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Abstract

3D video applications are growing more common as communication technology becomes more predominant
nowadays. With such increasing demand for the 3D multimedia services in either the wired or wireless networks,
robust methods of video streaming will be introduced to show more favorable efficiency outcomes since packet
failure is an integral characteristic of communication networks.
This paper aims to introduce a new reliable method of stereoscopic video streaming based on multiple description
coding (MDC) strategy. The proposed multiple description coding generates four 3D video descriptions considering
the interesting objects contained in the scene. To be able to find the interesting objects in the scene, we use two
metrics from the second-order statistics of the depth map image in a block-wise manner. Having detected the
objects, the proposed multiple description coding algorithm generates the descriptions for the color video using a
nonidentical decimation method with respect to the identified objects. To show howmuch reliable the proposed
MDC method is, this article assumes that due to the unreliable communication channel, only one description, among
four encoded descriptions, is delivered to the receiver successfully. Therefore, the receiver needs to estimate the
missed descriptions’ data from the available description. Since the human eye is more sensitive to objects than it is to
pixels, the proposed method provides a better visual performance in view of its subjective assessment. Although, the
objective test results verify the fact that the proposed method provides an improved performance than the Polyphase
SubSampling (PSS) multiple description coding and our previous work using pixel variation. Regarding the depth map
image, the proposed method generates the multiple descriptions according to the pixel prediction difficulty level. The
considerable improvement achieved by the proposed method is shown with the peak signal-to-noise ratio (PSNR)
and Structural SIMilarity (SSIM) simulation result.

Keywords: 3D stereoscopic videos, Color video, Depth map image, Reliable multimedia streaming, Multiple
description coding, Object identification

1 Introduction
Multimedia communications such as broadcast TV, TV
on demand, video conference, and live stream event ser-
vices have grown exponentially over the last few years
making it difficult for operators to keep up with the
increasing demand for bandwidth capacity for streamlin-
ing videos; although, with the advent of High-Efficiency
Video Coding (HEVC) and the later video streaming algo-
rithms such as parallel framework on many-core pro-
cessors presented in [1, 2], the major pace to deliver
high-definition (HD) video to consumers has been done
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effectively. According to CBC news in 2015, download-
ing of video content from the North American Netflix has
doubled in 5 years from 35% in 2010 to 70% in 2015 [3].
This elevated data traffic has been caused by the ubiq-
uitous accessibility of multimedia applications. To add
even more pressure to bandwidth capacity, 3D/multiview
videos are now becoming more popular among multi-
media users. Consequently, more bandwidth is required
with the more popular 3D/multiview videos with its depth
information or multi views.
Smolic and Kimata defined 3D videos as “geometri-

cally calibrated and temporally synchronized video data”
[4], which means that more memory and bandwidth
are required to store or stream 3D/multiview videos,
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respectively. Even though the technology for produc-
ing memory has been developed in the last decade,
it is still a challenge to save the enormous volume of
3D/multiview video data effectively. More importantly
than saving video data are the stream immersive video
restrictions of insufficient bandwidth and unreliable com-
munication. Besides, image content analysis which is a
promising research area for the intelligent applications is
more difficult for 3D/multiview videos; although, different
techniques such as hashing algorithm have been proposed
to improve the efficiency and complexity of image content
analysis [5, 6].
One major problem with the stream of a video is errors

that happen due to the unreliable communication in both
wired or wireless networks [7–14]. In the wired networks,
errors can occur due to packet loss, corruption, con-
gestion, and large packet delay, whereas in the wireless
networks, unreliable communication can stem from tem-
perature noise and interference that exist in the physical
environment. When dealing with immersive videos, the
increase of the data traffic load will consequently pro-
duce data congestion. Therefore, the serious packet failure
problem needs to be addressed since such errors on the
delivered video diminish the viewing quality experience.
To avoid such errors, an error-resilient method of data
transmission is used by the encoder.
Generally, there are usually three methods in the com-

munication systems to avoid packet failure: Automatic
Repeat reQuest (ARQ), Forward Error Correction (FEC),
and Error-Resilient Coding (ERC) [7]. The first method,
the ARQ approach, requires a network with feedback
capability, and as a result, it is not suited for real-time
or broadcast applications. The second method, the FEC
approach, is designed to cope with a specific amount
of noise error making it impractical for noise variances
that exceed the threshold level. The third method, the
ERC approach, is the approach of choice in this paper
because of its resiliency against packet corruption or
noise feature. This resiliency is achieved through redun-
dancy bits added to the data stream. There are a num-
ber of methods where redundancy can be introduced to
the stream including Reversible Variable Length Coding
(RVLC), intra refreshment, Flexible Macroblock Order-
ing (FMO), layered coding (LC), and multiple description
coding (MDC). Among these methods, RVLC used in
H.263 lacks coding efficiency [15]. Intra refreshment and
FMO (used in H.264) are beneficial for the channels with
low noise variance. With layered coding, the layers are
not separately decodable resulting in performance depen-
dency upon lower layers to be without error. Therefore,
the layered coding is less advantageous for error-prone
environments. The multiple description coding method is
our method of choice due to its suitability for large noise
power channels. MDC avoids packet failure because it

creates multiple complementary and separately decodable
descriptions.
With the MDC method, video data is partitioned into

several descriptions and then encoded separately. The
descriptions are then streamed through the network
toward receiver(s). In the receiver, there are two dif-
ferent types of decoder—the side decoder and central
decoder. The receiver chooses one of the two decoders
based on the availability of error-free descriptions
remaining.
The instance that all of the descriptions are received

successfully is when the central decoder is activated. Oth-
erwise, the side decoder will be activated when only a few
error-free descriptions are received. The MDC method
is best recognized for its error robust property at the
expense of compression ratio as it adds redundancies in its
temporal, spatial, or frequency domain. With the tempo-
ral MDC method, usually, two descriptions are produced
in order to avoid a drop in the coding efficiency. The drop
in the coding efficiency is reflected when more than two
descriptions are used because the distance between the
assigned frames to each description is increasing resulting
in the motion prediction being less effective [8, 16]. When
the network is very noisy, a higher number of descriptions
are required. Therefore, the temporal MDC method is no
longer a suitable technique. The frequency MDC method
partitions Discrete Cosine Transform (DCT) coefficients
between video descriptions. Because DCT transforma-
tion provides independent components, the descriptions
will be less dependent. To maintain the correlation of
the descriptions, an extra transformation like Lapped
Orthogonal Transformation (LOT) needs to be applied.
Therefore, the complexity of frequency MDC methods is
higher than that of both the spatial and temporal MDC
methods, respectively. With the spatial MDC method,
each video frame is partitioned into several lower res-
olution sub-images using Polyphase SubSampling (PSS)
algorithm [7, 17, 18]. It is worth mentioning that with a
simple spatial MDC method, there is no precise adjust-
ment tool over the redundancy in order to control the side
quality [7, 17, 18]. This means that there is no control for
the redundancy increase resulting in higher resistivity to
compensate for the higher noise level.
To improve the basic spatial MDC methods, Tillo and

Olmo introduced a newMDC algorithm called “least pre-
dictable vector directional multiple descriptions coding”
[10]. This approach basically copies the least predictable
parts of the frame to all descriptions. Their simulation
result shows that this method improves the side quality
when compared to previous PSS-MDC method although
the new method provides more redundancy. Tillo and
Olmo obtained better quality for higher noise level at the
expense of less coding efficiency and greater algorithmic
complexity.
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Shirani also presented a non-linear PSS-MDC method
which investigated its performance by evaluating the case
where there were one or more missing descriptions [19].
According to his work, some parts of a frame which
are more important called region of interest (ROI) were
sampled with a greater rate (based on an exponential
equation) compared to other parts of the frame. In other
words, descriptions include more information regarding
the ROI parts of the frame resulting in an enhancement of
the side quality. More importantly, this method provides
for greater performance with regards to the subjective
assessment by the human eye since objects and not pixels
are more emphasized. Although Shirani’s method pro-
vides for the enhancement of the side quality, he did not
discuss how the ROI parts of a frame were detected which
is important when involving fast video contents or live
video streaming. In this paper, we provide a new spatial
MDC algorithm that adds redundancy to the descriptions
more practically for 3D videos.
To apply theMDCmethod for 3D videos, the depthmap

image also needs to be partitioned into different descrip-
tions. It is worth mentioning that the depth map image
mainly contains depth information of the scene’s objects.
Because of the nature of the real objects, depth informa-
tion of 3D scenes rarely contains high-frequency content.
Consequently, the depth map image can be effectively
compressed effectively resulting in saved bandwidth and
disk space [20, 21]. To improve compression, Karim et al.
have shown that the downsampled version of the depth
map image provides an adequate reconstruction of the
3D video in the receiver [22]. They have experimented
with the spatial MDC method for 3D videos using color
plus depth map image representation. Karim et al. have
carried out experimental tests with a scalable multiple
description coding approach arriving at the same result.
Therefore, it can be said that downsampling of the depth
map image does not cause a considerable degradation in
the quality of a reconstructed video. This is due to the
fact that the depth map image includes low-frequency
contents or, more precisely, the depth values of adjacent
pixels are similar. Consequently, one can state that the
neglected pixels during downsampling can be better pre-
dicted. Liu et al. utilized the fact of having similar depth
values of pixels for real objects and introduced a texture
block partitioning algorithm in order to perform their
MDC algorithm for wireless multi-path streaming [8].

2 Proposedmethod
This section describes the new proposedmultiple descrip-
tion coding applicable for 3D videos. Before starting to
describe the proposed algorithm, we need to define a met-
ric to identify ROI and clarify how it can be used for
the purpose of ROI extraction. In this paper, we use two
metrics as explained in Section 2.1. An overview of the

proposed encoder is shown in Fig. 1. As can be seen in this
figure, the new proposedMDC algorithm consists of three
steps: the extraction of the map for ROI, the Polyphase
SubSampling MDC, and the enhancement of the descrip-
tions. Firstly, the extraction of the map for ROI splits each
3D raw frame into a 2D color frame and a grayscale depth
map frame, then looking for different regions of the frame
using the depth map image. The process of extracting the
ROI is described in Section 2.2. Secondly, the Polyphase
SubSampling MDC as explained in Section 2.3 creates
four sub-images using Polyphase SubSampling (PSS) from
both the color and the depth frame separately. Thirdly, the
enhancement of the descriptions is achieved through the
combination of different regions of the frame with differ-
ent resolutions obtained from the color and depth map
streams. This step of the new spatial MDC algorithm is
fully described in Section 2.4.

2.1 ROI extraction metrics
In order to be able to recognize which part of the frame is
more important or ROI map extraction, a metric needs to
be defined. To this end, we calculated the average of the
absolute variations for pixels’ values found in the depth
map image in a blockwise manner:

PVi = 1
Ni

Ni∑

j=1
|Dj − μi| (1)

where μi is the average of depth values for block i, i.e.,

μi = 1
Ni

Ni∑

j=1
Dj, (2)

and PVi stands for the pixel variation of block i; Dj is the
depth value of pixel j in the ith block and Ni is the total
number of pixels in block i (i.e., j = 1, 2, ...,Ni). Hier-
archical block division algorithm is further explained in
Section 2.2.
Generally, PV of a block is a positive value that can be

changed from zero to infinity. Blocks with large PV are
probably related to several objects or edges. Because the
depth information of an object contains low-frequency
contents naturally, the depth values of pixels for an object
are similar. Blocks with very small PV is related to the far-
distanced background or the planar objects, for example,
a wall.
Figures 2 and 3 show the Probability Density Function

(PDF) and the Cumulative Density Function (CDF) of PV
for two sample videos entitled “Interview” and “Orbi.” In
Fig. 2, the PDF (Pr(PV = x), 0 < x < +∞) of the PV
values for these two videos depict pixels that are classified
into the following three regions: regions I, II, and III.
Region I demonstrates that pixels of the frames have
very low depth variation. Due to this very low variation
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Fig. 1 Block diagram of the proposed method. This figure shows how the proposed encoder works. It includes three parts: Part (I) This part of the
encoder is responsible to extract the map of different regions of interest and feeds part III of the encoder (more detail in Section 2.2). Part (II) This
part separates the depth map frame and the color video frame. Then, every frame of both the depth map and color video frame are decimated in
the pixel domain to created four descriptions. Each description contains one pixel of every block of size 2 × 2 (see Section 2.3). Part (III) This part
enhances the resolution of different regions of interest as explained in Section 2.4

region, the CDF is shown to start from a nonzero point
in Fig. 3. Figure 4 shows that the region I pixels belong to
the first frame of both videos, Interview and Orbi. Region
III pixels have a large depth variation and are most likely
depicting the edges of different objects. Region III pixels
in Fig. 2 are showing a small peak when the PV value
is greater than 5. In Fig. 3, region III is started from the
point that the slope of the CDF graph changes from steep
to moderate. In Fig. 5, region III pixels in the first frame
of both video Interview and Orbi are being shown. The
remaining part of the frame is region II. Region II in Fig. 6
is showing the objects of interest depicted from the video
Interview and Orbi, respectively. Region II is relative to
the PDF found in Fig. 2 for its second peak and CDF in
Fig. 3 for its steep slope. For the remainder of this paper,
regions I, II, and III will be named background region,
region of interest (or interesting objects’ region), and
edges’ region, respectively.
As can be seen in Figs. 4, 5, and 6, the performance of the

ROI extraction algorithm is not high enough. For exam-
ple in Fig. 6, there are some missed blocks in the middle
of interesting objects, or some blocks have been detected
as ROI which are in fact non-interesting objects in the

background. This is due to the fact that it is not appro-
priate to compare the metric introduced in Eq. 1 (PV )
for different blocks. In other words, pixel variations of
respective blocks found in different scales need to be nor-
malized. Therefore, we define a new metric (CV ) as the
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Fig. 2 PDF of the depth’s pixel variations. The probability density
function of the depth’s pixel variations for the first frame of video
“Interview” (left) and “Orbi” (right). As can be seen, three regions are
distinguished for both video tests. They are blocks with depth
variation very close to zero, between zero and one, and greater than
one (approximately)
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Fig. 3 CDF of the depth’s pixel variations. The cumulative density
function of the depth’s pixel variations for the first frame of video
“Interview” (left) and “Orbi” (right). Like its PDF, three different regions
can be recognized for both video tests

ratio of pixel variation (PV ) to the mean μ, also known as
coefficient of variation (CoV):

CVi = PVi
μi

, (3)

where CVi is CoV for the block i within a depth map
image. PVi and μi have already been defined in Eqs. 1
and 2, respectively.
Similar to PV, the CV has a positive range of zero to

infinity. When CV of a block equals one, then the depth
values of that block have the same mean and standard
deviation values. It can also be argued that blocks with
large CV values are probably related to several objects or
edges while blocks with very small CV values are related
to the background of the video frame. Consequently, they
are not the interesting part of the frame that the ROI
extraction algorithm is looking for.
The typical Probability Density Function (PDF) and

Cumulative Density Function (CDF) of CV values for
video Interview and Orbi are shown in Figs. 8 and 7,
respectively. Like Figs. 3 and 2, the same argument is
applicable for PDF and CDF as shown in Figs. 8 and 7.
A sample of detecting the map for region II (interesting

Fig. 4 Region I. The identified region I using metric PV for two sample
video tests

Fig. 5 Region III. The identified region III using metric PV for two
sample video tests

objects) using the CV metric is shown in Fig. 9. As can be
seen in this figure, the identified ROI with CV values is
considerably more accurate than the similar region shown
in Fig. 6.

2.2 ROI extraction algorithm
As shown in Fig. 1, the first step of the proposed encoder
is to determine which part of the frame is more important.
One important issue in this process is its requirement
for a low-complexity algorithm in order to realize the
interesting objects in the frame. Since color video frames
contain a large variety of frequency components, it is more
convenient to extract the ROI map using the depth map
image. Generally, the depthmap image includes twomajor
contents:

• First, low-frequency contents; since the depth
information of natural objects is usually similar, it can
be said that the depth map image predominantly
contains low-frequency contents.

• Second, edges; there are usually sharp edges in the
depth map image due to the different depth
information of foreground and background objects.

Fig. 6 Region II. The identified region II using metric PV for two
sample video tests
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Fig. 7 PDF of the depth’s coefficient variations. The probability
density function of the depth’s coefficient variations for the first frame
of video “Interview” (left) and “Orbi” (right). The regions are more
distinguishable compared to the PDF of the depth’s pixel variations
(especially region II)

The ROI extraction algorithm uses the characteristics of
the depth map image and extracts the map of ROI using
one of the metrics explained in the previous section.
Figure 10 shows the algorithm that identifies the objects

proposed by this paper. In this figure, the ROI range
is defined as the distance between σmin and σmax. σmin
is the threshold which is used to separate the very far
objects in the background from the interesting objects,
and σmax is the limit used to detect edges of the inter-
esting objects. Clearly, the ROI range is different for
two metrics that were introduced in Section 2.1 and
shown by

[
σ PV
min, σ PV

max
]
and

[
σCV
min, σCV

max
]
. The minimum

thresholds are set so that the very far background can
be separated from the interesting objects. Based on our
experiment results in Figs. 2, 3, 7, and 8, σ PV

min and σCV
min

can be a value approximately between [0.1 0.3] and [0.01
0.1], respectively. The maximum thresholds are selected
to separate the interesting objects from their edges. As
can be seen in Figs. 2, 3, 7, and 8, σ PV

max and σCV
max also

can be a value approximately between [1 3] and [0.5 1],
respectively. It is worth mentioning that NTot

itr is the total
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Fig. 8 CDF of the depth’s coefficient variations. The cumulative
density function of the depth’s coefficient variations for the first frame
of video “Interview” (left) and “Orbi” (right)

Fig. 9 Region II. The identified region II using metric CV for two
sample video tests. Compared to the region II identified with the help
of metric PV and shown in Fig. 6, it is more accurate

possible number of iterations that can be run by the
hierarchical block division algorithm.
As can be seen in Fig. 10, this algorithm is run in four

major steps:

• Step 1: Create two empty lists (L1 and L2) and assign
the entire depth map image as one block to L1. Then,
start the first iteration as explained in step 2.

• Step 2: Check if the algorithm reaches the limit of
NTot
itr or if all blocks in L1 are with PV or CV values

smaller than σ PV
max or σCV

max, respectively. If yes, go to
step 4. If not, go to step 3. Clearly, in the first
iteration, there is only one block in L1 and its metrics
are with the strong probability greater than σmax.

• Step 3: For every block in L1 with the metric value
greater than the threshold, divide the block into four
equal-sized blocks and assign them to L2. Any block
with a metric value less than the threshold is assigned
without change to L2. After having checked all the
blocks in L1, L1 is updated with L2 and L2 is cleared.
Then, return back to step 2.

• Step 4: All blocks in L1 with metric values less than
σmin are considered as region I. Blocks with metric
values within the ROI range are considered as region
II and remainders are region III.

In the hierarchical block division algorithm, a block is
partitioned into smaller blocks by dividing the width and
height of the block by a factor 2 in each iteration. It is
worth mentioning that NTot

itr should be defined in order to
have blocks with sizes at least greater than 2 × 1 or 1 × 2
pixel block size. This is due to the fact that both metrics
used in this algorithm evaluate pixel variation where there
are at least two pixels to measure the variation.
A sample hierarchical block division process is shown

in Fig. 11. You may assume that the numbers inside the
blocks represent typical values for the metric values used
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Fig. 10 Proposed ROI extraction algorithm. The algorithm divides all
the blocks that their metric values are not in the ROI range (between
σmin and σmax ). The process will continue until there are not any
blocks of size greater than 2 × 1 or 1 × 2 and having the metric
value out of the ROI range

in the algorithm. For this figure, it also has been assumed
that the resolution of the depth map image is 16 × 16
pixels and the smallest block is of the size 2 × 2. Clearly,
NTot
itr is 4 and σmax can be assumed as 10. The highlighted

blocks in the fourth iteration are showing the important
region of the frame that the proposed algorithm is look-
ing for. As can be seen in this example, there are some
blocks with large metric values resulting in further par-
titioning, but because the number of algorithm iteration
reaches NTot

itr , the algorithm stops partitioning blocks. In
this example, σmin was not defined, but in practice, this
parameter should be used in order to separate very far
background objects with very small depth values (close

Fig. 11 Sample hierarchical division process. In this example, it has
been assumed that σmax = 10, NTot

itr = 4, and the size of the frame
is 16 × 16. For simplicity, the ROI range is defined less than σmax . In
the beginning, the entire frame is considered as one block. Since its
metric value is greater than the metric value, it is divided into four
blocks, and this process is continued until the number of iterations
equals to NTot

itr or the metric values of all blocks are in the ROI range

to zero) from interesting objects in the depth map image.
Because the background region is often out of focus
during the capturing of videos, this background region
also needs to be excluded from ROI in the proposed
algorithm. Performances of the ROI extraction algorithm
for the metrics PV and CV are examined and compared
in Section 3.

2.3 MDC Polyphase SubSampling algorithm
To have reliable video streaming, the proposed new spatial
MDC algorithm exploits the multiple description coding
(MDC) strategy for 3D videos. To this end, four descrip-
tions are created using Polyphase SubSampling (PSS).
PSS-MDC is the basic low complex method that can be
used in the spatial domain to have a reliable transmis-
sion in the error-prone environment. As can be seen in
Fig. 12, with the PSS-MDC encoder used by the proposed
method, every description includes one of 2 × 2 pixels.
Since the new spatial MDC algorithm is applied on 3D
stereoscopic videos, the PSS-MDC encoder needs to be
applied to both color and depth map frame separately.

2.4 Description enhancement algorithm
Although the most important advantage of the PSS-MDC
encoder is its simplicity, there is a capability lack in
increasing the redundancy in order to avoid errors in the
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Fig. 12 Polyphase SubSampling MDC encoder Z1H and Z1V are
horizontal and vertical shift, respectively

strong noisy environment. To fix this, the new spatial
MDC algorithm enhances the pixel resolution for areas
that are less predictable and also on objects of interest that
are more important to focus on.
As can be seen in Fig. 1, two different algorithms are

applied to the color video and the depth map stream. For
the depth map stream, the resolution of each description
is enhanced according to its prediction difficulty. Since
the metrics defined in this paper evaluate the variation
between adjacent pixels, it can be said that pixels of the
depth map frame are clustered into regions I to III accord-
ing to their difficulty prediction levels. This means that
region I, which includes pixels with very low variations,
remains without any change. Pixel resolution in region II
is enhanced to half resolution (of the original resolution)
for each description in the encoder by picking any pixels of
2 × 2 pixels other than the pixel that was initially assigned
to the description. Since it has been assumed that three
descriptions are lost due to the unreliable communication
and only one description is available in the decoder, it is of
minor importance which pixel is added to the pixels in the
one fourth resolution. Since region III contains pixels with
large variations, it is likely that the prediction of a pixel
(in case of missing) from adjacent pixels leads to error. As
a result, this region’s pixel resolution has increased to a
fuller pixel resolution for each description.

Fig. 13 Key frame structure. A sequence of video frames, consisting
of two key frames labelled as “I” at the first and 16th frame and 15
forward-predicted frames labelled as “P” in between of the key frames

Since the region’s clustering algorithm is done using the
depthmap image rather than the color video frame, it can-
not reflect the pixels’ value variations for the color video
frame. Therefore, the abovementioned argument is no
longer applicable. One suggestion with regard to the color
video is to apply the proposed ROI detection algorithm
on the color video stream in order for it to extract ROI
map based on the pixel variation found in the color video
frame, but the drawback is its greater complexity due to
a wide variety of colors inherently part of any scene natu-
rally. As a result, the hierarchical block division algorithm
needs more time to identify different regions in the frame.
Another suggestion is to use the ROI map extracted from
the depth map image to then focus on region II for the
enhancement of pixel resolution in the color video frame
rather than on region III which is performed within the
depth map stream. Since the human eye is more sensitive
to objects rather than of pixels, this suggestion introduces
better performance with regard to the subjective assess-
ment. Also, it can provide improvement with regard to
the objective assessment since the recording of moving
objects, which are inherently part of the scene, are now
more focused. Because all video coding standards use dif-
ferential pulse code modulation (DPCM) and proximate
pixels’ values of the objects in the color video frame, the
increase of the resolution of those parts of a frame that
include the ROI can be compensated by DPCM algorithm
in point of compression ratio. Therefore, with regards to
the color video stream, regions II and III are enhanced
to full and half resolution, respectively. Region I remains
with the same resolution as before (one fourth). This
enhancement algorithm helps to perfectly recover the ROI
in the instance of missing a description, although at the
expense of increased redundancy.

3 Simulation result and discussion
For the evaluation of the proposed algorithm, this paper
carried out several tests using two stereoscopic video
sequences with the format of DVD-Video PAL (720×576),
called video “Interview” and “Orbi.” The chroma and
depth subsampling format is 4 : 2 : 2 : 4 (the last 4
shows the resolution of the depth map image) or in other
words, the total frame resolution is 1440 × 576. Each
video has 90 frames and the frame rate is 30 frames per
second (fps). The new algorithm is implemented using
H.264/AVC reference software, JM 19.0 [23]. To encode
with JM software, I frames are repeated every 16 frames
and only P frames are used between I frames, as shown
in Fig. 13.
As described in the previous section, the hierarchical

block division algorithm halves both width and height
dimensions of a block in each iteration to make smaller
blocks. It should be noted that for the mentioned video
sequences, the width of the depth map frame (720 =
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24 × 32 ×5) is not divisible after the fourth iteration. To be
able to continue the hierarchical block division algorithm
after the fourth iteration, we extend the depth width to 768
(= 28 × 3) (add zeros to the left side of the depth map
image). With the same argument, the height of the depth
map frame is assumed to be 512 (= 28 × 2). Therefore,
the acceptable minimum size of a block at the end of the
hierarchical division algorithm is 2 × 3 which is achieved
after the eighth iteration (this means that the NTot

itr equals
8 and the minimum block size after the eighth iteration
in the hierarchical block division algorithm is 6 pixels).
The minimum and maximum thresholds used for the
tests presented in this paper are

[
σ PV
min = 0.3, σ PV

max = 3
]

and
[
σCV
min = 0.01, σCV

max = 0.5
]
. In the remainder of this

paper, we will first discuss the complexity of the proposed
algorithm in general. Then, both the performance and

a

b c

d e

f g

Fig. 14 Performance comparison of PV and CV . Left figures show the
identified regions I–III using PV , and right figures show the regions
using CV for the first frame of video “Interview”. As can be seen for the
region III, using PV is more accurate rather than using CV, while for the
region III, CV outperforms compared to PV. a Original video frame.
b Extracted region I by PV. c Extracted region I by CV. d Extracted
region II by PV. e Extracted region II by CV. f Extracted region III by PV.
g Extracted region III by CV

complexity of the proposed algorithm using PV and CV
will be compared. Thereafter, we will evaluate the per-
formance of the new proposed spatial MDC algorithm
for streaming in the error-prone environment. It is worth
mentioning that to simulate an error-prone environment,
we have assumed that the decoder receives only one
description among four descriptions generated by the
encoder.

3.1 Visual performance examine
Figure 14 shows the identified regions I to III using PV
and CV metrics. Clearly, the identified region II is more
accurately depicted with the CV metric rather than with
the PV metric. The same scenario is also applicable to
the region I. As can be seen in part d of Fig. 14, there
are some important pixels that have not been identified as
the region II (ROI). Also, we have detected some missed
pixels in region I (background) with PV as shown in
part b of Fig. 14. Such inaccuracy in identifying different
regions with PV can be due to the fact that pixel val-
ues of different blocks are in dissimilar ranges. Therefore,
the pixel variation (PV ) cannot be an appropriate met-
ric to be used when extracting for regions I and II. To
fix this problem as argued before, it is necessary to nor-
malize the pixel variation metric(PV ). Indeed, the CV

Table 1 Number of blocks with different sizes after hierarchical
division algorithm using metrics PV and CV

Metric PV Metric CV

Blocks’ size No. of blocks Percent No. of blocks Percent

Video “Interview”

6 (2 × 3) 3401.467 5.190 2168.222 3.308

24 (4 × 6) 994.611 6.071 358.256 2.187

96 (8 × 16) 509.156 12.431 169.322 4.134

384 (16 × 24) 209.711 20.480 81.267 7.936

1536 (32 × 48) 47.722 18.641 47.078 18.390

6144 (64 × 96) 20.644 32.257 25.433 39.740

24576 (128 × 192) 0.789 4.931 3.622 22.639

98304 (256 × 384) 0.000 0.000 0.067 1.667

Video “Orbi”

6 (2 × 3) 5253.556 8.016 2264.044 3.455

24 (4 × 6) 1056.300 6.447 378.167 2.308

96 (8 × 16) 504.867 12.326 160.000 3.906

384 (16 × 24) 177.322 17.317 72.500 7.080

1536 (32 × 48) 73.711 28.793 51.611 20.161

6144 (64 × 96) 11.167 17.448 12.956 20.243

24576 (128 × 192) 1.544 9.653 1.611 10.069

98304 (256 × 384) 0.000 0.000 1.311 32.778
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Table 2 Number of blocks with different metric values after hierarchical division algorithm

Blocks’ size Percent of blocks with

6 24 96 384 1536 6144 24576 98304 metric value in a
(2 × 3) (4 × 6) (8 × 16) (16 × 24) (32 × 48) (64 × 96) (128 × 192) (256 × 384) specific range(%)

Video “Interview”

PV ≤1 662.78 371.67 172.54 75.80 22.28 17.82 0.68 0.00 55.68

1 ∼ 3 1008.44 618.18 336.37 133.91 25.44 2.82 0.11 0.00 41.64

3 ∼ 10 831.50 4.77 0.24 0.00 0.00 0.00 0.00 0.00 1.30

≥10 898.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37

CV ≤0.1 646.10 276.93 150.99 67.53 37.82 18.57 0.00 0.00 56.74

0.1 ∼ 0.2 32.79 11.21 4.24 2.59 2.59 1.28 1.93 0.00 15.57

0.2 ∼ 0.3 45.37 16.27 5.67 3.80 3.92 2.40 0.00 0.00 5.96

0.3 ∼ 0.4 105.10 24.84 4.11 3.00 2.19 2.34 0.00 0.00 5.22

0.4 ∼ 0.5 52.64 29.00 4.31 4.34 0.56 0.84 1.69 0.07 14.55

≥0.5 1286.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.96

Video “Orbi”

PV ≤1 542.72 295.40 172.56 69.13 34.42 4.69 0.80 0.00 39.37

1 ∼ 3 1680.86 752.81 331.84 108.19 39.29 6.48 0.74 0.00 55.95

3 ∼ 10 2276.38 8.09 0.47 0.00 0.00 0.00 0.00 0.00 3.53

≥10 753.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15

CV ≤0.1 614.22 244.82 118.68 49.28 35.30 6.58 0.81 0.00 39.28

0.1 ∼ 0.2 59.43 28.10 11.99 8.81 5.51 1.64 0.10 0.00 6.76

0.2 ∼ 0.3 79.78 28.24 9.36 5.84 4.41 2.56 0.48 0.40 19.80

0.3 ∼ 0.4 134.88 35.41 10.13 4.74 4.08 1.38 0.22 0.61 21.54

0.4 ∼ 0.5 90.23 41.59 9.84 3.82 2.31 0.80 0.00 0.30 10.66

≥0.5 1285.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.96

metric is the normalized pixel variation and works like a
smoothing filter. Although using normalized pixel varia-
tion metric (CV ) provides a considerable improvement in
the extraction of regions I and II, such performance is not
shown when using the CV metric in identifying region III
(which stands for the edges). As can be seen in Fig. 14,
the detected edges shown in part g are not as clear as the
detected edges shown in part f. The reason for that can be
the smoothing effect brought about by the normalization
using the CV metric. As the blocks that contain edges
are considered as blocks with high-frequency contents, a
high-frequency filter like the pixel variation measurement
(PV ) is more beneficial for identifying the edges.

3.2 Complexity performance examine
Table 1 shows the average number of blocks in different
sizes after the hierarchical division algorithm for the
videos Interview and Orbi. As can be seen, there is around
one block with the size of 24576 (= 128 × 192) using
PV metric and around two blocks of this size using CV

metric for both test video sequences. This means that
about 5 ∼ 9% of the entire depth map image is excluded
from being more partitioned and stopped after the second
iteration in the hierarchical division algorithm. Consider-
ing the second large block size for PV metric in Table 1,
i.e., 6144 (= 64 × 96), it can be said that the hierarchi-
cal division process will be stopped for more than one

Table 3 Blocks statistics after hierarchical division algorithm

Video Interview Orbi

Metric PV Average number of blocks per
frame

5184.1 7078.47

Average block size 4.08 × 6.12 3.51 × 5.27

Average of PV values 6.86 4.3

Metric CV Average number of blocks per
frame

2853.27 2942.2

Average block size 4.22 × 6.33 3.91 × 5.86

Average of CV values 0.548 0.539
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Fig. 15 PSNR assessment of the color image for video Interview

third of the entire depth map image in the video Inter-
view and one fourth of the depth map image in video Orbi
after the third iteration. This result shows that the hier-
archical division algorithm does not give rise to a high
load of calculation in this proposed algorithm. Compar-
ing the results using CV metric and PV metric, also shows
that the complexity of using CV metric is lower than
using PV metric. As can be seen, the largest block size
for the CV metric is increased to 98304 (= 256 × 384)
and the average number of blocks with the size of 24576
is two in the video Interview and three in video Orbi for
metric CV.
Table 2 shows the average number of blocks for differ-

ent metric values of PV and CV. As can be seen, about
55% of the depth map image for video Interview and
40% of the depth map image for the video Orbi have
PV values less than 1. On the other hand, for the video
Interview, more than one half and for video Orbi more
than one third of the depth map image have very close
depth values. This is the reason why the decimation of
the depth map image does not affect its quality when
it is reconstructed in the decoder (as discussed earlier,
Karim et al. showed through its simulation results that

Fig. 16 SSIM assessment of the color image for video Interview

Fig. 17 PSNR assessment of the color image for video Orbi

the decimation of the depth map image does not cause
any considerable degradation in the decoder [22]). Table 2
also shows that about 95% of the depth map image for
both test video sequences have PV values less than 3. The
fact that about 95% of the depth map image have simi-
lar depth values result in no longer needing to send the
depth map image with its original resolution, justifying
why the nonidentical decimation is more advantageous
than the identical decimation suggested by Karim et al. in
[22]. On the other hand, only about 5% of the depth map
image needs to be encoded with the original resolution.
The 95% remainder can be decimated to save bandwidth
or storage.
Table 3 compares the statistics of the blocks generated

by the hierarchical division algorithm using two metrics
PV and CV. As shown in the table, the average block size
for videos Interview and Orbi after hierarchical division
algorithm is greater, and the average number of blocks is
considerably less when the CV metric is used. This means
fewer operations are required to identify the final blocks
using the CV metric. It also should be considered that
the results obtained by the CV metric have a greater per-
formance when compared to the results gained by the

Fig. 18 SSIM assessment of the color image for video Orbi
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Fig. 19 PSNR assessment of the depth map image for video Interview

PV metric (see Fig. 14). Therefore, better performance
and less complexity can be achieved by using the new CV
metric.

3.3 Robustness performance examine
To examine how robust the proposed method is against
error, we assumed that the decoder has access to only
one description and all other three descriptions have
been corrupted. In order to reconstruct the video, the
decoder estimates the missed pixel from the nearest
available pixel. Figures 15 and 16 compare PSNR and
SSIM measurements of the reconstructed color video for
video Interview using the basic Polyphase SubSampling
MDC method (PSS-MDC), our previous MDC method
presented in [24], and the new proposed spatial MDC
algorithm with the help of PV and CV metrics. Figures 17
and 18 also show the PSNR and SSIM assessments for
the video Orbi. As can be seen in Fig. 15, in the recre-
ated video Interview, about 1 dB improvement for the
PV metric and 2 dB improvement for the CV met-
ric can be achieved by the new proposed spatial MDC
algorithmwhen compared to our previous work presented
in [24]. Regarding video Orbi (see Fig. 17), although a

Fig. 20 SSIM assessment of the depth map image for video Interview

Fig. 21 PSNR assessment of the depth map image for video Orbi

considerable improvement cannot be seen compared to
our previous work, more than 2 dB improvement has been
achieved by the new proposed spatial MDC algorithm
in comparison with the PSS-MDC method. It should be
noted that the complexity of implementing the proposed
method is approximately halved according to Table 3. In
this table, the hierarchical block division algorithm for
the PV metric is the same as the algorithm presented in
[24]. Since the average number of blocks is about 1 s and
the average size of blocks is greater for the CV metric
compared to the PV metric, we have concluded that the
new proposed spatial MDC algorithm using the CV met-
ric is more efficient. Regarding the SSIM assessment, the
proposed algorithm provides about 0.3 improvement for
both test videos in high rate streaming compared to the
PSS-MDC method. It should be mentioned that since the
human eye is more sensitive to objects rather than pixels, a
subjective assessment can better emphasize the improved
performance brought forward by the proposed algorithm
compared to the previous methods.
When it comes to the evaluation of the proposed algo-

rithm for the reconstructed depth map image, it shows
a better performance. As shown in Figs. 19 and 20 for

Fig. 22 SSIM assessment of the depth map image for video Orbi
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Fig. 23 PSNR assessment of video Ballet using H.264 encoder

the video Interview and in Figs. 21 and 22 for the video
Orbi, the improvement of the proposed algorithm is
considerably evident. This can be due to the fact that
metrics PV and CV are calculated based on the depth
map image, and therefore, blocks with larger values
of metrics PV and CV can be considered as the least
predictable blocks in the depth map image. Therefore,
focusing on these pixels in each description results in a
more accurate reconstruction in the decoder. In view of
the PSNR assessment, about 8 dB for video Interview and
more than 10 dB for video Orbi improvement have been
achieved by the proposed algorithm. Such high perfor-
mance of the proposed algorithm in view of the SSIM
assessment is also more evident compared with the color
video assessment. With regards to the SSIM assessment,
the proposed algorithm outperforms by more than 0.02
compared to the PSS-MDC method.
Figures 23 and 24 show the PSNR assessment for

two different test video sequences, called “Ballet” and
“Breakdancers,” generated by the interactive visual media
group at Microsoft research [25]. Unlike the previous test
video sequences, the new test video sequences include

Fig. 24 PSNR assessment of video Breakdancers using H.264 encoder

Fig. 25 PSNR assessment of video Ballet using H.265 encoder

objects with very fast movement. As can be seen in
these figures, like previous experiments, the proposed
MDC method provide improved performance. Figures 25
and 26 demonstrate the PSNR assessment of these two
test video sequences using the most recent video encoder,
i.e., H.265/HEVC. To implement H.265/HEVC encoder,
we used H.265 reference software, HM 6.0 [26].

4 Conclusions
Multimedia streaming is affected by packet failure in
the network due to packet loss, packet corruption,
and large packet delay. An appropriate solution against
packet failure in the error-prone environment can be
multiple description coding (MDC). With MDC, one
video description is partitioned into several separately
decodable descriptions. In the instance of missing a
description during transmission, the decoder is capable
to estimate the lost description from other error-free
description(s). To improve the basic spatial partitioning
and to be applicable to 3D videos, a nonidentical dec-
imation algorithm for the stereoscopic videos has been
provided in this paper. Our algorithm works based on

Fig. 26 PSNR assessment of video Breakdancers using H.265 encoder
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existing objects in the scene and assigns more band-
width to the region of interest. Since human eyes are
more sensitive to the objects rather than pixels, the pro-
posed algorithm can provide an improved performance
compared to the PSS-MDC method in view of sub-
jective assessment. However, the objective assessment
results confirm the improved performance achieved by
the proposed spatial MDC algorithm. With regard to
the depth map image, the proposed algorithm enhances
the current basic decimation to a nonidentical decima-
tion. As shown earlier, most parts of the depth map
have similar depth values, and therefore, decimation in
those parts can save bandwidth or storage without con-
siderable quality degradation. However, for the parts of
the frame with high pixels’ value variation, it is recom-
mended to keep the original resolution. Therefore, with
the new algorithm, those parts of the depth map image
that have large variations are encoded with the original
resolution.
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