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Abstract

quantitative improvements over the input images.

Non-linear amplification

Ferrography is a technology that can be applied in inspecting features of wear particles in machines and inferring
their health status. With the development of online ferrography, which employs image processing to captured wear
particle images, the inspection process has become automatic. However, it is found that images captured often
contain out-of-focus degradations and low brightness. A restoration framework is here proposed to mitigate this
problem. The main idea is to extract object edges, magnify with a non-linear gain factor, then combine with the input
image to produce an enhanced image to facilitate further analysis. Parameters adopted in the process are optimized
using a metaheuristic search where the image information content and brightness are maximized. Experimental
results, obtained from processing real-world wear particle images in lubricant circuits, have shown qualitative and
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1 Introduction

Modern machines are being built with increasing com-
plexity and growing cost. It becomes a general expectation
that these machines can operate in an extended lifespan
with a low percentage of outage time. Thus, it is in high
demand that machine health condition is monitored and
maintenance downtime is scheduled only when it is neces-
sary. In order to fulfill these conflicting demands, accurate
and online prediction of machine status is required.

It is often observed that machine faults are developed
firstly through a graduate performance deterioration stage
and then accelerate to a catastrophic stage. During the
deterioration stage, machine components tend to wear out
and wear particles are produced. Hence, it is possible to
infer the machine health state from inspecting features of
wear particles. This idea had led to the development of
ferrography [1, 2].

Because wear particle sizes are small, it is a challeng-
ing task to isolate and examine an individual particle. In
practice, wear particles flowing in the machine lubrica-
tion circuit are inspected [3, 4]. In its early development,
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ferrography relies on manually extracting an oil sample
containing wear particles and placing them under a micro-
scope to observe the shapes of particles under test [5, 6]. In
addition, the amount and concentration of particles can be
found to infer the machine health condition. Alternatively,
particles may be separated by applying magnetization,
but this method can only be used for metallic wear ele-
ments [7]. On the other hand, the use of electrostatics is
a possible alternative [8]. These processes, although had
been successfully implemented, are time consuming, and
the assessment may be subjective. Automatic operation
and systematic assessment procedures are therefore more
desirable.

In order to make ferrography analysis automatic, online
video ferrography (OLVF) systems had been developed
[9]. This methodology uses a magnifying microscope and
a camera to capture online videos of wear particles flowing
in a short transparent length of the lubrication circuit. The
captured images, which build the video, contain a large
amount of wear particle information, for instance, color
can be used to classify the degree of oxidation [10, 11]. The
use of online video ferrography has some practical diffi-
culties; signal and image processing routines are needed
to enhance wear particle images. In this regard, wavelet

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0270-1&domain=pdf
mailto: wt-h@163.com
http://creativecommons.org/licenses/by/4.0/

Xi et al. EURASIP Journal on Image and Video Processing (2018) 2018:31

transformation had been employed for engine wear mon-
itoring [12]. When it is required to examine the charac-
teristics of wear particles, segmentation [13], morphol-
ogy [14], multi-view processing [15], three-dimensional
reconstruction [16], object detection [17], and artificial
intelligence [18] techniques are required.

Due to the influence of lubrication oil color and low
transparency, OLVF images often possess low contrast
(see [13, 19] and the images therein). Moreover, because
of the fact that wear particles move randomly through
the lubricant circuit, out-of-focus problems are encoun-
tered. Irrespective of the types of subsequent processes,
it is a basic requirement that the captured wear particle
images should be of high quality. These include high infor-
mation content, sufficient separation of particles from
the background, and be free of noise contamination [20].
One of the conventional approaches to produce high-
quality images is to perform histogram equalization on
pixel intensities [21]. The use of iterative methods, gamma
correction, and homomorphic filtering has also been an
attractive approach [22-24]. When the captured image
has a poor quality, more sophisticated techniques need
to be employed. For example, histogram equalization can
be modified to operate independently on the dark and
bright regions in the image [25, 26]. Other than these
methods, non-linear transfer function-based mapping of
input to output intensities can provide an increase in
image contrast and remove uneven brightness distribu-
tion [27, 28]. Within the category of non-linear function
mapping methods, the use of gamma correction as a
power-law correction of intensities is a popular approach
to enhance an image [29, 30]. In order to remove uneven
illuminations, the multi-scale Retinex method can be
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applied globally or locally on the image [31-33]. When
it is required to expose wear particles from its back-
grounds in OLVF images, techniques based on extracting
and magnifying object edges can be used [34, 35].

With the aim to solve the out-of-focus and low bright-
ness problems in OLVF images, a restoration framework
called online video ferrography out-of-focus restoration
(OLVEOFR) is developed. Given the captured images
from an OLVF device, wear particle edges are first
extracted using a Laplacian high-pass filter. Then, using
a power-law function, a gain profile is generated based
on the pixel coordinate distance to the image center. This
gain profile is further shifted and scaled in magnitude
and then multiplied with the high-pass filter output. This
product is passed to a magnitude clipper and finally pro-
duces the enhanced image. Parameters used in the process
are obtained by the particle swarm optimization algo-
rithm, ensuring that the output image contains sufficient
contrast and brightness.

The rest of this paper is organized as follows. In
Section 2, the development of the proposed restoration
process is presented in detail. Experiments are described
in Section 3, results are analyzed and discussions are given
in the same section. A conclusion is drawn in Section 4.

2 Methods

A block diagram of the proposed OLVFOEFR process is
depicted in Fig. 1. It contains two signal paths. One path
is for the red-green-blue (RGB) color channels and the
other for object extraction using the grayscale image. A
feedback loop is incorporated to optimize the process
parameters. Details of each functional block are presented
in the following subsections.
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Fig. 1 Block diagram of online video ferrography out-of-focus restoration process
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2.1 High-pass filtering for edge extraction
Let the input color image of size U x V (width by height)
be described by

J(u,v) = {R(u,v), G(u,v), B(u, v)}, (1)

where (u,v) is the pixel coordinate and u = 1,---,U,
v = 1,--+,V; the number of pixelsis N = U x V
and variables R(u,v), G(u,v), and B(u, v) denote the red-
green-blue color channels, respectively. In order to extract
wear particle edges, an image of gray scale I(x, v) is first
derived from averaging the color channels, that is,

I(u,v) = % (R(u,v), G(u,v), B(u, v)) . (2)

Edges D(u,v) are extracted by convolving the grayscale
image with an 8-connect Laplacian kernel L(«, v, m, n); we
have

D(I/l, V) = I(M, V) ® L(uy v, m, n)y (3)

where ® is the convolution operator and the kernel is a
3 X 3 matrix centering at pixel location (u, v) with offset
(m, n), and the sum of all its elements equals to zero. That
is,

-1 -1 -1
1
L(u,v,m,n) = 3 -1 8 —1]. (4)
-1 -1-1

The choice of the Laplacian kernel is based on the advan-
tage that the zero-crossing from the convolution output
coincides with the edge, such that sharpening can be
obtained from both sides of the edge. The choice of the
kernel size also ensures that the finest particle edge can
be extracted. The convolved output D(x, v) has magnitude
bounded within =+ 1, and the actual value depends on the
smoothness/abruptness between the neighboring pixels in
the 8-connected directions.

2.2 Restoration of out-of-focus degradation
From the collected OLVF images and many other exam-
ples, it is observed that objects at the boundary regions
have a higher degree of out-of-focus blur, while objects in
the center region have a lower degree of degradation (see
images in [13, 15, 19]). Based on this observation, a non-
linear profile in the form of a square law is generated. This
strategy also corresponds to the estimation of out-of-focus
blur model reported in [36].

Let the center of the image coordinate be denoted by
U/2 and V /2. The distance d,, d,, of each pixel to the
center can then be described as

u 2 % 2
dy=|\u——|x —,d,=|v— X —,

2 u 2 |4 (5)
dy, d, €[01].
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Then, the non-linear profile P(u, v) is obtained from

P(u,v) = \/d2 + d?. (6)

This profile has the special characteristic that at the cen-
ter region, the profile value is close to zero while at the
boundaries, that is, d, — 1 and d,, — 1, the profile value
is close to unity. Since image blur is more profound along
the image boundary regions, when this profile is used as a
gain factor for the extracted edges, more emphasis will be
placed at regions where more edge amplification is needed
to restore the image from blurring. Before multiplying the
edges, the profile is shifted-and-scaled by two parameters
B (profile gain factor) and y (profile shift factor), which
are needed to be optimized for desirable enhancement
effect; then, we have the modified profile as

P(u,v) = B x (y +P(u,v)). )

2.3 Enhancement and clipping

Given the input image J(u,v), extracted edges D(u,v),
and the profile P(u, v), the intermediate image O(u,v) is
obtained from

O(u,v) = J(u,v) + P, v) x D(u, v). (8)

Although the intermediate image O(u, v) is an enhanced
version of the input image, the magnitude of the former
may be driven outside the permitted pixel magnitude in
the range [ 0 1]. Hence, a clipping stage is needed. Here, we
combined the use of soft-limiting and hard-limiting with
the added advantage of boosting the output image bright-
ness to a value higher than the input. In the clipping stage,
we have

o _ f)(u, V)
O(u, v) = tanh <tanh(1)> . 9)

In Eq. (9), dividing Ou,v) by tanh(l) is needed for
normalization. It is because the output of the tanh(-)
function is less than unity when the input is one. Thus,
to increase the input brightness by dividing O(u,v)
by tanh(1) will make the maximum value of the out-
put closer to a higher brightness level. This is because
tanh(1/ tanh(1)) > tanh(1). Lower pixel magni-
tudes are also amplified due to the characteristics of the
tanh(-) function. A hard clipping is further implemented
to remove negative magnitudes; this process can be
defined as

O(u,v), O, v) = 0

0, O(u,v) <0, (10)

O(u,v) = {
where O(u, v) is the final enhanced output image.
2.4 Optimization of process parameters

In Eq. (7), it can be seen that the two parameters 8 and y
would critically affect the quality of the enhanced image



Xi et al. EURASIP Journal on Image and Video Processing (2018) 2018:31

and their optimal values should be found. This is achieved
by employing the particle swarm optimization (PSO) algo-
rithm for its own parameter-independence advantages
[37]. It should be noted that the word “particle” used here
does not mean the wear particles used in ferrography.

From the enhanced image O(«, v), its entropy encom-
passing all the three color channels is

255

E=-— Zpl log(pi)r

i=0

(11)

where p; is the probability of occurrence of the ith inten-
sity level. When the logarithm is taken in base two, the
unit of entropy is in bits, and it corresponds to 8 bits
maximum for an image of 256 intensity levels.

Furthermore, the entropy value is multiplied by the
mean value of all pixels in the output image to form the
objective function to be maximized, that is,

where
_ 1
= o o <, » Vs ’ 13
O=—"1+ 2 ©Ownro (13)
u,v,c=R,G,B

and the subscripts R, G,B denote the indices of color
channels.

In the PSO algorithm, parameters to be optimized are
encoded into a vector x = [B y]T as a poten-
tial solution. The algorithm starts by randomly generat-
ing a set of potential solutions, say, N of them, giving
X = [xl,x2" o )XN]~

A set of PSO parameters are defined, but the PSO per-
formance is quite independent of their values. We have
the inertia w, random gains c¢; and c3. The optimization
process iterates in the following manner.

Vi = wve + ar(Xge — Xe) + caraXpe — Xe), (14)

Xir1 = Vi + Xo (15)
In Eq. (14), r; and ry are uniform random numbers in
[01],c1 = c2 = 2;subscript ¢ is the iteration count; X, ¢
is the global best solution over the tth iteration; and X, ¢
is the best solution per each potential solution during the
iterations. They are defined, respectively, as

}, j = argmax {f,},
n=12,---,N,

Xg,t = {xj,t»xj,t; s (16)

,xN_k} , k = argmax {fn,l,i..,t} ,
t=1,2,---.

Xpr = {Xp 0 X0 -

(17)

In the PSO algorithm, the global and per-particle best
solutions can be treated as applying elitism to the search
process. Best global solutions and the value per each
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potential solution are stored and used to guide future iter-
ations. The next requirement is to ensure convergence to
a high-quality solution. Because, for iterative search algo-
rithms, a global solution cannot be declared unless an
exhaustive search has been carried out.

For efficient implementation of the PSO algorithm, we
have to determined when to stop the iteration. The non-
parametric sign test is adopted [37]. The decision to ter-
minate the iteration is based on the cumulative Bernoulli
probability. For example, if there are no improvements
or changes in the solution values for eight consecutive
iterations—that is used in OLVFOFR, then terminate the
iteration. By doing so, the error made, such that there will
be further solution improvements, is bounded from above
by 0.01.

Furthermore, to ensure that the parameters used in
Eq. (15) do not evolve to forbidden regions, a retrofit is
imposed on the particles. That is,

X = Xp,ts Xpe > 0
mt 0, Xyt <0, (18)

n=1,2,---,N,t=12,---.

The parameters used in the PSO algorithm are summa-
rized in Table 1.

3 Results and discussion

Experiments were conducted using a collection of 100 test
images obtained from an online video ferrography device
[14, 15]. Various types of wear particles were inserted in a
lubrication circuit and driven through a transparent chan-
nel where the camera was mounted. The images were
stored in the 8-bit BMP red-green-blue color format and
sized to 360 x 480 pixels height-by-width. The restora-
tion process was carried out on a PC running the 64-bit
Windows 7 OS, and the associated software program was
developed on the Matlab 2016b platform.

The proposed method is compared qualitatively and
quantitatively against popular image enhancement
approaches. These include smoothed histogram equaliza-
tion (SMHEQ) [21], adaptive image enhancement based
on bi-histogram equalization (AIEBHE) [25], non-linear

Table 1 Summary of PSO parameters

Parameter Value
Number of iterations 20
Number of particles 20
Inertia w 0.6
Random gain factor ¢y, ¢, 20
No. of iterations for termination 7.0
Profile scale factor B [010]
Profile shift factor y [01]
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transfer function local approach (NTFLA) [27], adaptive
gamma correction and cumulative intensity distribution
(AGCCID) [29], adaptive multi-scale Retinex for image
contrast enhancement (AMRICE) [31], and intensity- and
edge-based adaptive unsharp masking (IEAUM) [34].

3.1 AQualitative evaluation

The qualitative performance of the OLVFOFR algorithm
is evaluated by visually inspecting the input and resultant
images obtained from the proposed and compared meth-
ods. In particular, evaluations are made on the basis of
appearance of artifacts, clarity of the background, and the
exposure of wear particles.

Four example test images, with increasing content
complexities, and their processed results are shown in
Figs. 2, 3, 4, and 5 where sub-figures contain results of
compared methods. It can be observed that input images
do not possess sufficient contrast for wear particles to be
easily identified. Moreover, due to the fact that illumina-
tion is attenuated by the lubrication oil, input images tend
to have low brightness. This kind of image quality degra-
dation had imposed difficulties in visually inspecting wear
particle features.

The SMHEQ method, using histogram equalization
based on a smoothed version of the input image,
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produces noticeable artifacts especially in the low-
brightness background regions. This drawback can be
seen in Figs. 2b to 5b. Viewing artifacts also appear in
results from the AIEBHE method as shown in Figs. 2¢
to 5c. This undesirable outcome is attributed to the
use of histogram equalization approaches. As can be
observed in Figs. 2d to 5d, the NTFLA approach can-
not provide satisfactory enhancement results. Instead,
the output images are generally darker than the input
images.

Results from the AGCCID method, shown in Figs. 2e
to 5e, indicate an increase in the overall brightness and
is desirable. However, it is also observed the background
appears more unevenly illuminated as compared to the
input images. This phenomenon is rather undesirable as
it distracts the inspection of wear particle features. The
AMRICE method, with results shown in Figs. 2f to 5f,
attenuates the brightness in the background as well as
the wear particles. Difficulties are expected from detect-
ing wear particles from these resultant images. Processed
images obtained from the IEAUM approach are depicted
in Figs. 2g to 5g. These images do not contain the unde-
sirable artifacts in the background, and the brightness has
been slightly amplified. However, by a closer inspection of
the results, it can be seen that edges in the background

Fig. 2 Testimage 1:a input, b SMHEQ, ¢ AIEBHE, d NTFLA, e AGCCID, f AMRICE, g IEAUM, h OLVFOFR
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Fig. 3 Test image 2: a input, b SMHEQ, ¢ AIEBHE, d NTFLA, e AGCCID, f AMRICE, g IEAUM, h OLVFOFR

regions are over-emphasized. This property may affect the
identification of wear particles.

For the proposed OLVFOFR method, results are
depicted in Figs. 2h to 5h. There are no viewing artifacts
found. The background brightness is amplified, making
it easier to detect wear particles in the foreground. Fur-
thermore, backgrounds remain more even. This method
performs satisfactorily against other methods being com-
pared. In particular, for complex image contents as shown
in Figs. 2h to 5h, the contrast of wear particles is higher
than the input and results from all other approaches.

3.2 Quantitative evaluation

Four popular image quality assessment metrics are used to
compare the performance of OLVFOFR and other meth-
ods. These include the mean brightness, entropy, con-
trast, and gradient. Since there are multiple performances
adopted, two additional summary indices formulated by
the normalized sum and the normalized product of per-

formance metrics are used. The assessment criteria are
defined below.

3.2.1 Mean brightness

Mean brightness is an indicator of the illumination
level. It is obtained from averaging all the pixel values,
that is,

1

M= ———
3IxUxV

Y O@v), ce{RG,B).

u,v,c

(19)

3.2.2 Entropy
Entropy is a measure of the image content. It is given by

255

E=-> pilog,(p),

i=0

(20)

where p; is the probability of the occurrence of the ith
magnitude. A high entropy denotes high utility of the per-
mitted pixel magnitude range and thus contains higher
information content.

3.2.3 Gradient
Gradient denotes the local changes of intensities between
objects and their backgrounds. It is given by

1
2
UxV At A2,

where A, = I(u,v)—1(u+1,v), Ay, = I(u,v) —I(u,v+1),
andI(u,v) = (R(u,v) + G(u,v) + B(u,v))/3. The higher
the average gradient, the wear particles are more visually
distinctive from the background.

A= (21)
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Fig. 4 Test image 3:a input, b SMHEQ, ¢ AIEBHE, d NTFLA, e AGCCID, f AMRICE, g IEAUM, h OLVFOFR

3.2.4 Contrast

Contrast is a measure of the global spread of squared pixel
intensities against their squared mean values. This metric
can be obtained from

2
_ 1 2 1
C= T x V;I(u,v) (U ” V;I(u,v)) . (22)

A high contrast means that the global perception of clarity
is more noticeable.

3.2.5 Result statistics

Result statistics collected from the test images, includ-
ing mean brightness, entropy, gradient, and contrast are
shown in box plots depicted in Fig. 6. Mean and median
values of these metrics are also annotated on the top
of the plots.

The OLVFOEFR processed images have a mean bright-
ness higher than the input but less than the results from
AIEBHE and AGCCID. However, the latter two meth-
ods do not produce good qualitative images. Particularly,
there are artifacts and uneven background illuminations
being generated.

With regard to the entropy measure, OLVFOFR is com-
parable to the input but higher than AIEBHE and NTFLA.
Other methods though have higher entropy; however,

they do not produce good viewing perceptions as dis-
cussed in the qualitative evaluation. The OLVFOEFR gra-
dient is higher than other compared methods except
IEAUM. Similar to the evaluation of entropy, IEAUM
results contain over-emphasized edge amplifications in
smooth background regions, and this phenomenon
is undesirable.

In terms of the contrast metric, results of OLVFOFR
are slightly less than those of the input, while other meth-
ods except NTFLA are higher. Those methods with higher
contrast generally produce viewing artifacts and unsatis-
factory restoration of the background brightness.

Since multiple performance assessments are used, two
additional metrics are adopted to quantify the overall
performance of the methods being compared. The two
metrics include the product and summation of individ-
ual metrics normalized with respect to the input. The

metrics are
[MI=MxExA xC, (23)

Y =M+E+A+C (24)

A summary of normalized test is given in Table 2. It
can be seen from the IT column, the proposed OLVFOFR
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Fig. 5 Test image 4: a input, b SMHEQ, ¢ AIEBHE, d NTFLA, e AGCCID, f AMRICE, g IEAUM, h OLVFOFR
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Table 2 Summary of normalized test statistics
Methods Performance metrics

M E A C m 3
Input 1.0000 1.0000 1.0000 1.0000 1.0000 4.0000
SMHEQ 0.9727 1.1084 1.9652 26225 55566 6.6688
AIEBHE 1.1848 0.9547 1.5986 1.4564 2.6334 5.1945
NTFLA 0.8665 0.6908 1.4871 0.1846 0.1643 3.2290
AGCCID 1.2749 1.0877 1.9030 24502 6.4654 6.7157
AMRICE 0.7694 1.0803 1.4284 24630 29241 5.7410
AGCCID 0.9997 1.0445 9.8062 1.2669 129722 131172
OLVFOFR 1.0980 0.9857 7.2311 0.8276 6.4771 10.1424

has the metric at 6.4771 higher than the compared meth-
ods except being less than AGCCID at 12.9722. However,
as concluded from the qualitative evaluation, AGCCID is
not performing as well as OLVFOFR. For the ) metric,
OLVFOEFR has a value of 10.1424, again higher than all
other methods except AGCCID at 13.1172. As in the pre-
vious case, the latter method does not perform well in the
qualitative assessment.

3.3 Characteristics of algorithmic parameters

A collection of parameter statistics, from the test of 100
ferrography images optimized by the particle swarm algo-
rithm, is shown in Fig. 7. It indicates that from Fig. 7a, the
profile shift factor values concentrate at y = 0.99 and
extends below to y =~ 0.88. However, there is a very small
portion of test images that require smaller shift factors
below y ~ 0.82. Fig. 8 shows two examples of test images
that require small shift factors. Such cases occur when the
center region is of sufficient contract or there are no wear
particles.

The profile gain factor, where its distribution is
depicted in Fig. 7b, has a wider range of values from
B = 092 ~ 10.00. The peak count is found at 8 =
9.82. Based on the concentration of parameter value dis-
tributions, the values with peak occurrences can be used
directly in the OLVFOFR algorithm in order to remove the
computationally demanding particle swarm optimization
process and make the restoration process more efficient.

3.4 Complexity
The complexity analysis of the proposed OLVFOFR
algorithm is given below. Calculations are grouped
into optimization (with PSO iterations) dependent and
independent operations. Floating-point operations and
multiplication/division, powering, and trigonometric cal-
culations are counted per pixel, while additions and
subtractions are not considered.

When calculating the grayscale image, one division is
needed, Eq. 2. Note that in performing high-pass filter-
ing in Eq. 3, no floating-point operations are required

a Max. at 0.99

0
0.8 0.85 0.9 0.95 1 1.05

Shift Factor

Fig. 7 Distribution of parameters: a profile shift factor, b profile gain factor

Max. at 9.82

9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1
Gain Factor
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Fig. 8 a, b Test images that require small shift factor

where negation and multiplication by eight in the ker-
nel are treated as bit-shift operations, and the division by
eight is also regarded as a bit-shift. The align-to-center
process in Eq. 5 contains two multiplications. To calcu-
late the restoration gain profile in Eq. 6, it needs two
powering and one square-rooting operations. When cal-
culating the modified profile, Eq. 7, one multiplication is
performed. To obtain the intermediate image from Eq. 8,
one multiplication is needed. The clipping process in Eq. 9
requires one division and one trigonometry operation.
Optimization-independent operations include Egs. 2, 3, 5,
and 6. The number of floating-point operations is six, or
O(6N) for an image of N pixels.

In the PSO-based parameter optimization stage, the
complexity is a multiple of the number of iterations and
particles. The evaluation of the objective function in
Egs. 12 and 13 needs two multiplications where the fac-
tor 1/(3N) is pre-computed. Based on the parameters
given in Table 1, there are 20 x 20 = 400 objective
function evaluations. Each evaluation contains operations
from Eqs. 7, 8, and 9 and the objective function evaluation.
A total of six floating-point operations is required. Fur-
thermore, the PSO velocity update in Eq. 14 requires ten
multiplications, and that adds to 16 floating-point opera-
tions, or O(16N) per image per iteration, and O(6400N)
(16 x 400 = 6400) per image taking into account the
PSO iterations.

It is noted that the optimization-independent calcula-
tions O(6N) are negligible as compared to the dependent
calculations. Hence, the overall complexity can be approx-
imated as O(6400N) per image. However, when early
termination is employed, the number of iterations and
floating-point operations can be reduced. Furthermore,
since the complexity is linear with the number of pixels,
the algorithm is considered as linearly efficient.

4 Conclusions
An image processing procedure OLVFOEFR, for the
restoration of online video ferrography images against

out-of-focus degradations, has been presented. The
algorithm first extracts wear particle edges appearing
in the image and then amplifies them in accordance to
the optimum scale and shift profile that is generated
depending on the pixel distance to the image center. The
enhanced image is obtained by combining the amplified
edges with the original image. Out-of-range pixel mag-
nitudes are compressed using a hyperbolic function and
further normalized to within the permitted magnitude
bounds. Results have shown that the enhanced images are
free of viewing artifacts, having even background illumi-
nations and enhanced exposure of wear particles. These
desirable characteristics are essential in online video fer-
rography analysis. From the test of a large number of
real-world images, it is also found that optimal algorith-
mic parameters rest on closed ranges, and these values
can be applied directly in the proposed algorithm for more
efficient implementation.
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