
RESEARCH Open Access

Multibiometric identification by using ear,
face, and thermal face
Kadir Sercan Bayram1* and Bülent Bolat2

Abstract

In this work, a secure multibiometric system is proposed. Three different biometric modalities which are ear, face,
and thermal face are considered. The face and thermal face data were taken from USTC NVIE Spontaneous
Database, whereas the ear data were collected from IIT Delhi Ear Image Database. For each modality, three feature
extraction methods are used and four different classifiers (multilayer perceptron, decision tree, support vector
machines, and probabilistic neural network) are trained by using two fusion methods which are matching score
level and feature level fusion. According to the results, the individual biometrics are better for the identification
problem. However, for the validation problem, both fusion methods give better false acceptance rate/false rejection
rate values regarding to individual biometrics.
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1 Introduction
In today’s conditions, security is an essential concept for
many domains such as online or mobile banking and
controlled access to certain buildings or rooms.
Biometric identification and verification offers a more
secure solution for such problems; however, in real
applications, single biometrics does not guarantee the
ultimate safety [1].
In certain conditions, biometric systems may be

tricked by using forged biometric samples such as pho-
tographs of faces or irises and artificial fingerprints.
Another disadvantage is that, if a biometric system uses
only one kind of biometric measurement, it may not be
readable or reachable due to physical conditions. For
these reasons, the use of multibiometric systems has
come to the forefront [2].
In general, systems using biometric features are more

secure than encryption systems using passwords, keys,
or keycards [3, 4]. Stealing a password or a key is rela-
tively easier than copying a biometric sample because a
biometric sample is a part of the subject who uses it. On
the other hand, a biometric authentication system is not

100% secure. A skillful attacker may gather any person’s
biometric samples and can produce forged biometrics.
A biometric sample must be universal (most of the

population should have it), unique, stable (constant over
time), collectible (easy to collect with proper devices),
distinct (able to differentiate people from each other),
acceptable (should be acceptable for people), and cheap.
Table 1 compares the most frequent biometrics regard-
ing to these features.
In general, the aim of this paper is to develop a touch-

less biometric system with a high accuracy and low cost.
To achieve these goals, three biometrics, which are ear,
face, and thermal face, are selected from Table 1. Re-
garding their scores, these biometrics are better fitting
to our problem [5–7].
The organization of the paper as follows. Section 1

proposed the multimodality concept. Section 2 summa-
rizes the methods involved in this work. The experimen-
tal details and the results are proposed in Section 3, and
Section 4 concludes the paper.

1.1 Multimodalities
Multibiometric systems have many advantages over
single-biometric systems: First of all, a multibiometric
system can work well against class similarities. A multi-
biometric system is more robust to noise and more
resistant to external system attacks [8, 9]. The basic
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definitions of multibiometric systems are as follows. A
multimodal system is that receive two or more different
biometric characteristics as input with the aid of one or
more sensors [10]. A single biometric characterization
process using a single sensor is called as multi-
algorithm. A multi-algorithm system is a classification
process performed by using two or more algorithms
[11]. If a system captures more than one example for a
single biometric characteristic and uses these multiple
copies for classification or identification by using the
same algorithm, it is called as multi-instance [7]. If the
system has more than one sensor to capture the biomet-
rics, it is called as multi-sensor system [12].

1.1.1 Fusion of multimodalities
A typical biometric system has a sensor module, feature
extraction module, matcher, and decision module. The
information on the output of these modules can be com-
bined and used as an input to other modules.

1.1.2 Sensor-level fusion
The purpose of sensor-level fusion is to fuse the same
biometric samples coming from different sensors or
multiple instances captured by the same sensor [13].
This method gives more information about the

biometric data, but it is still dependent on only one
biometric. Figure 1 shows the block diagram of
sensor-level fusion.

1.1.3 Feature-level fusion
The feature-level fusion contains the richest information
after the sensor-level coalescence. In this method, differ-
ent feature extraction algorithms are applied to the same
biometric data. Using different feature extraction
methods causes a large amount of data; hence, a feature
reduction scheme should be necessary to reduce the fea-
ture size because of the curse of dimensionality. Figure 2
shows the block diagram of feature-level fusion.

1.1.4 Matching score-level fusion
The matching score is generated by a metric based on
the similarities between the example in the input of the
biometric system and the training samples. If more than
one metrics are used, it is possible to fuse their scores
[14]. The output values of the metric functions are sim-
ple numbers; hence, fusing the matching scores is much
easier than the other fusing methods. If the confidence
levels of the classifiers are not equal, a normalization of
scores is required before fusion [15]. Figure 3 shows the
block diagram of matching score-level fusion.

Table 1 Biometrics and parameters (5 high–1 low)

Biometrics/parameters Universality Uniqueness Stability Collectability Performance Acceptability Cost

Face 5 3 3 5 4 4 2

Ear 4 3 4 4 3 4 2

Thermal face 5 3 3 5 3 4 3

Iris 4 5 4 2 4 2 5

Signature 3 2 2 5 3 5 1

Voice 3 3 2 3 3 4 2

Hand Geometry 4 2 3 4 2 3 4

Retina 4 5 5 2 5 2 5

DNA 4 5 5 1 5 1 5

Fingerprint 4 5 3 3 4 3 4

Fig. 1 Block diagram of sensor-level fusion
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Fig. 2 Block diagram of feature-level fusion

Fig. 3 Block diagram of matching score-level fusion

Fig. 4 Block diagram of decision-level fusion
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1.1.5 Decision-level fusion
Decision-level fusion uses outputs of different classifiers
to construct the final decision [16]. In this method, each
classifier can use the same biometric data as well as
different biometrics and/or features. Similar to the
matching score-level fusion, if the confidence levels of
classifiers are different, it is possible to use a weighted
decision scheme [17]. Figure 4 shows the block diagram
of decision-level fusion.

2 Methods
In this section, the feature extraction, the feature selec-
tion, and the classification methods used in this study
are explained briefly.

2.1 Feature extraction methods
In this study, three different methods which are eigen-
features, local binary pattern (LBP) features, and gray-
level co-occurrence matrix (GLCM) features were used
to extract the features from data.
Mathematically, the principal components of a given

set of biometric images characterize the variations of the
data [18, 19]. In other words, any image in the set is
expressed as a linear combination of principal compo-
nents. The number of possible principal components is
equal to the number of the images in the set. However,
the contribution of some principal components is small
enough and negligible. The most dominant components
are related to the greatest eigenvalues of the covariance
matrix of the image set. Then, the problem reduces to
find the eigenvectors of the covariance matrix related to
greatest M eigenvalues.
LBP is a fast feature extraction method for images. In this

method, a threshold operator is applied to 8-neighborhood

of a selected pixel of the image. The center pixel’s
value is used as threshold, and one bit is produced
for each neighbor. If the neighbor’s value is larger
than the threshold, its value is set to 1, or 0 other-
wise. An eight-bit codeword is generated with these
eight bits [20].
GLCM is a statistics-based feature extraction method.

In this method, repeated gray level patterns are counted
and stored in a matrix. For example, if only one direc-
tion is considered, an eight-bit gray-level image produces
a GLCM size of 256 × 256, which is as large as the
original data. Hence, we calculated four features over
GLCM which are contrast, correlation, energy, and
homogeneity, instead of using the whole matrix.

2.2 Feature selection method
In general, feature selection algorithms are used to re-
duce the amount of data and computational cost. On
the other hand, it is possible to use a feature selection
algorithm to remove the redundant features and to
improve the overall accuracy of the problem. In this
study a forward selection method is used on the features.
The algorithm starts with an empty set of features. Then,
the existing features are applied to the classification
process one by one. The best resultant feature is
determined and added to the feature set and another
new feature is determined with the same rule. The selec-
tion process is repeated until the increase of success rate
is stopped or the maximum allowed number of features
is reached.

2.3 Classification methods
In this study four different classifiers, which are multi-
layer perceptron, decision tree, support vector machine

Table 2 Matching score-level fusion with eigenfeatures (#feature 30)

# of feature 30

# of cells in the hidden layer 5 20 40 50 60 70 90

Ear 6.28 88.99 88.05 88.67 65.09 89.62 89.62

Face 17.31 62.67 69.88 77.1 87.32 84.62 79.92

Thermal face 11.06 42.83 50.79 60.87 68.53 71.03 76.11

MS-LF with genetic algorithms 83.25

Table 3 Matching score-level fusion with eigenfeatures (#feature 40)

# of feature 40

# of cells in the hidden layer 5 20 40 50 60 70 90

Ear 2.83 86.79 85.22 90.56 89.62 90.88 85.84

Face 4.01 49.93 74.78 78.41 87.2 84.5 91.59

Thermal face 11.22 27.89 62.01 58.52 68.53 73.76 67.62

MS-LF with genetic algorithms 84.65
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Table 4 Matching score-level fusion with eigenfeatures (#feature 50)

# of feature 50

# of cells in the hidden layer 5 20 40 50 60 70 90

Ear 33.96 81.44 89.3 90.25 89.62 90.56 88.05

Face 19 67.5 80.42 81.55 89.83 86.63 90.52

Thermal face 9.02 31.76 66.71 71.79 76.57 72.47 69.82

MS-LF with genetic algorithms 85.87

Table 5 Feature-level fusion with eigenfeatures (#feature 30–40–50)

# of feature 30 per each biometrics

# of cells in the hidden layer 5 20 40 50 60 70 90

% 3.78 64.66 83.28 85.8 80.44 80.44 85.8

# of feature 40 per each biometrics

# of cells in the hidden layer 5 20 40 50 60 70 90

% 5.04 81.7 82.64 82.64 82.01 84.22 85.48

# of feature 50 per each biometrics

# of cells in the hidden layer 5 20 40 50 60 70 90

% 5.04 79.81 82.64 76.34 85.17 83.28 86.43

Table 6 Matching score-level fusion with DT

Matching score-level fusion

Biometrics Ear Face Thermal face

# of feature 14 10 8 14 10 8 14 10 8

% 78.96 80.37 78.49 75.18 77.48 75.97 76.98 78.70 77.31

MS-LF with GA 78.25

Table 7 Matching score-level fusion with SVM

Matching score-level fusion

Biometrics Ear Face Thermal face

# of feature 14 10 8 14 10 8 14 9 8

% 96.70 100 94.20 93.10 94.67 92.39 84.78 85.48 83.94

MS-LF with GA 98.65
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and probabilistic neural network [19, 21–23], are used
for classification. Those methods are used on different
levels of fusion process. The success rates as a result of
classification operations are given in the experimental
results section.

3 Experimental results and discussion
In this study, three different biometric measurements
which face, ear and thermal face, are considered to
design a secure biometric system. For each modality,
three different feature sets were calculated and four
different classifiers were utilized. Thus, we tried
matching score-level and feature-level fusion to obtain
the best configuration.
The face and thermal face data were taken from USTC

NVIE Spontaneous Database [24–26], whereas the ear
data were collected from IIT Delhi Ear Image Database
[27, 28]. The dataset was created artificially by combin-
ing these two datasets because it is not possible to find a
proper dataset for our work. In our dataset, there are
120 individuals. Each person was represented by ten face
and ten thermal face images with spatial resolutions of
640 × 480 and 304 × 230 respectively. We added three
ear images to each person artificially. Hence, our dataset
consists of 2760 biometric measurements assigned to
120 individuals.
Since the eigenfeatures come from principal component

analysis and selecting lesser eigenvectors reduces the size
of data, there is no need to use any feature selection
process on this part of the data. In the first stage of the ex-
periments, only the eigenfeatures were considered. To find
better accuracy, different sizes of eigenfeatures were calcu-
lated and processed by classifiers. Then, the experiments
were repeated by using LBP and GLCM. For these two
feature sets, the most distinctive features were determined
by using forward selection. All experiments were repeated
ten times by using randomly selected training and test
sets, and the results were averaged.

In the first step, data were divided into training (70%)
and testing (30%) sets randomly for different numbers of
eigenfeatures. Then, one multilayer perceptron (MLP)
was trained for each biometric to obtain a matching
score. In the matching score-level fusion, output scores
of the classifiers were combined by using a genetic algo-
rithm (GA). Tables 2, 3, and 4 summarize the results for
this step. In this step, the optimum hidden layer size of
MLP was found by a trial by error scheme (Tables 2, 3,
and 4). Table 5 shows the feature-level fusion scores by
using eigenfeatures and MLP. In this step, equal num-
bers of eigenfeatures were calculated for each biometric
and then merged to construct the dataset. A single MLP
fed by these data for training and testing.
Secondly, LBP and gray level co-occurrence matrix

features were combined. Decision tree (DT) and linear
support vector machines (SVM) and probabilistic neural
network (PNN) algorithms were used as classifiers. Simi-
lar to the first step of the experiments, both matching
level and feature-level fusions operated on the data. To
increase the accuracy of the system, a forward selection
process was applied for each classification.
Tables 6, 7, and 8 show the matching score-level fu-

sion results for three classifiers.
In the last part of the study, we evaluated feature-level

fusion by using three classifiers. Tables 9 and 10
summarize the result of feature-level fusion experiments.
Finally, we evaluated the whole problem as an identifi-

cation task. In this last step, the classifiers were trained
for every individual separately to obtain the false accept-
ance rate (FAR) and false rejection rate (FRR). FAR,
FRR, and testing times of each biometry and fusion types
are given in Table 11 [8]. All the experiments were real-
ized, and a personnel computer has a processor of Intel
Core i5-5200U 2.20 Ghz and 8Gb of RAM.
According to the results given above, ear is the most de-

cisive biometric among the others. By using LCM+GLCM,
SVM classified the entire data perfectly. By comparing

Table 9 Feature-level fusion with DT

# of feature per each biometrics 14 10 8 5

% 79.33 83.45 77.40 69.86

Table 10 Feature-level fusion with PNN

# of feature per each biometrics 14 12 10 7

% 94.35 94.46 96.34 91.80

Table 8 Matching score-level fusion with PNN

Matching score-level fusion

Biometrics Ear Face Thermal face

# of feature 14 11 6 14 10 8 14 9 8

% 96.60 97.44 96.46 93.25 94.88 91.20 76.12 79.42 77.30

MS-LF with GA 94.22
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Tables 2, 3, 4, and 5, one should claim that feature-
level fusing gives slightly better results than matching
score-level fusion for eigenfeatures and MLP. When
LBP and GLCM are used as features, DT and PNN
produces similar results. However, when SVM is con-
sidered, matching score fusion produced a better re-
sult than feature-level fusion.
When Table 11 is interpreted, FAR and FRR rates of

both fusion methods are better than simple biometrics.
MLP, DT, and PNN produced slightly better FAR/FRR
values with feature-level fusion, whereas SVM gave bet-
ter results with matching score level. However, the dif-
ferences between the fusion methods are very small;
hence, it is not easy to prefer one to other.

4 Conclusions
In this work, a multibiometric system is proposed. Three
different biometric modalities were considered. For each
modality, three feature extraction methods were used
and four different classifiers were trained. Two fusion
methods were utilized, and the results were discussed.
According to our results, if the problem is considered as
an identification problem, using the ear only gives the
best result. For the identification problem, none of the

considered fusion methods improved the results. How-
ever, when it is interpreted as a validation problem, both
fusion methods gave better FAR/FRR values regarding to
individual biometrics. SVM with matching level fusion
also gave the best classification performance as 98.65%.
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