
EURASIP Journal on Image
and Video Processing

Segawa et al. EURASIP Journal on Image and Video
Processing  (2018) 2018:33 
https://doi.org/10.1186/s13640-018-0272-z

RESEARCH Open Access

First-person reading activity recognition
by deep learning with synthetically generated
images
Yuta Segawa1, Kazuhiko Kawamoto2* and Kazushi Okamoto3

Abstract

We propose a vision-based method for recognizing first-person reading activity with deep learning. For the success of
deep learning, it is well known that a large amount of training data plays a vital role. Unlike image classification, there
are less publicly available datasets for reading activity recognition, and the collection of book images might cause
copyright trouble. In this paper, we develop a synthetic approach for generating positive training images. Our
approach synthesizes computer-generated images and real backround images. In experiments, we show that this
synthesis is effective in combination with pre-trained deep convolutional neural networks and also our trained neural
network outperforms other baselines.
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1 Introduction
With the development of wearable cameras, first-person
activity recognition has been a popular topic in recent
years [1]. There are many conventional approaches which
tackle first-person activity recognition. Some of these
approaches employ motion feature such as optical flow
and also a classifier, e.g., LogitBoost and SVM (support
vector machine)[2, 3]. In recent years, DCNN (deep con-
volutional neural network), the state-of-the-art model for
visual recognition, has been proposed [4] and then applied
to several tasks on first-person activity recognition.
Although DCNNmodels provide remarkable results for

image recognition, they require a large amount of labeled
training samples. Fine-tuning is a promising method for
reducing the amount of required training samples and also
reducing training time [5–8]. Unfortunately, there are no
large-scale datasets for first-person activity recognition,
while datasets for image recognition, such as ImageNet [9]
and Places [10], are publically available. For this reason,
even if using fine-tuning, DCNN models for first-person
activity recognition require collection and annotation of
large-scale FPV (first-person vision) videos. Castro et al.
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[11] actually collected 40,000 images in 26 weeks by
recording with a wearable camera and annotated all of the
images.
To cope with such time-consuming issues, we propose

a synthetic method for generating training images. Our
method consists of three steps, as shown in Fig. 1, which
are image synthesis, fine-tuning DCNN, and recognizing
activities from natural FPV images. In this paper, we focus
on reading activity recognition. Reading is a pervasive and
intellectual activity in daily life, and its recognition can be
useful for building context-aware interfaces [12], life log
systems [13, 14] and experience sharing systems [15]. In
addition, the image synthesis approach is useful for read-
ing activity recognition, because one must take care of
copyright issues when collecting the images of books and
magazines for training. Conversely, if one wants to recog-
nize other activities, it is easier to collect the images of
the related objects such as displays and keyboards. In this
paper, we contribute in:

• Reduction of the collection and annotation costs on
deep learning dataset by using simple image
generation and synthesis

• Methodology of applying the synthesis approach to
recognition of first-person activities
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Fig. 1 Overview of our approach

Fig. 2 Synthetic training samples. a “Others” class. b “Reading” class
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Fig. 3 Computer-generated book image. a Texture drawing (left page). b Texture drawing (right page). c Distortion. d Perspective. e Rotation

• Interpretations of the synthesis approach using
simple visual patterns in terms of representation in
deep visual patterns

The rest of this paper is organized as follows. In
Section 2, we introduce some related works about
our approach: first-person activity recognition, deep

convolutional neural networks, and synthetically image
generation. In Section 3, we proposes the image synthetic
method for generating training images. In Section 4, we
show the adaptability of our synthetic images to first-
person reading activity recognition with real FPV videos.
In addition, we also demonstrate the generalizability of
deep features from the synthetic images. In Section 5,

Table 1 Main parameters in the generation processes

Process Parameters Values

– Canvas of each page 210
√
2 × 210 pixel by appropriate scaling

T Blank space 10% at the top, bottom, left, and right in the canvases

Columns 1 or 2

Pages containing figures 80% of the entire generated pages

Place to put figures The top or the bottom in a column

Category of figures Mathematical figures, tables, and general pictures

Figure size Height: 12.5 ∼ 50%, or 100% of the column height

Width: fixed at the same length of the column

Size of headlines 10% of the page height

Place to put headlines Somewhere outside the figure areas

Place to put texts Entire areas in the column except the figures and headlines

Text format Japanese characters in random order (without any rules)

Line-breaking Done with prob. 1% every time putting a character

D Distortion strength α ∈[ 0.1, 0.3]
P Homography matrix Determined as shown in Fig. 4

R Rotation angles In [− 10◦ , 10◦]

– Resize The long side shrinks to 256 pixel with keeping the ratio
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Fig. 4 Perspective projection by a randomly determined
homography matrix

we discuss our method in terms of image synthesis pro-
cesses through further experiments on several types of the
synthetic training dataset.

2 Related works
2.1 First-person activity recognition
Body-mounted devices help to record personal infor-
mation and to analyze personal activities. A kind of
such devices, 3-axis accelerometers, provides user’s pos-
ture estimations, and many researchers employ them for
life-logging [16, 17]. Head-mounted cameras also have
become popular with development of camera downsizing
and high-efficiency video coding [18–21].
For first-person activity recognition, there are sev-

eral methods based on image segmentation [22, 23] and

object recognition [24, 25]. These approaches include
multistage recognition processes, and hence, recogni-
tion errors tend to be stacked. To avoid explicit object
recognition, many studies use motion feature such as
optical flow with a classifier such as LogitBoost and
SVM [2, 3, 26–29].

2.2 Deep convolutional neural network
DCNN models such as AlexNet [4], VGGNet [30],
GoogLeNet [31], and ResNet [32] have been proposed
and demonstrated remarkable performances in image
classification. In first-person activity recognition, there
are DCNN-based methods in which optical flow [5, 6]
and pooled motion features [33] are used as image fea-
tures. Moreover, LSTM (long short-termmemory) model,
which is also a kind of deep models for learning data with
recursive expressions, has been introduced together with
DCNN models aiming at additionally learning temporal
correlations of activities [7, 8].

2.3 Synthetic image generation
For data augmentation, image synthesis is a useful
approach for reducing the effort of manually annotation.
Wong et al. [34] investigate a benefit of data augmen-
tation for MNIST handwritten character dataset. For
object detection, Khail et al. [35] propose an image
synthetic method in which real object images and real
background images are synthesized. For text localization
in natural images, Gupta et al.[36] also propose an image
synthetic method in which computer-generated texts
and natural real images are synthesized. Sun and Saenko
[37] and Su et al.[38] employ 3D CAD object models
with real background images for image synthesis. Cas-
tro et al.[39] propose a method of generating synthetic

Fig. 5 Bounding region (green rectangle) for book image location
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structural magnetic resonance images for learning
schizophrenia.

3 Methodology of image synthesis
For recognition of first-person reading activities, we syn-
thesize training samples of “Reading” class. The “Reading”
class samples represent visual patterns of open books in
FPV images, as shown in Fig. 2b. This section describes
a procedure of generating the computer-generated book
images and superimposing them on real background
images. In addition, we explain how to prepare “Others”
class images as the negative class.

3.1 Generation of book images
Generation procedure of the computer-generated book
images can be divided into four types of image processing:
texture drawing, edge distortion, perspective projection,
and rotation. We call these processes T, D, P, and R,
respectively. Figure 3 shows examples of results in these
processes, and Table 1 shows the parameters for the pro-
cesses in detail.
The process T aims to reproduce textures like real

books on a white canvas so as to be an open book
image, as shown in Fig. 3a,b. This process consists of
two steps which are the determination of a layout and
the drawing of a texture. First, we prepare two white
canvases corresponding to the left and the right page
of an open book. Next, we determine a layout in each
page by randomly placing figures, headlines, and texts on
each page.
The process D makes the shape of the book images

distorted as shown in Fig. 3c. For the left pages, we set
a coordinate system such that the origin is at the left-
bottom corner in the canvas, the positive direction of
X-axis is right-to-left and of Y -axis is bottom-to-top.
For the right pages, we reverse this coordinate horizon-
tally. We distort the image by moving pixel at (x, y) to
(x, y′) using y′ = y + f (x). Here, the distortion func-
tion f (x) is defined by f (x) = α(x

√
1 − x2), where α

is a parameter for controlling the strength of distor-
tion. In experiments, we set the strength parameters
as α = 0.1.
The process P is a perspective projection, as shown in

Fig. 3d. In order to generate FPV-like appearances, we
determine the perspective projection, as shown in Fig. 4,
in which each of the original left-top and right-top corners
(red points) is moved to a point randomly selected in the
rectangles near the corners (blue rectangles). In experi-
ments, we set the width and height of the rectangle as 10%
of the image ones.
The process R is a rotation transformation, as shown

in Fig. 3e. Here, we only rotates the images with a
slight degree of angle to generate open book images
caused by reading activity. Note that the black regions

around the books are assigned to the transparent
color.

3.2 Image synthesis
For image synthesis, we superimpose the computer-
generated book images onto real background images, as
shown in Fig. 5. As real background images, we use images
which are randomly selected from the ImageNet dataset
[9]. In Section 5.3, we will demonstrate that the use of the
ImageNet images is superior to the use of other domain-
specific background images.
We set a bounding region on the background images

(the green rectangle in Fig. 5) and randomly put the
computer-generated book images inside the bounding
region. This region is used for preventing the book images
from being put on the periphery of the background
images.

3.3 Negative samples against reading activities
The “Others” class is the negative class and hence rep-
resents various visual patterns except for the “Reading”
class images. For the “Others” class images, we simply
use the background images which are used for generating
the “Reading” class images. In other words, the “Reading”
and the “Others” samples only have a difference whether

Table 2 GoogLeNet(v3) architecture

Index Module type Output shape

1 Input 299 × 299 × 3

2 Convolution 149 × 149 × 32

3 Convolution 147 × 147 × 32

4 Convolution 147 × 147 × 64

5 Max pooling 73 × 73 × 64

6 Convolution 73 × 73 × 80

7 Convolution 71 × 71 × 192

8 Max pooling 35 × 35 × 192

9 Inception 35 × 35 × 256

10 Inception 35 × 35 × 256

11 Inception 35 × 35 × 256

12 Inception 17 × 17 × 736

13 Inception 17 × 17 × 768

14 Inception 17 × 17 × 768

15 Inception 17 × 17 × 768

16 Inception 17 × 17 × 768

17 Inception 8 × 8 × 1280

18 Inception 8 × 8 × 2048

19 Inception 8 × 8 × 2048

20 Average pooling 2048

21 Output 2
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an open book appears or not, as shown in Fig. 2b and a,
respectively.

4 Experimental results with real first-person
vision videos

In this section, we report the performance of our synthetic
method with real FPV videos. In the experiments, we
compare our DCNNmodel with other baseline models.

4.1 Fine-tuning of DCNNmodel
We use GoogLeNet(v3) [40] as a pre-trained DCNN
model with the ImageNet dataset, as shown in Table 2. In
fine-tuning, we retrain only the final layer of the model
because the fine-tuning of deeper layers degrades the per-
formance from our preliminary experiment. We optimize

the parameters with the cross-entropy loss function using
the SGD (stochastic gradient descent) algorithm. In the
optimization, we use 25,000 training samples per class and
feed mini batches in size of 10.

4.2 Test dataset
For evaluation, we prepare 20 real FPV videos, as shown
in Fig. 6. In order to prove the generalization of the pro-
posed method, we record the videos with two types of
wearable cameras at four different places. The label “Read-
ing” or “Others” for each image is provided by manual
annotation in which “Reading” is provided if an open
book is located around the center of the image. Table 3
shows a summary of the our dataset. In addition, we
use publicly available two datasets including “Reading”

Fig. 6 Example images of 20 videos for test. a “Others” class. b “Reading” class
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Table 3 Summary of our dataset used for evaluation

Recording devices HX-A5002 Looxcie23

Image size 960 × 540 480 × 320

Number of videos 3 videos 17 videos

Sampling rate 5–6 fps

Number of images (per video) 100–700 per a video

class: LENA (Life-loggine EgoceNtric Activities) dataset
[41] andMEAD (Multimodal Egocentric Activity Dataset)
[42], as shown in Fig. 7. Table 4 shows a summary of the
two datasets used for our evaluation. Note that Table 4
includes only the “Reading” class data. For “Others” class,
we randomly select 3830 images, which is the same as the
number of the “Reading” class images, from other activity
images such as “Writing” and “Working at PC” in the two
datasets.1 2

4.3 Evaluation result
Using our synthetic dataset, we compare the DCNN
model with two baselines 1-NN (1-nearest neighbor) and

Table 4 Summary of public dataset used for evaluation

Database name MEAD [42] LENA [41]

Image size 1280 × 720 430×240

Number of videos 10 videos 20 videos

Sampling rate 1 fps

Number of images (per video) 77 152–156

linear SVM in terms of precision, recall, and F-measure.
For 1-NN and linear SVM, we use Fisher vectors [43] as
image feature. Fisher feature has been often used in the
image classification tasks as well as bag-of-visual-words
[44].
We show the experimental results in Tables 5 and 6. We

find that the DCNN model significantly outperforms the
other two baselines on all datasets in terms of the averaged
F-measure. Further improvements might be possible if
motion features like optical flow are used in DCNN mod-
els (e.g., [6]), but we only evaluate the methods without
motion features in order to clearly show the effectiveness
of using synthetic images.

Fig. 7 Example images of two public datasets for test. a “Others” class. b “Reading” class
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Table 5 Comparative result with our dataset in Table 3

Baselines Proposed

1-NN + FV SVM + FV DCNN

Others Reading Others Reading Others Reading

Scores Precision 19.6 84.0 36.6 84.5 70.8 92.9

for each class Recall 58.7 51.5 47.4 79.5 69.9 95.0

F-measure 24.6 61.0 33.4 80.5 64.9 93.5

Averages Precision 51.8 60.5 81.9

over classes Recall 55.1 63.5 82.5

F-measure 42.8 56.9 79.2

Best methods for a given measure are specified in italic type

Table 6 Comparative result with the public dataset in Table 4

Baselines Proposed

1-NN + FV SVM + FV DCNN

Others Reading Others Reading Others Reading

Scores Precision 54.2 53.1 88.5 50.7 79.0 92.8

for each class Recall 46.1 61.1 3.0 99.6 94.2 74.9

F-measure 49.8 55.8 5.8 62.2 85.9 82.9

Averages Precision 53.7 69.6 85.9

over classes Recall 53.6 51.3 84.6

F-measure 52.8 34.0 84.4

Best methods for a given measure are specified in italic type

Table 7 Effect of changing the number of training samples

Number of training samples for each class

1000 5000 25,000

Others Reading Others Reading Others Reading

Scores Precision 73.3 89.2 70.8 92.9 70.1 96.2

for each class Recall 46.0 98.4 69.9 95.0 84.2 92.0

F-measure 52.9 93.3 64.9 93.5 72.0 93.4

Averages Precision 81.2 81.9 83.1

over classes Recall 72.2 82.5 88.1

F-measure 73.1 79.2 82.7

Best methods for a given measure are specified in italic type
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Fig. 8 Example images synthesized by a combination of the four generation processes: R, P, D, and T
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Table 8 Results of the comparison in the generation processes

None P D T PD DT PT PDT Avg.

Without R 56.7 41.4 62.0 71.3 60.5 79.5 71.6 81.2 65.5

With R 50.1 43.4 50.6 73.5 64.9 79.2 66.2 79.2 63.4

Differences −6.6 2.0 −11.4 2.2 4.4 −0.3 −5.4 −2.0 −2.1

None R D T RD DT RT RDT Avg.

Without P 56.7 50.1 62.0 71.3 50.6 79.5 73.5 79.2 65.4

With P 41.4 43.4 60.5 71.6 64.9 81.2 66.2 79.2 63.6

Differences −15.3 −6.7 −1.5 0.3 14.3 1.7 −7.3 0.0 −1.8

None R P T RP PT RT RPT Avg.

Without D 56.7 50.1 41.4 71.3 43.4 71.6 73.5 66.2 59.3

With D 62.0 50.6 60.5 79.5 64.9 81.2 79.2 79.2 69.6

Differences 5.3 0.5 19.1 8.2 21.5 9.6 5.7 13.0 10.4

None R P D RP PD RD RPD Avg.

Without T 56.7 50.1 41.4 62.0 43.4 60.5 50.6 64.9 53.7

With T 71.3 73.5 71.6 79.5 66.2 81.2 79.2 79.2 75.2

Differences 14.6 23.4 30.2 17.5 22.8 20.7 28.6 14.3 21.5

Differences in each comparison about a process X show the values by substraction of scores with X from ones without X

5 Discussion on the image synthesis in deep
learning

In this section, we verify our synthetic approach in more
detail and discuss it.

5.1 Effect of changing the number of training samples
First, we verify the effect of changing the number of
training samples. Table 7 shows the results with 1000,
5000, and 25,000 training samples. For the “Reading” class,
we observe that the F-measure roughly keeps constant
over the three cases. On the other hand, for the “Oth-
ers” class, we observe that the F-measure improves with
increasing the number of training samples. Since images
in the “Others” class are diverse, the increase is especially
effective for recognizing other activities.

5.2 Effect of changing combinations of the generation
processes

Our synthesis approach consists of the four image pro-
cessings, T, D, P, and R as mentioned in Section 3.1.

Here, we verify which process is effective in improving
the recognition performance. To do this, we generate sets
of images as shown in Fig. 8 in which the most left col-
umn indicates the processes used for image synthesis. For
examples, the images at the “None” row are generated by
no image processing and the images at “PDT” are gener-
ated by the combination of the three image processings: P,
D, and T.
From Table 8, we observe that the process T always

brings the best improvement of the F-measure (21.5% in
average) and the process D the second one (10.4% in aver-
age). This result means that the two processes T and
D produce discriminative features for recognition while
the other two processes R and P provide less discrim-
inative power. In fact, if book regions are overexposed
like Fig. 9, the proposed method fails to recognize such
images. We further verify which combination contributes
in improving the performance. In Fig. 10, we summa-
rize each contribution (average F-measure difference) of
the possible combinations of the processes. For example,

Fig. 9 Recognition failure examples



Segawa et al. EURASIP Journal on Image and Video Processing  (2018) 2018:33 Page 11 of 13

Fig. 10 Contributions of each process combination

the bar chart at “DT” indicates the F-measure difference
averaged between DT and the other possible combina-
tions, None, R, P, and RP. We observe that the combina-
tion of D and T is the most effective in improving the
F-measure, and based on the above, we conclude that
the two processes D and T are required in the image
synthesis for producing discriminative features and the
other processes R and P should be used in combination
with DT.

5.3 Effect of using domain-specific backgrounds
In the abovementioned experiments, we use images in
the ImageNet dataset as background images, as shown
in Fig. 2. In order to verify the effect of using the back-
ground images, we evaluate the recognition performance
with domain-specific backgrounds, as shown in Fig. 11.
We recorded the background images at the same places
where we do our dataset in Table 3.

We show the experimental results in Table 9. We find
that the ImageNet dataset provides better performance
than the domain-specific one in terms of F-measure. In
particular, we observe the increase of F-measure for the
“Others” class. Since we use the pre-trained DCNNmodel
with ImageNet, the use of ImageNet enables the efficient
learning.

6 Conclusions
We propose a method of synthetically generating training
samples for deep learning. The proposed method synthe-
sizes book images from simple computer-generated pat-
terns and real background images. The synthetic approach
is particularly useful for recognizing reading activity
because of the copy right issues, i.e., capturing books with
a digital camera and their use often causes trouble.
From the comparison with the two baselines, we find

that our synthetic dataset is effective in combination with

Fig. 11 Synthetic training samples with domain-specific background. a “Others” class. b “Reading” class



Segawa et al. EURASIP Journal on Image and Video Processing  (2018) 2018:33 Page 12 of 13

Table 9 Results of the comparison with the dataset synthesized by domain-specific background images

Synthesized background images

Domain-specific ImageNet

Others Reading Others Reading

Scores Precision 68.0 92.2 70.8 92.9

for each class Recall 57.3 95.3 69.9 95.0

F-measure 57.1 93.5 64.9 93.5

Averages Precision 81.2 81.9

over classes Recall 72.2 82.5

F-measure 73.1 79.2

Best methods for a given measure are specified in italic type

the DCNN model. In addition, we find that the use of
ImageNet images as background brings an improvement
in recognizing the activities in the “Others” class. These
results are promising for deep learning-based recognition
because we are able to easily prepare a large number of
training images.

Endnotes
1 http://panasonic.jp/wearable/a500/
2 http://www.looxcie.com/
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