji Aji

tð Þ
� �

þ ∇ψji Aji
tð Þ

� �
Aji−Aji

tð Þ
� �

þ
PTXTXPAþ AD
� �

ji

Aji
tð Þ Aji−Aji

tð Þ
� �2

:

ð27Þ

Proof Through the Taylor series expansion of ψji(Aji),
we obtain:

ψ Aji
� � ¼ ψji Aji

tð Þ
� �

þ ∇ψji Aji
tð Þ

� �
Aji−Aji

tð Þ
� �

þ 1
2
∇ 2ψji Aji

tð Þ
� �

Aji−Aji
tð Þ

� �2

¼ ψji Aji
tð Þ

� �
þ ∇ψji Aji

tð Þ
� �

Aji−Aji
tð Þ

� �

þ PTXTXP
� �

jj þ Lii
n o

Aji−Aji
tð Þ

� �2
:

ð28Þ

Through comparing Eq. (27) with Eq. (28), it is easy to
see that ϕ(Aji, Aji

(t)) ≥ ψji(Aji)equals to:

PTXTXPAþ AD
� �

ji

Aji
tð Þ ≥ PTXTXP

� �
jj þ Lii: ð29Þ

In according with the linear algebra, we obtain:

PTXTXPA
� �

ji ¼
Xu

l¼1

PTXTXP
� �

jlA
tð Þ
li ≥ PTXTXP

� �
jjA

tð Þ
ji :

ð30Þ

ADð Þji ¼
Xu

l¼1

A tð Þ
jl Dli≥A

tð Þ
ji Dii

¼ A tð Þ
ji Dii≥A

tð Þ
ji Dii−Siið Þ ¼ A tð Þ

ji Lii: ð31Þ

From Eqs. (30) and (31), we know that Eq. (29) holds
and ϕ(Aji, Aji

(t)) ≥ ψji(Aji). Considering that we can check
ϕ(Aji, Aji

(t)) = ψji(Aji) easily, Lemma 3 is proved. □.
Finally, we will give a proof of the convergence of The-

orem 1.
Proof of Theorem 1 we use the auxiliary function in

Eq. (19) to replace ϕ(v, v(t)) in Eq. (15) and obtain:

P tþ1ð Þ
ij ¼ P tð Þ

ij −P
tð Þ
ij

∇ψij P tð Þ
ij

� �

2 XTXPAAT þ β1d�dP
� �

ij

¼ P tð Þ
ij

XTXAT þ βP
� �

ij

XTXPAAT þ β1d�dP
� �

ij

:

ð32Þ

Likewise, we utilize the auxiliary function in Eq. (27)
to replace ϕ(v, v(t)) in Eq. (15) and obtain:

A tþ1ð Þ
ji ¼ A tð Þ

ji −A
tð Þ
ji

∇ψji A tð Þ
ji

� �

2 PTXTXPAþ αAD
� �

ji

¼ A tð Þ
ji

PTXTX þ αAS
� �

ji

PTXTXPAþ αAD
� �

ji

:

ð33Þ

Since Eqs. (19) and (27) are the auxiliary functions of
ψij, ψijis non-increasing under the update criteria in Eqs.
(13) and (14). Lastly, considering that all of the terms in
Eq. (8) are non-negative, the objective function of the
proposed DRMFFS approach has a lower bound. Hence,
in accordance with Cauchy’s convergence rule [44], the
proposed model is convergent. □

2.4 Comparison with other approaches
In this subsection, we will highlight the effectiveness of
our DRMFFS from the following two aspects:

(1) We compare our DRMFFS with the related
unsupervised feature selection approaches including
LS, SPEC, MCFS, UDSFS, RUFS, RSR, SPNFSR,
JGSC, NSSRD, and MFFS. Firstly, different from
most of the existing unsupervised feature selection
approaches, such as LS, SEPC, MCFS, UDSFS,
RUFS, SPNFSR, and JGSC that consider the
manifold information of the data space, our
DRMFFS utilizes the graph regularization to
directly preserve the local structure information of
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the feature space, which can provide more
accurate discrimination information for feature
selection. Secondly, for sparsity regularization-based
unsupervised feature selection approaches, such as
MCFS, UDSFS, RUFS, RSR, SPNFSR, JGSC, and
NSSRD, they select a subset of features based on the
l1-norm or l2, 1-norm. However, these approaches
except UDSFS ignore the correlation among features,
and thereby, the features selected by them may
contain some redundancy, which makes the feature
subset far from optimal. In contrast, our approach
employs the absolute values of the inner product of
the feature weight matrix vectors as a
regularization term to ensure that the feature
subset contains sparsity and low redundancy
simultaneously. Finally, in comparison with
Matrix Factorization-Based Feature Selection
approach, i.e., MFFS, our DRMFFS uses the inner
product constraint term in place of the strict
orthogonality constraint term making our
approach more flexible and effective.

(2) We utilize the visualization of the features selected
by different approaches to further demonstrate the
effectiveness of our DRMFFS. First, we randomly
select three sample images with the size of 32 × 32
pixels from three different face databases, i.e., ORL,
AR, and CMU PIE. Then, all the approaches are
applied to them and the selected features are
labeled on this image. Here, the number of the
selected features is fixed as 100 for all of the
approaches. Figure 1 illustrates the corresponding
experimental results, in which red color is used to
represent the selected features and the features
which are not selected retain the original gray. As
seen from Fig. 1, all of the approaches except our
DRMFFS select the features from uninformative
parts of the face, such as the forehead and cheek or
evenly distributed on the face. On the contrary, our
DRMFFS can select the most representative face
features, such as the eyes, eyebrows, nose, and
mouth. Actually, observing Fig. 1, we can find two
interesting phenomena as follows. On the one hand,
the features selected by DRMFFS mostly focus on
the recognizable parts of the face (i.e., eyes,
eyebrows, nose, and mouth). The main reason is
that our DRMFFS uses the graph regularization to
preserve the geometric structure information on the
feature manifold, making the selected features more
holistic and structural. On the other hand, the
selected features which are used to represent the
eyes, mouth, and nose are mainly from the one side
of the face. This phenomenon is due to the fact that
DRMFFS takes the correlations among features into
consideration, and thereby, the selected features are

mainly from one side of the nearly symmetrical face
components, accomplishing the low-redundancy.

Besides, we randomly select a sample image from Ex-
tended YaleB database as the experimental sample and
apply our DRMFFS to this sample. Figure 2 shows the
visualization result of our approach under different
number of selected features. In Fig. 2, the red color is
used to represent the selected features and the features
which are not selected retain the original gray. Here, the
number of selected features is tuned from {20, 50, 100,
150, 200, 250, 300}. Seen from Fig. 2, when the number
of selected features is relatively small, the outline of the
human face is not clear since the selected features rarely
locate on the recognizable parts of the face. However,
with the increase in number of selected features (from
left to right), the extracted face information is also in-
creased. In other words, our DRMFFS fails to select the
most representative features such as the mouth and nose
when the number of selected features is relatively small.
The reason for the degraded performance of our
DRMFFS under less number of features is that our ap-
proach utilizes the distance between the spaces spanned
by the original high-dimensional data samples and the
selected features as the evaluation criterion (see Eq. (1)).
Therefore, when considering smallest features to be se-
lected, the space spanned by our approach cannot well
approximate the space spanned by original input sam-
ples, which leads to the information of high-dimensional
data cannot be sufficiently maintained.

3 Results and discussion
In this section, we will carry out classification and
clustering experiments to verify the effectiveness of the
proposed approach in comparison with other
state-of-the-art approaches.

3.1 Database
In our experiment, we use six benchmark image data-
bases, including Extended YaleB [31], CMU PIE [32], AR
[33], JAFFE [34], ORL [35], and COIL20 [36], to com-
pare the performance of our approach with those of the
state-of-the-art unsupervised feature selection ap-
proaches. Detailed descriptions of the six databases are
given in Table 2, and some image examples from these
databases are shown in Fig. 3.

(1) Extended YaleB [31]: it consists of 2414 facial
images from 38 persons. Each person has 64
images, and each image is cropped to the size of
32 × 32 pixels with 256 Gy levels per pixel. Some
face images from the Extended YaleB database are
depicted in Fig. 3a.
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(2) CMU PIE [32]: it includes 41,368 face images of 68
persons. In our experiment, we choose a subset
(C29) that contains 210 face images of 10 persons
from this dataset. Example images are shown in
Fig. 3b.

(3) AR face [33]: it consists of 4000 facial images that
depict 126 distinct subjects (70 male and 56 female

faces). The images of each subject were taken in
varying conditions. The example images are shown
in Fig. 3c.

(4) JAFFE [34]: there are 213 facial images in it. Each
person has seven different kinds of facial
expressions. The example images from AR are given
in Fig. 3d.

(a)

(b)

(c)
Fig. 1 The visualization results of selected features by different approaches on three different databases. a A sample image coming from ORL. b
A sample image coming from AR. c A sample image coming from CMU PIE

Fig. 2 The visualization result of our DRMFFS under different number of selected features
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(5) ORL [35]: there are ten different images of each of
40 distinct subjects. For each subject, the images
were taken at different times, varying the lighting
conditions. The example images from ORL are
depicted in Fig. 3e.

(6) COIL20 [36]: it is a database of gray-scale images of
20 objects. Each of subjects has 72 images, which
were taken at pose intervals of 5° to vary object
pose with respect to a xed camera. The example
images from this database are illustrated in Fig. 3f.

3.2 Experimental settings
In our experiments, we choose ten representative un-
supervised feature selection algorithms as the compari-
son approaches. The ten comparison approaches include
LS [11], MCFS [8], SPEC [12], UDSFS [13], RUFS [16],
RSR [18], SPNFSR [20], JGSC [21], NSSRD [23], and
MFFS [27]. Meanwhile, several details for the experi-
ment parameter setting are as follows. For LS, MCFS,
SPEC, UDSFS, SPNFSR, JGSC, NSSRD, and our

approach, we fix the number of neighborhoods to 5 on
all the databases. For UDSFS, RUFS, RSR, SPNFSR,
JGSC, and NSSRD, the sparsity parameters will be tuned
by a grid-search strategy from{10−3, 10−2, 10−1, 100, 101,
102, 103}. Following [27], we fix the value of the param-
eter in MFFS to 108. For DRMFFS, we exploit the pa-
rameters α and β in the range of {0, 100, 101, 102, 103,
104, 105} on all the databases. We will report the best re-
sults obtained from the optimal parameters for all the
approaches.

3.3 Classification results and analysis
In this subsection, we perform six different experiments
on three databases including the Extended YaleB, CMU
PIE, and AR to verify the effectiveness of our approach.
In the first experiment, we choose randomly l (l = 20,

12, 7) images per class for training from each of the
three databases and reserve the remaining images for
testing. The process is repeated 10 times, and the aver-
age classification accuracies and standard deviations of
different approaches are reported in Table 3. Since the
experiment environment and setting are the same with
our previous paper [19]. Hence, a part of experimental
results of the comparison approaches are directly from
our previous work [19]. The number in parentheses is
the number of the selected features that corresponds to
the best result. Analyzing Table 3, it is obvious that all
the feature selection approaches except LS outperform
the baseline approach, which indicates that feature selec-
tion is an important and indispensable measure to

Table 2 Statistics of the six databases

Database No. of images No. of features No. of classes

Extended YaleB 2432 32 × 32 38

CMU PIE 1632 32 × 32 24

AR 1400 32 × 32 14

JAFFE 213 32 × 32 10

ORL 400 32 × 32 40

COIL20 1440 32 × 32 20

Fig. 3 Some of the images from different databases. a Extended YaleB. b CMU PIE. c AR. d JAFFE. e ORL. f COIL20
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remove the noise and redundant features of the data
and to improve the classification performance. Be-
sides, LS and SPEC conduct feature selection in a
one-by-one manner. In contrast to LS and SPEC, the
approaches MCFS, RUFS, MFFS, RSR, SPNFSR,
UDSFS, JGSC, NSSRD, and our approach select the
features jointly and achieve good performances. Spe-
cially, our DRMFFS achieves the best performance on
all the three databases, compared with all the com-
pared approaches. Moreover, the superiority of our
DRMFFS over the newest approaches, i.e., JGSC,
UDSFS, and NSSRD, also demonstrates that the com-
bination of graph regularization and inner product
regularization is crucial to select the most informative
features from high-dimensional data.
In the second experiment, the impact of different

numbers of the selected features on the performance of
our DRMFFS is tested. In this experiment, the number
of the selected features is tuned by a grid-search strategy
from{10, 20, 30, 40,…, 480, 490, 500}. Figure 3 illustrates
the classification results of all the compared approaches
on the Extended YaleB, CMU PIE, and AR databases
with different numbers of the selected features. Seen
from Fig. 4, the recognition rates of all the algorithms
are improved at the beginning with an increase in the
number of the selected features. However, this trend
changes after they achieve their best performances. Be-
sides, we can find that the performances of matrix
factorization-based approaches including MFFS and our
DRMFFS are inferior to some other methods when the
number of selected features is relatively small. The
main reason may lie in that the space spanned by
only a small number of features cannot approximate
the space spanned by original input samples. Thus,
the information of high-dimensional data is not suffi-
ciently maintained.

In the third experiment, the influence of two
regularization parameters (i.e., α and β) on the perform-
ance of our DRMFFS is evaluated. We first set the same
initialization for different parameters and then test the
impact of varying the values of parameters α and β on
the performance of the proposed approach. Figure 5 de-
picts the classification results on three databases under
different values of α and β. As shown in Fig. 5, the clas-
sification results of the proposed approach change little
under different values of α and β on all the databases,
which indicates that our approach is insensitive to the
choice of parameters α and β. The average recognition
rates obtained by our DRMFFS are 0.7277 ± 0.0086
(290), 0.9233 ± 0.0105 (250), and 0.7040 ± 0.0115 (300)
for the Extended YaleB, CMU PIE, and AR databases, re-
spectively, which are higher than the results obtained by
the newest approaches, i.e., NSSRD, JGSC, and JGSC,
which are listed in Table 3. These results indicate that
incorporating both the geometric structure information
of the feature space and the correlation among features
together are of great importance for feature selection,
which can improve the classification performance.
Meanwhile, when the value of β is set to zero and α is
set to a non-zero value, the recognition rates obtained
by DRMFFS are relatively higher than those obtained
when setting α to zero. Specially, when the value of α is
set to zero, our approach is inferior to those obtained
under other non-zero settings since the local structure
information of the feature space of the data is totally
neglected. Therefore, the preserving of the local struc-
ture information of the feature space of the data is im-
portant for feature selection. In addition, a relatively
large α value or a relatively small β value will cause the
second term of the objective function in (7) to dominate
and overlook the other two terms. A relatively large β
value or a relatively small α value will cause the third

Table 3 The average recognition rates and standard deviations of different algorithms on different databases. The best results are
highlighted in italics

Methods Extended YaleB CMU PIE AR

Baseline 0.6193 ± 0.0081(1024) 0.8563 ± 0.0072(1024) 0.6206 ± 0.0162(1024)

LS 0.4850 ± 0.0142(500) 0.8196 ± 0.0180(500) 0.5851 ± 0.0155(500)

SPEC 0.6418 ± 0.0096(500) 0.8749 ± 0.0082(470) 0.6456 ± 0.0154(500)

MCFS 0.6589 ± 0.0178(200) 0.8791 ± 0.0084(490) 0.6521 ± 0.0158(500)

RUFS 0.6697 ± 0.0132(480) 0.8899 ± 0.0091(490) 0.6661 ± 0.0171(480)

MFFS 0.6722 ± 0.0093(330) 0.8862 ± 0.0088(270) 0.6741 ± 0.0147(470)

RSR 0.6883 ± 0.0106(500) 0.8937 ± 0.0085(440) 0.6671 ± 0.0147(440)

JGSC 0.6999 ± 0.0122(470) 0.8925 ± 0.0084(480) 0.6737 ± 0.0183(430)

SPNFSR 0.7190 ± 0.0077(180) 0.9184 ± 0.0103(430) 0.6895 ± 0.0117(270)

UDSFS 0.7195 ± 0.0095(490) 0.9167 ± 0.0159(400) 0.6931 ± 0.0144(240)

NSSRD 0.7202 ± 0.0119(440) 0.9185 ± 0.0096(410) 0.6979 ± 0.0152(430)

DRMFFS 0.7277 ± 0.0086(290) 0.9233 ± 0.0105(250) 0.7040 ± 0.0115(300)

Zhou et al. EURASIP Journal on Image and Video Processing  (2018) 2018:49 Page 11 of 19



term of the objective function in (7) to dominate, and
both the matrix factorization and the local structure in-
formation of the feature space of the data will be
neglected. All in all, the proposed approach can achieve
its best performance when the values of α and β are nei-
ther too large nor too small. Moreover, we also can see
that the varied performances are not caused by different

initializations, but the constraints that the initial settings
are the same for varied parameters.
In the fourth experiment, we test the influence of

initialization for our approach by randomly selecting a

(a)

(b)

(c)

Fig. 4 a–c The recognition rates (%) of different feature selection
algorithms on three different databases

(a)

(b)

(c)

Fig. 5 a–c The recognition rates (%) of DRMFFS vs. parameters α
and β on three different databases
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set of training samples and testing samples from the AR,
Extended YaleB, and CMU PIE databases. Meanwhile,
we set the parameters of the algorithm as the optimal
parameters. In this test experiment, we randomly gener-
ate the matrices A and P, then calculate the recognition
rate of the algorithm. Here, the random generation
process is repeated 30 times and the corresponding re-
sult is shown in Fig. 6. As seen from Fig. 6, the recogni-
tion rate of our approach is relatively stable at different
initializations. Also, it demonstrates that our approach is
insensitive to different initializations. The main reason is
that our approach eventually converges under different
initializations.
In the fifth experiment, we utilize the one-tailed t test

to further verify whether DRMFFS performs significantly
better than other approaches. In this test, the null hy-
pothesis is that our DRMFFS makes no difference when
compared to the existing unsupervised feature selection
approaches in classification task and the alternative hy-
pothesis is that our DRMFFS makes an improvement
when compared to the other approaches. For example, if
we want to compare the performance of DRMFFS with
that of JGSC (DRMFFS vs. JGSC), the null and alterna-
tive hypotheses are defined as H0 :MDRMFFS =MJGSC

andH1 :MDRMFFS >MJGSC, respectively, where MDRMFFS

and MJGSCare the average classification results obtained
by DRMFFS and JGSC approaches on all of the three

Fig. 6 The recognition rates (%) of DRMFFS vs. varying random
initialization generation processes on three databases

Table 4 The p values of the pairwise one-tailed t tests of
DRMFFS and other approaches on classification accuracy

p values p values

DRMFFS vs. LS 9.1300e−05 DRMFFS vs. RSR 1.2334e−04

DRMFFS vs. SPEC 9.1300e−05 DRMFFS vs. JGSC 3.8458e−04

DRMFFS vs. MCFS 9.1336e−05 DRMFFS vs. SPNFSR 8.5006e−04

DRMFFS vs. RUFS 5.0123e−04 DRMFFS vs. UDSFS 0.0029

DRMFFS vs. MFFS 2.1976e−04 DRMFFS vs. NSSRD 0.0086

(a)

(b)

(c)
Fig. 7 a–c Convergence curves of DRMFFS on three
different databases
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databases in Section 3.3. In our experiment, the signifi-
cance level is set to 0.05. As seen from the test results
depicted in Table 4, the p values obtained by all the pair-
wise t tests are much less than 0.05, which means that
the null hypotheses are disapproved in all the pair-wise t
tests. Therefore, the proposed approach significantly
outperforms other approaches.
Finally, the convergence curves of the proposed ap-

proach on three different databases are shown in Fig. 7.
As seen from these figures, the proposed approach con-
verges very fast on all the databases, which demonstrates
the efficiency and effectiveness of the proposed optimal
approach.

3.4 Clustering results and analysis
In the clustering experiments, two widely used criteria,
i.e., clustering accuracy (ACC) and normalized mutual
information (NMI) are adopted to compare the cluster-
ing performances of different unsupervised feature selec-
tion approaches. The larger ACC or NMI is, the better

the performance of the algorithm, and vice versa. Given
an input sample xi, let ci and gi be its clustering label
and ground-truth label. The ACC can be formulated as

ACC ¼

Xn
i¼1

γ gi;map cið Þ� �

n
ð34Þ

where γ(gi, ci) denotes an indicator function that equals
1 if ci = giand equals 0 if ci ≠ gi. Here,map(⋅) is the opti-
mal mapping function that maps each clustering label to
an equivalent true label by the Kuhn-Munkres algorithm
[45].
NMI is defined as:

NMI Q;Rð Þ ¼ I Q;Rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Qð ÞH Rð Þp ð35Þ

where I(Q, R) represents the mutual information of Q
and R; the entropies of Q and R are, respectively,

Table 5 Clustering results (ACC ± std) of different approaches on three different databases. The best results are highlighted in italics

Methods JAFFE ORL COIL20

BaseLine 0.7873 ± 0.0228(1024) 0.7526 ± 0.0439(1024) 0.5527 ± 0.0271(1024)

LS 0.8343 ± 0.0630(100) 0.7850 ± 0.0310(280) 0.5984 ± 0.0246(420)

SPEC 0.8521 ± 0.0708(470) 0.8030 ± 0.0756(170) 0.6128 ± 0.0476(340)

MCFS 0.8709 ± 0.0871(240) 0.8210 ± 0.0555(240) 0.6214 ± 0.0512(250)

RUFS 0.8864 ± 0.0781(470) 0.8300 ± 0.0542(140) 0.6408 ± 0.0484(360)

MFFS 0.8958 ± 0.0298(500) 0.8390 ± 0.0523(40) 0.6460 ± 0.0286(300)

RSR 0.8728 ± 0.0518(500) 0.8310 ± 0.0378(270) 0.6486 ± 0.0272(470)

JGSC 0.9004 ± 0.0557(280) 0.8460 ± 0.0332(240) 0.6537 ± 0.0402(200)

SPNFSR 0.9093 ± 0.0253(500) 0.8690 ± 0.0428(220) 0.6679 ± 0.0147(470)

UDSFS 0.9113 ± 0.0551(390) 0.8716 ± 0.0560(390) 0.6711 ± 0.0334(370)

NSSRD 0.9138 ± 0.0543(250) 0.8730 ± 0.0459(200) 0.6793 ± 0.0280(480)

DRMFFS 0.9226 ± 0.0254(130) 0.8833 ± 0.0320(430) 0.6853 ± 0.0162(380)

Table 6 Clustering results (NMI ± std) of different approaches on three different databases. The best results are highlighted in italics

Methods JAFFE ORL COIL20

BaseLine 0.8213 ± 0.0143(1024) 0.7964 ± 0.0310(1024) 0.7035 ± 0.0131(1024)

LS 0.8756 ± 0.0301(110) 0.8138 ± 0.0455(140) 0.7068 ± 0.0122(420)

SPEC 0.8828 ± 0.0614(390) 0.8318 ± 0.0228(450) 0.7245 ± 0.0128(370)

MCFS 0.8887 ± 0.0500(160) 0.8383 ± 0.0390(230) 0.7289 ± 0.0247(370)

RUFS 0.8914 ± 0.0448(500) 0.8588 ± 0.0316(140) 0.7486 ± 0.0096(290)

MFFS 0.8960 ± 0.0264(500) 0.8701 ± 0.0236(50) 0.7486 ± 0.0136(260)

RSR 0.8952 ± 0.0276(500) 0.8600 ± 0.0298(230) 0.7463 ± 0.0163(470)

JGSC 0.9033 ± 0.0365(230) 0.8716 ± 0.0281(190) 0.7532 ± 0.0152(410)

SPNFSR 0.9154 ± 0.0125(480) 0.9022 ± 0.0304(350) 0.7652 ± 0.0094(440)

UDSFS 0.9157 ± 0.0352(470) 0.9078 ± 0.0346(310) 0.7678 ± 0.0165(370)

NSSRD 0.9179 ± 0.0292(240) 0.9125 ± 0.0287(260) 0.7696 ± 0.0130(500)

DRMFFS 0.9247 ± 0.0237(200) 0.9191 ± 0.0227(200) 0.7778 ± 0.0118(420)
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denoted as H(Q) and H(R). In this study, Q and R are
the clustering label and the ground-truth, respectively.
According to the selected features, we utilize the

k-means algorithm to cluster all the samples, by different
feature selection algorithms. Considering that the per-
formance of the k-means clustering approach relies on
the initialization, we repeat the process of clustering 50

times with different random initializations and the aver-
age clustering results with standard deviations are given
for this experiment. In this subsection, we use JAFFE,
ORL, and COIL20 databases to evaluate the effectiveness
of the proposed approach in terms of ACC and NMI.
First, we tune the number of the selected features from

10 to 500 with an interval of 10 to test the clustering
performance of different approaches. Tables 5 and 6

(a)

(b)

(c)

Fig. 8 a–c The ACC (%) of different feature selection algorithms on
three different databases

(a)

(b)

(c)

Fig. 9 a–c The NMI (%) of different feature selection algorithms on
three different databases
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report the best ACC and NMI from the optimal fixed
parameters obtained by different approaches. In Tables 5
and 6, the number in parentheses is the number of the
selected features that corresponds to the best clustering

result. Since we use the same clustering experiment par-
ameter setting with our previous work [21], the cluster-
ing results of some compared approaches are the same
with [21]. Several interesting points can be observed
from Tables 5 and 6. First, all the feature selection

(a)

(b)

(c)
Fig. 10 a–c The ACC (%) of the proposed DRMFFS vs. parameters α
and βon three different databases

(a)

(b)

(c)

Fig. 11 a–c The NMI (%) of the proposed DRMFFS vs. parameters α
and β on three different databases
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approaches outperform than the baseline algorithm, in-
dicating that feature selection plays an important role
for clustering. Second, both LS and SPEC independently
select features without considering the correlations
among features. Therefore, their clustering performances
are inferior to those of the sparsity regularized-based ap-
proaches (i.e., MCFS, RUFS, RSR, SPNFSR, UDSFS,
JGSC, NSSRD) and matrix factorization theory-based
approaches (i.e., MFFS and our DRMFFS) on all the da-
tabases. This indicates that they select the features in a
batch manner which is more effective than individually.
Although these approaches jointly select features and
achieve better performance than LS and SPEC, they ei-
ther ignore the geometric structure information of the
feature space (i.e., MCFS, RUFS, SPNFSR, RSR, UDSFS,
JGSC, MFFS), or the correlations among features (i.e.,
MCFS, RUFS, SPNFSR, RSR, JGSC, MFFS, NSSRD),
which will greatly reduce the effectiveness of feature se-
lection. Finally, it can be seen that our DRMFFS outper-
forms the competing approaches. That is because the
DRMFFS takes the geometric structure information of
the feature space into the process of feature selection,
making the selected feature subset more accurate. Fur-
thermore, the DRMFFS has more advantages than the
sparsity regularized-based approaches by replacing the
l1-norm or l2-norm with the inner product
regularization term that can be regarded as a combin-
ation of the l1-norm and l2-norm, such as considering
the correlations among features, achieving sparsity, and
low redundancy simultaneously. All in all, our approach
can achieve the best performance on all the databases,
which demonstrates that the proposed approach is
effective.
Second, the impact of various numbers of the selected

features on the clustering performance (i.e., ACC and
NMI) of different approaches is tested and the results

Table 7 The p values of the pairwise one-tailed t tests on ACC

p values p values

DRMFFS vs. LS 9.1422e−05 DRMFFS vs. RSR 4.8410e−04

DRMFFS vs. SPEC 5.5631e−04 DRMFFS vs. JGSC 0.0016

DRMFFS vs. MCFS 2.3130e−04 DRMFFS vs. SPNFSR 0.0057

DRMFFS vs. RUFS 6.6912e−04 DRMFFS vs. UDSFS 0.0094

DRMFFS vs. MFFS 3.8424e−04 DRMFFS vs. NSSRD 0.0340

Table 8 The p values of the pairwise one-tailed t tests on NMI

p values p values

DRMFFS vs. LS 9.1330e−05 DRMFFS vs. RSR 4.2793e−04

DRMFFS vs. SPEC 5.3208e−04 DRMFFS vs. JGSC 0.0014

DRMFFS vs. MCFS 1.0190e−04 DRMFFS vs. SPNFSR 0.0019

DRMFFS vs. RUFS 8.2529e−04 DRMFFS vs. UDSFS 0.0156

DRMFFS vs. MFFS 5.0210e−04 DRMFFS vs. NSSRD 0.0436

(a)

(b)

(c)
Fig. 12 a–c Convergence curves of the proposed DRMFFS on three
different databases
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are shown in Figs. 8 and 9. From the two figures, we can
also observe that the clustering performances of our ap-
proach are inferior to those of some other approaches
when the number of the selected features is small. The
reason is the same as the classification experiments.
However, with an increase of selected features, the pro-
posed approach performs excellent and is finally super-
ior to all the compared approaches at higher
dimensions.
Next, similar to the classification experiment, we test

the clustering performances of our approach under vari-
ous values of parameters α and β. Figures 10 and 11 de-
pict the clustering ACC and NMI, respectively, on the
three databases under different values of α and β. From
the results depicted in Figs. 10 and 11, we can easily
conclude the optimal values of parameters α and β from
the clustering experiments. When the parameters α and
β are set to 0, the correlations among features and the
local structure information of the feature space of the
data are totally neglected. Under this circumstance, the
average clustering ACC and NMI performances obtained
by DRMFFS are inferior to those obtained under other
parameter settings, which is consistent with the observa-
tions in the classification experiments. Specially, when
the parameter α is set to 0, the performance of our ap-
proach is inferior to those obtained under other
non-zero settings, indicating that the local structure in-
formation of the feature space of the data is effective for
improving the performance of feature selection. In
addition, we can also see that our approach achieves its
best performance when the parameters α and β are set
to suitable values.
Furthermore, we also employ the one-tailed t test to

verify whether the clustering performance of DRMFFS is
significantly better than the existing approaches. Here,
we use the average of the clustering results (i.e., ACC
and NMI) on all the databases for performance compari-
son. We set the statistical significant level as 0.05 in this
experiment. The p values of the pairwise one-tailed t
tests on ACC and NMI are shown in Tables 7 and 8, re-
spectively. From these results, we can see that the p
values obtained by the pairwise one-tailed t tests are less
than 0.05, which indicates that our approach signifi-
cantly outperforms other approaches.
At last, the convergence curves of our DRMFFS on

three different databases are shown in Fig. 12. From
these curves, it is easy to observe that the values of the
objective function converge very fast, within approxi-
mately 20 iterations, on all the three databases.

4 Conclusions
In this paper, we present a novel unsupervised feature
selection approach called Double Regularized Matrix
Factorization Feature Selection (DRMFFS) for image

classification and clustering. Since the feature manifold
is important for dimensionality reduction, we utilize the
graph regularization to preserve the manifold informa-
tion of the feature space aiming to make the learning of
feature selection matrix more accurate. Meanwhile, the
absolute values of the inner product of the feature
weight matrix vectors are employed as a regularization
term to ensure high correlation and low redundancy
among features simultaneously. Furthermore, we design
the corresponding update algorithm to optimize our ap-
proach and its convergence is also proved. In our experi-
ments, the proposed approach is evaluated on six
benchmark databases in terms of classification and clus-
tering performances. The experimental results show that
the proposed approach is effective.
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