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Abstract

demonstrate the robustness of our approach.

Hand segmentation is one of the most fundamental and crucial steps for egocentric human-computer interaction.
The special egocentric view brings new challenges to hand segmentation tasks, such as the unpredictable environmental
conditions. The performance of traditional hand segmentation methods depend on abundant manually labeled training
data. However, these approaches do not appropriately capture the whole properties of egocentric human-computer
interaction for neglecting the user-specific context. It is only necessary to build a personalized hand model of the active
user. Based on this observation, we propose an online-learning hand segmentation approach without using manually
labeled data for training. Our approach consists of top-down classifications and bottom-up optimizations. More specifically,
we divide the segmentation task into three parts, a frame-level hand detection which detects the presence of
the interactive hand using motion saliency and initializes hand masks for online learning, a superpixel-level hand
classification which coarsely segments hand regions from which stable samples are selected for next level, and a
pixel-level hand classification which produces a fine-grained hand segmentation. Based on the pixel-level classification
result, we update the hand appearance model and optimize the upper layer classifier and detector. This online-learning
strategy makes our approach robust to varying illumination conditions and hand appearances. Experimental results
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1 Introduction

Recently, the first-person camera embedded wearable
computer, such as augmented reality headset and smart
glasses, is growing vigorously and urgently requires
suitable interaction patterns for egocentric vision. One
feasible option is taking user’s hand as the medium for
human-computer interaction. The wearable computer
interprets hand position, posture, and gesture into com-
mands and produces appropriate responses to the user.
These properties of hand are preceded by reliable hand
detection and segmentation from the egocentric video.
The egocentric view brings opportunities for hand
detection and segmentation. Since the video is recorded
from a first-person perspective, the occlusions are less
likely to happen at the attention hand and the user
prefers to concentrate on region in the center of view
field. Meanwhile, the egocentric video also presents new
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challenges including rapid changes in illuminations,
significant camera motion, and background clutter.

Great efforts have been made in detecting user’s hand
from the egocentric video especially in pixel-level detec-
tion [1-7]. Most of these methods are under an implicit
assumption that the hand presents in the video all the
time. But, the assumption fails in many situations in
which the hand is not used, such as before or after the
human-computer interaction. Subsequently, some cas-
cade detection methods are put forwarded to get rid of
the assumption by checking out hand presence before
performing pixel-by-pixel classification [8—10]. However,
these approaches rely on the existence of a large training
set containing a broad variety of data which are collected
from multiple users under diverse illumination condi-
tions. Hand appearance varies greatly in diverse users
and environmental conditions. Not only does the train-
ing set cost a lot of manual effort in data collection and
labeling but also it does not guarantee to make the
approach adapt to any hand appearance and environ-
mental condition.
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To address this issue, we propose a method for unsuper-
vised hand detection and segmentation in egocentric
video. In our approach, the frame-level hand presence or
absence is observed based on motion saliency which is
particular in the egocentric view. By combining motion
and appearance property, we get unsupervised label-
ing results for the superpixel-level hand classification.
Then, the pixel samples of hand are extracted accord-
ing to confidences of the superpixels and used to train a
pixel-level classifier which produces fine-grained hand
segmentation. In order to be robust with varying en-
vironmental condition, we constantly update the clas-
sifier and detector by using a bottom-up optimization
method. We test our method on challenging datasets,
and the experimental results show that our method
robustly produces precise segmentation, as illustrated
in Fig. 1.

In summary, this paper makes three main contributions:

Fig. 1 Results of proposed method in challenge cases. From a—g are
cases of hands are motion blur, background having skin-color, frames
are overexposed, hands in contrast shadow, frames are underexposed,
hands interacting with objects, and hands in varying poses
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e We propose a frame-level hand presence detection
method that utilizes hand motion saliency in the
egocentric human-computer interaction, which
reduces the false positive rate for the final target of
pixel-level hand segmentation.

e We present a top-down cascaded classification
method which segments hand hierarchically in levels
of frame, superpixel, and pixel so as to reduce
computational cost, in which the classifiers are
trained on-the-fly so as to be robust to diverse users.

e We analyze and optimize the online trained
classifiers by a bottom-up method which makes the
hand segmentation robust to varying environmental
conditions.

2 Related work

Egocentric vision is an emerging area in computer vi-
sion. According to survey of [11], the most commonly
explored objective of egocentric vision is object recogni-
tion and tracking. Furthermore, hands are among the
most common objects in the user’s field of view, and a
proper detection, localization, and tracking could be a
main input for other objectives, such as gesture recogni-
tion, understanding hand-object interactions, and
activity recognition [5, 12-20]. Recently, egocentric
pixel-level hand detection has attracted more and more
attention.

Most of the proposed methods are based on pre-
training classifiers using abundant manually labeled data.
Li and Kitani [1, 4] propose a pixel-level hand detection
method using color- and texture-based features. Zhu
et al. [2] propose a method which use local hand shape
information in the training data and enforces shape
constraints in the estimation. Serra et al. [3] integrate
temporal and spatial consistency to complement the ap-
pearance features. Betancourt et al. [21] identify the left
and right hands and models hand occlusions to improve
the accuracy of hand segmentation. These methods im-
prove the precision of pixel-level hand detection but still
under the implicit assumption of hand presence in all
frames. This assumption is not always true since the
hand may be absence before or after the egocentric
human-computer interaction.

Some of the proposed methods conquer the hand seg-
mentation task sequentially. Betancourt [8, 22] proposes
a sequential classifier consists of a hand-detector and a
hand-segmentator. Betancourt et al. [9] extend SVM-
based hand detector with a dynamic Bayesian network.
These methods reduce false-positive rate of hand
segmentation but also needs the offline training which
requires manual labeled data. Kumar et al. [10] illustrate
an on-the-fly hand detection training method which is
initialized by a calibration gesture performed by the user.
This simple preprocessing step saves a great deal of
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manual labeling but may not be friendly to the user. Zhu
et al. [23] propose a two-stage detector which firstly gen-
erates bounding box proposals and secondly evaluates
the proposals by a convolutional neural network. More-
over, all of these methods are still challenged with
varying environment conditions since they do not have
any model updating strategy.

In this paper, we are going to illustrate our fine-
grained hand segmentation method which leverages un-
supervised online learning pattern to robustly segment
the hand in pixel-level from egocentric video.

3 Method

In this section, we discuss an unsupervised online learn-
ing method for fine-grained hand segmentation based
on top-down classification and bottom-up optimization.
By learning hand appearance and motion features on-
the-fly, we segment out the hand with precise boundary
from the egocentric video which is captured in varying
illumination condition. From the point view of top-
down strategy, we divide the classification task into three
parts: frame-level detection and superpixel-level and
pixel-level classifications. Before scanning pixel by pixel,
we firstly estimate whether a frame contains a hand and
whether a region of the frame contains hand pixels. By
doing this, we reduce the false positive and initialize
samples for further online training. After that, we learn
feature from the labeled region and train two-level
classifiers. To make sure the classifiers adapt to varying
hand appearance, we update the hand appearance model
and optimize the upper layer classifier and detector.
Figure 2 shows the framework of our method.

3.1 Ego-saliency-based hand detection

Before scanning the frame pixel-by-pixel, the first task is
detecting presence of hand from a frame-level perspective
and then automatically initialize hand masks for subse-
quent classifications. Motion-based methods [24-26] are
proposed for background subtraction for freely moving
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camera. In general, it is difficult to determine whether the
hand is present or not without prior information about
the environment or appearance of the hand. Fortunately,
the egocentric interaction scenario provides many con-
straints that are suggestive of the hand’s presence.

From the point view of an interaction cycle, the mo-
tion of hand in egocentric view has periodical specialty.
In the interaction preparatory phase, the whole hand
and part of the arm together gradually enter into the
view field. During the interaction, the whole hand moves
around the center of view field and the fingers are likely
to make more vigorous motion than the palm and arm,
such as making a gesture. When the interaction is
finished, the whole hand and part of the arm together
gradually move out of the view field. We observe that the
preparatory phase is a natural bootstrap since the hand
motion is more salient than other regions and the hand is
hardly to enter into the view field from the top side.

Based on this observation, we define an ego-saliency
metric E consists of spatial and temporal terms to
estimate how likely the hand is present in the frame f.
The higher the ego-saliency value, the more likely the
hand is present.
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where the first term is the spatial cue that restricts the
hand motion should be salient and happened in the right
position. The second term is the temporal cue that re-
stricts the hand motion should be consequently in-
creased. W and H denote width and height of the frame
respectively. M/, j) is the motion saliency of a pixel at
position (i, j) and calculated based on optical flow map
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Fig. 2 Framework of proposed method
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using method [27]. As shown in Fig. 3d, we set a non-
interactive border with width W and height / from the
top of the frame. We set 4 as one tenth of the frame
height in experiments. And we use a distance-based
exponential weight to restrict that hand motion should
happen away from the non-interactive border. A is the
weight response control factor. The farther a pixel is
away from the non-interactive border, the greater its
weight is assigned. N, is the number of non-zero values
in the motion saliency map M,. The consequent motion
increment is observed by a sign function sgn(*) based on
the number of pixels having salient motion in adjacent n
frames.

After detecting the presence of hands, we initially seg-
ment moving hand regions based on motion and appear-
ance clustering. By using dual TV-L1 optical flow [28],
we extract dense motion flow fields and get a motion
map. We cluster the motion map into k groups of re-
gions using K-means and we set k as 10 in the experi-
ments. The motion clustering naturally divides
foreground and skin-colored background into different
regions since they usually move differently. Figure 3d
shows the regions got from motion clustering and the
non-interactive border. With the help of non-interactive
border, we easily select out a set of background regions
{Rpc} which intersect with the border. The rest un-
known regions are further determined based on appear-
ance clustering. According to Eq. (2), we calculate the
likelihood H{R;) of an unknown region R; belonging to
hand region based on the similarity between the un-
known region R; and background regions {Rpg}. S(==) is
a function calculating color histograms similarity of two
regions. Then, we find out the hand regions which have
low color similarity with all the background regions.
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Figure 3 shows the initialized hand mask which is gener-
ated by using motion and color clustering.

Hp(R) = S(Ri,R;) (2)

jeBG

3.2 Online training two-level hand classifiers

With the ending of the interaction preparatory phase,
hand motion is attenuating and may eventually become
much less salient, such as only the fingers move to make
a gesture while the palm holds still. Moreover, motion-
based segmentation usually produces the result with
blurry and noise boundaries around objects. Therefore,
the appearance feature is more discriminative than
motion cue for fine-grained hand segmentation during
the interaction phase (Fig. 4).

Here, we address a coarse-to-fine strategy-based hand
segmentation method that learns appearance feature of
hand and background on-the-fly. Based on the initial set
of hand masks {B; got from the frame-level detection,
we firstly train a superpixel-level hand classifier so as to
segment frames into superpixel regions from which the
stable pixel samples are selected out. Then, we utilize
the selected pixel samples to train a pixel-level classifier
which produces fine-grained hand segmentations.

In the frame-level detection step, we obtain a coarse
segmentation of the hands using motion and ego-saliency
cues. It initially provides the ground truth labels of hand
regions for superpixel-level training. We overly segment
the recent n consecutive frames {F,} into superpixels by
using a modification of a state-of-the-art algorithm termed
simple linear iterative clustering (SLIC) [29].

b with non-interactive border labeled in red, and estimate hand regions

Fig. 3 Initialize hand label based on ego-saliency. a—e are original image, optical flow to the next frame, motion saliency of b, clustering result of
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d

Fig. 4 Example of two-level classification. a—-d are superpixel segmentation overlaid on original image, probability map of superpixel-level classification,
probability map of pixel-level classification, and final segmentation overlaid on original image

The K-means clustering of motion map derives a bin-
ary segmentation separating the foreground from the
background. However, the K-means segmentation has
coarse boundaries which are sometimes inconsistent
with the superpixels’. To select good samples for
superpixel-level training, we initialize a label map based
on the portion of positive pixels in each superpixel and
refine it by energy optimization. Figure 5 illustrates the
process of superpixel sample selection. Given a binary

mask of the K-means segmentation, we assign the super-
pixels having 80% positive pixels as foreground candi-
dates and their dilated superpixels as background
candidates. The candidates are further selected based on
confidence score calculation and energy optimization.
We define a confidence score to describe how much
the superpixel is more similar to its homogeneous neigh-
bors than the heterogeneous neighbors. For a candidate
superpixel, we calculate its confidence score as Eq. (3).

g h
Fig. 5 Select superpixel samples based on energy optimization. a-i show the process of selection. Blue, pink, and brick in (g) illustrate the
selected background, foreground, and abandoned samples respectively
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After normalization, we get a score map as shown in
Fig. 5d.

Score; = Z Z (3)
IEQ ke(fr
(hl hl) Zk abD (hSIFT7hSIFT) +cD (hRGthﬁGB>

(4)

where Q; and Q; are sets containing samples collected
from the neighborhood of superpixel i, the superscript “-”
indicates that the samples have different class label with
superpixel i while “+” stands for the contrary situation,
and Z is a normahzatlon factor. And, hgpr and hRGB de-
note the SIFT and RGB histograms respectively, D(//, W) is
the Chi-square distance between the histograms /4’ and 7,
and ¢ is a constant to normalize the k-th descriptor.

We take the score as a label and optimize it for each
superpixel by using Ising model [30]. The foreground and
background candidates constitute a foreground system
and a background system respectively. The energy of each
system consists of the affinities and consistencies of super-
pixels to their neighborhood within the system. Color and
texture are useful cues since foreground tends to have a
difference appearance than the background behind it.
Therefore, the affinity between a superpixel and its neigh-
bor is computed as the Chi-square distance between their
color and texture histograms. Higher affinity indicates
stronger consistency for belonging to the same class.
Therefore, we optimize the label based on an energy
which encourages coherence in superpixels of similar ap-
pearance. For a superpixel, we inverse its label and calcu-
late the energy change caused by the inversion. This label
inversion is directly accepted if the system energy is in-
creased. On the contrary, the process is further judged by
an acceptance function. This routine is repeatedly exe-
cuted until the system reaches equilibrium. Then, the
superpixel labels are optimized.

Given a labeled region, we calculate the energy of each
superpixel within it and accumulate them together to
describe its system energy. For a superpixel, we first
compute an affinity score and a label consistency score
for each pair of adjacent superpixels. After normalizing
the scores, we calculate their correspondence which is
proportional to the superpixel energy. Based on the
exponential correspondence, we obtain the superpixel
energy. After that, we compute the system energy as

E=Y" Y e lstirti) (5)
i jeQy

where Q7 is the neighborhood of superpixel i within the
system, S(i;, j) is the affinity, and L(; j) is the label
consistency between two adjacent superpixels.

Page 6 of 12

To describe the appearance of a superpixel, we com-
pute the histograms of SIFT features and RGB values
from the image area of it occupies. Considering the
appearance feature is prone to be coherence in a local
region, we use the distance between two adjacent super-
pixels to restrict the contribution of the neighboring
superpixel. Larger distance indicates smaller contribu-
tion. Moreover, the superpixels nearing to the system
boundary are tend to be unstable. Hence, the distance
from superpixel to boundary is also a term of the affinity
score. Based on these four descriptors, the affinity score
S(i, /) is defined for superpixel pair (i, j) as Eq. (6).

.. 1 j
S(i, j) = 1- Sk (ClD (hSIFthSIFT) + D (hRGBv hf{GB)
+ csA (i, j)-ciB()))
(6)

where A(j,j) is the Euclidean distance between the adja-
cent superpixel centers, and B(j) is the Euclidean dis-
tance from superpixel j to the system boundary.

We inverse the label of superpixel i and get its up-
dated label consistency score L(i, j) with the adjacent
superpixel j. The energy of the system is renovated
correspondingly. Then, we compute the increment 2E of
the system energy. Based on the increment, we decide if
it should accept the label inversion.

N label(‘) AE<0and exp(-SAE) < R;
label(i) = {1 bel ™ (i), otherwise.

(7)

where label (i) is the inversion value of label(i), 8 is a
weight factor and R is a pseudo random number from
uniform distribution. In a word, the label inversion will be
accepted if it increases the correspondence between the
superpixel’s appearance similarity and classification type.
Given the notations of all superpixels, we initially train
the superpixel-level classifier based on appearance fea-
tures which consist of color and gradient statistic in each
superpixel. The classifier is able to select out the super-
pixels belonging to hands with confidence values. Note
that the motion cue may eventually become much less
discriminative. Therefore, we apply the SLIC on color
frame to get the superpixel segmentation in the subse-
quent online training. Because of benefiting from the
relatively accurate boundaries produced by the SLIC, the
segmentation in superpixel level is improved than the
result of frame-level detection. However, the superpixel
having low confidence value may partially contain hand
region. It will cause misclassification if we take that
kinds of superpixels as background and select negative
pixel samples from them. Therefore, we proposed a sam-
ple selection strategy for pixel-level classifier training.
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For pixel-level training, we select samples from the super-
pixels based on their classification confidence values. The
negative samples are selected from the superpixel having
confidence smaller than a threshold value 77 The positive
samples are selected from the candidate superpixels which
have confidences greater than a threshold value 7;. The un-
stable superpixels having confidences between T;; and T,
are abandoned as unknown. Moreover, the higher the
confidence of a superpixel belongs to the hand region, the
more positive samples are extracted from it. Based on the
property of superpixel generated by SLIC method, we sup-
pose that pixels nearing to the center of the superpixel are
more likely to be in the same class with the superpixel.
Therefore, we divide the pixels of candidate superpixels into
training and unknown groups based on the distance
between the pixel and the superpixel’s center. By combining
the area A, and confidence Wj, of a superpixel, we define
the distance threshold T, as Eq. (8). Then, the candidate
superpixels are eroded based on the threshold T, The
pixels in the shrunk region are put into unknown group
while the others are selected as positive training samples.

Ty =Agp" Wy (8)

Following the previous pixel-level segmentation ap-
proach [1], we extract color features from RGB, HSV,
and LAB color spaces and texture feature using HOG
[31]. By using a pool of combination of features and ran-
dom forest classifiers [32], we classify the unknown
pixels and obtain fine-grained hand segmentations. After
that, we also get a more precision description of the
confidence of a superpixel belonging to the hand region.
The confidence values of superpixels are updated with
their portion of positive labeled pixels. Then, we re-train
the superpixel-level classifier by using the superpixel
having high confidence values. By doing this, we update
the hand and background models on-the-fly which
makes the method more robust to varying environment.

Note that the two-level classifiers select out the pixels
that are most likely to be in the hands. The motion cue
becomes salient and discriminative again when the inter-
active hand gradually moves out of the view field. There-
fore, we still have to monitor the hand absence by aid of
the egocentric saliency metric which is added a confi-
dence term, as described in Eq. (9).

W H f
EOUT ZZ<1+9A*(h 3 05) * Mr(i,j) + Z

i=1 j=1 [:f—}’l

©)

Where, the first term denotes the motion saliency, the
second term observes the consequent motion decrement,
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the third term is the average superpixel confidence of the
frame f, and m is the number of superpixels having confi-
dence greater than 0.5.

4 Evaluation to update classifier
In evaluation stage, we use a bottom-up strategy. We
evaluate bottom classifiers and feedback loss to the
upper levels. The superpixel-level classifier is directly af-
fected by precision of pixel-level classification since the
confidence of superpixel is calculated based on pixel
classification results. In the initialization step, we
consider frames of a sequence equally to contribute to
pixel-level classifier. Since background changes con-
stantly, the appearance of hand varies a lot and becomes
different from previous situation, such as hand enters
into a shadow place. Therefore, the history frames
contribute differently and we calculate weights W, for n
history frames of the training set {F,} to make their con-
tributions more rational based on error of pixel-level
classifier. The weight W, consists of a local metric W
and a global metric W7,
W, =1/(W; + Wg) (10)
Given a labeled training set {F,}, we train a collection
of classifiers {C,}. By using the classifier C,, we get the
confidence value W/ﬁp of a superpixel SP; belonging to
the hand regions in current test frame f. The local metric
W*  restricts that the result of classifier C, has low
variance with other classifiers of the set. Therefore, we cal-
culate the loss of using training data from frame ¢ based
on the difference between classification results of test

frame f produced by C, and the average classifier C{r,).

1 _
- E;(ngk—c{m) (11)
C{Ft} - Z spk (12)

le{Ft

where m is the number of superpixels in current test frame
fand n is the number of frames in the training set {F}.
From a global point of view, we estimate the loss of
using training data from frame ¢ based on the difference
between the classification result of frame f produced by
C; and the classification result of frame f-1 produced by
the previous classifier Cg,r—q which is trained using
data from {F,} under the constraint of weight W,
Generally speaking, precise classification can segment
hand region from background with clear boundary while
smooth and flat inside the region. We calculate gradient
map of the classification probability map and define
three gradient-based constraints to evaluate the global
loss. Firstly, the magnitude of the biggest contour in the
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gradient map should be large. Then, the gradient in the
conjunction of two superpixels should be small. That is,
the number of contours in the gradient map should be
small. And last, the shapes of the biggest contours in
current and previous gradient maps should be similar.
Based on these three constraints, we calculate a global
loss function having terms based on the average magni-
tude Gy of the biggest contour, the number Ny of
contours, and the shape Sy of the biggest contour in the
classification result of test frame f.

Wi = (63-6/) + (Ny-Nf3) + D557
(13)

where the right hand superscript denotes the classifier

has been used, C, or C{ ;!17} D(=») is a function estimating
the difference between two shapes.

By combining W} and W, we evaluate the effective-
ness of training samples from frame ¢ not only in local
superpixels but also in the global hand region. Based on
the weight W;, we optimize the pixel-level classification
result which is used to update the superpixel-level classi-
fiers. Note that the terms of the weight function will be
normalized before combination.

5 Results and discussion

We evaluate our cascaded hand segmentation method on
two types of egocentric data which correspond to different
levels of human-computer interaction. The first type
contains the both hands are exposed with little varying
gesture and interacting with objects, such as holding a
cup. The second type contains the hands performing ges-
tures, such as virtual keyboard typing, without directly
interacting with any object. We firstly compare our cas-
caded hand segmentation with the state-of-the-art
methods and analyze the validity of our framework. Then,
we illustrate that the egocentric human-computer inter-
action can benefit from our hand segmentation approach.

5.1 Evaluation on benchmark dataset

To compare with baseline methods, we first test our ap-
proach on the benchmark dataset CMU EDSH [1] which
consists of egocentric videos containing diverse indoor
and outdoor illumination and hand poses. The videos
were collected by a subject wearing the head-mounted
standard color camera and passing through scenes with
varying illumination including the extreme cases of
underexposed and overexposed at a resolution of 720p
and a speed of 30 FPS. Besides the change of skin color,
the hand pose also changes during the subject doing
daily activities. The dataset contains 19,788 frames and
743 ground truth labels from three video clips, including
EDSH1, EDSH2, and EDSHK. EDSH1 and EDSH?2
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involve data of bare hands with a few intentional ges-
tures while EDSHK records hand interacting with ob-
jects in a kitchen. In order to match the scale of the
ground truth, we downsample the resolution of the
frame from 1280 x 720 to 640 x 480 pixels. We conduct
quantitative and qualitative evaluation on the benchmark
dataset to compare our detection performance with the
prior arts.

In Table 1, we compare our method with the three
state of the arts on F-score. Li and Kitani [1] predict
hand pixel using color and gradient features based on
Random Forest classifiers. Zhu et al. [2] extend the
pixel-level method by introducing shape information of
pixels based on structured forests. Baraldi et al. [5]
utilize temporal and spatial coherence strategy to im-
prove the hand segmentation of the pixel-level method.
The state of the arts use video clip EDSH1 as the train-
ing data and test their approaches on the rest clips of
EDSH2 and EDSHK. The corresponding F-scores are
provided by their papers. Since our approach using
online training strategy, we give out our F-scores on all
the clips. As the F-scores shown in Table 1, our
approach improves the detection precision in most ex-
periments. We have implemented our algorithm and
tested the non-optimized code on an Intel-based PC,
with a i7-4500 U CPU that runs at 1.80 GHz. Most of
time is spent on superpixel sample selection and online
training. The time cost can be reduced by decreasing the
number of samples used in all stages. In Table 2, we
compare our method with of the three state of the arts
on time.

Figures 6 and 7 show the visually comparison of test
images overlapped by detection results provided by their
papers and our method in the challenge cases of
extreme lighting conditions and background color.

In Fig. 6, the test frames of EDSH2 were taken under
extreme lighting conditions of overexposed, underex-
posed and high contrast shadows. Parts of the hand are
blended into background by the strong or insufficient
light while the color and texture of the other parts are
faded inordinately. Li and Kitani [1] fail to give good
prediction in these cases. In contrast, our approach has
much higher detection precision. Our continuously
online training strategy makes the classifiers robust to
varying illumination even in the extreme conditions.

Figure 7 shows the case of background sharing similar
color and texture with hand. Both methods of Li and

Table 1 Comparison with state of the art on F-score

Data Li and Kitani's [1]  Zhu et al’s [2] ~Baraldietal's [5]  Ours

EDSH1  Training Training Training 0.8667
EDSH2 0835 0.8353 0.852 0.8995
EDSHK  0.840 0.9352 0.901 09130
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Table 2 Comparison with state of the art on time
Li and Kitani's [1]  Zhu et al/s [2] Baraldi et al.s [5]
2138 3277 1092

Ours
3497

Time(ms)

Kitani [1] and Zhu et al. [2] fail to distinguish the hand
from the textureless and skin-colored background. In
contrast, our approach gives more correctly prediction
in this case. By using online learning, our method grad-
ually updates the hand and background models so that
the classifiers are more robust to varying scene.

5.2 Evaluation on egocentric application

Fingertip position is one of the most practical informa-
tion for egocentric vision-based human-computer inter-
action, such as the user inputs command via a virtual
keyboard. Fingertip detection can directly benefit or
suffer from the precision of the hand segmentation.
Therefore, we use a simple fingertip detection method
to further evaluate our hand segmentation method from
the practical point of view.

As shown in Fig. 8, we evaluate the applicability of
hand segmentation by an application of virtual keyboard
interaction. The ready gesture of index finger up triggers
the virtual keyboard to show up. Then, the egocentric
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view field is divided into girds each of which corre-
sponds to a key. In the experiment, we divide the view
field into 5 x 7 grids which provide relative comfortable
interaction scale for the user. The duration of fingertip
activates the key input and the corresponding position
will light up. We extract tip position of the index finger
from the hand segmentation result by convex hull
analysis. The video was recorded by a subject wearing
the head-mounted Logitech camera in the indoor scene
at a resolution of 640 x 480 and a speed of 30 FPS. The
test video totally contains 1439 frames consist of the
whole interaction procedure including hand moving into
the view field, ready gesture showing up, fingertip hover-
ing and moving through keys, and hand moving out of
the view field. Figure 8a—c illustrates the robustness of
our hand segmentation-based fingertip detection.
Figure 8d shows the failure case caused by the noise of
the segmentation which could be removed by extra post-
process.

Figure 9 shows the performance of our hand segmen-
tation method in the virtual keyboard interaction
application. The red and blue dots are the detected
fingertip interaction frames. We can see that the de-
tected fingertip position and the ground truth respect-
ively in the keyboard position is stable and with little

Fig. 6 a-d Challenge illumination cases comparison. From top to bottom are cases of overexposed, underexposed, overexposed, and high contrast
shadows. The first column shows the original images. The middle column shows results of Li and Kitani [1] and the last column shows our results
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d

Fig. 7 a The original image has similar color in background and hand regions. From (b-d) are corresponding results of ours, Li and Kitani [1] and
Zhu et al. [2]

\. \
d Fingertip-framel339

Fig. 8 Virtual keyboard interaction. a-d illustrate examples of fingertip detection for virtual keyboard interaction. Columns from left to right are
original images, hand segmentation results overlapping on original images, fingertip detection by analyzing convex of hand segmentation result,
and virtual keyboard interaction
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Fig. 9 Performance of hand segmentation in virtual keyboard interaction. a Fingertip detection results compared with ground truth. b Close-up
of errors in a

jitter. And the fingertip detection accuracy rate is 0.9867
over the test video. Figure 9b shows the total 17 failure
cases over the 1277 interactive frames. It proves that our
hand segmentation approach is reliable and prone to be
used in egocentric vision based human-computer
interaction.

6 Conclusions

In this paper, we presented an unsupervised on-the-fly
hand segmentation method which consists of top-down
classification and bottom-up optimization. From the
point of view of egocentric interaction loop, an unsuper-
vised frame-level hand detector is proposed for the
purpose of reducing the false positive caused by hand
absence. We implement the frame-level detection by set-
ting a non-interactive border based on an assumption
that the hand is hardly to enter into the view field from

the top side for egocentric interaction. Based on the
frame-level detection result, the superpixel-level and
pixel-level classifiers are trained on-the-fly sequentially
aimed at improving reliability of hand segmentation. To
get stable samples for superpixel-level training, we select
the candidates based on steps of confidence score
calculation and energy optimization. In order to be robust
to vary environmental conditions, the classifiers are up-
dated from the bottom up based on the proposed
performance evaluation method. Experiments carried on
public datasets validate the generality of the proposed
approach. This paper shows the potential of unsuper-
vised method for pixel-level hand segmentation in
egocentric interaction. We believe that it can be
transferred to the pixel-level object segmentation by
combining with gaze analysis and contributing to
activity recognition.
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