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Abstract

Vision-based unpaved road detection is a challenging task due to the complex nature scene. In this paper, a novel
algorithm is proposed to improve the accuracy and robustness of unpaved road detection and boundary extraction
with low computational costs. The novelties of this paper are as follows: (1) We use a normal distribution with
infrared images to detect the vanishing line, and a trapezoid prediction model is proposed according to the road
shape features. (2) Road recognition based on connected regions is implemented by an improved support vector
machine (SVM) classifier with a normalized class feature vector. According to the recognition results, the road
probability confidence map is obtained. (3) With the help of fusing continuous information with the trapezoidal
forecasting model and the probability from the confidence map, we present a road probability recognition method
based on the trapezoidal forecasting model and spatial fuzzy clustering. Furthermore, the histogram backprojection
model is used to solve interference problems caused by shadows on the road. It takes approximately 0.012~0.014 s
to process one frame of an image for the road recognition, and the accuracy rate can reach 93.2%. The
experimental results show that the algorithm can achieve better performance than some state-of-the-art methods
in terms of detection accuracy and speed.

Keywords: Unpaved road detection, Confidence map, Trapezoid prediction, Vanishing line detection, Clustering
analysis

1 Introduction
The intelligent vehicle remains a core problem in com-
puter vision technology and has numerous potential ap-
plications, such as driver assistance, transportation
system scheduling, and searching for the optimum route.
There is no doubt that road detection has become one
of the most popular topics in computer vision [1–3].
Computer vision technology is very suitable for road de-
tection since it includes a large amount of detection in-
formation and accurate sensing [4, 5]. However, road
detection is still challenging due to different road types
and various background, weather, and illumination
conditions.
Over the past few decades, numerous approaches have

been developed for road detection. According to the
structuralization degree, existing road detections can be
classified into two categories: paved road detection and

unpaved road detection [6]. For the well-paved roads
with remarkable road borders and lane markings, desir-
able road detection accuracy can be achieved by many
existing methods. However, unpaved roads are most
commonly seen in suburban, rural, and battlefield envi-
ronments. Since there are hardly any variant features to
characterize unpaved roads [7, 8], it is challenging to de-
velop a valid algorithm with computer vision. Obtaining
accurate road information under unfavorable interfer-
ences plays a critical role in unpaved road detection [9].
The main difficulty in unpaved road detection based on
computer vision is that the detection algorithm must be
able to handle complex and unknown scenes, such as
road types with variable illumination, different weather
conditions, and varieties of textural characteristics. Fur-
thermore, intelligent transportation systems generally re-
quire fast processing since the vehicle speed is bounded
by the processing rate [10]. All of these factors impact
the unpaved road detection results.
Some algorithms have been proposed for road detec-

tion by researchers. The algorithms can be mainly
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divided into three categories: feature-based, model-
based, and ML (machine learning)-based [11–13]. Algo-
rithms based on features usually extract significant and
stable features. These algorithms are very simple and
rapid. For example, color features [14] are often applied
to extract the road region from an image. However, they
do not work well for general road images, especially
when the roads have little color differences between
their surface and the environment. The traditional
feature-based algorithm is not suitable for complicated
scenes since it is insensitive to road shapes and is easily
impacted by watermarks, shadows, vehicles, and pedes-
trians. A series of features are analyzed to show their
ability to detect road surface from background. There-
fore, it is often combined with other algorithms for seg-
mentation processing to obtain proper features. The
top-down road recognition algorithm [15] combines
both the region and boundary cues of the images. With
an off-line classifier, it can detect road regions. Shang et
al. [16] proposed an approach to find a way to choose
the feature descriptors. Meanwhile, support vector ma-
chine (SVM) technology has been added to analyze the
importance of the common feature descriptors during
the road detection process. Compared with the feature-
based algorithm, the model-based algorithm matches the
mathematical model according to the prior information,
such as the road position, distribution, and shape. Kluge
et al. [17] proposed a deformable template model of lane
structures to locate lane boundaries without threshold-
ing the intensity gradient information. The Metropolis
algorithm is used to maximize a function that evaluates
how well the image gradient data support a given set of
template deformation parameters. The multi-modal road
detection and segmentation algorithm [18] is proposed
based on monocular images and HD (high definition)
multi-layer lidar data (3D point cloud). The detection al-
gorithm for road boundaries is proposed by using the
hyperbolic road model for moving images captured by
in-vehicle cameras [19]. This algorithm uses the detected
center lines based on edges for parameter estimation,
and only the region of validity of the detection result of
the center line is applied in the hyperbolic road model.
These algorithms have strict demands on the shape of
the road region and require precise mathematical
models. At present, this type of algorithm is mainly used
for simple road detection. The ML-based algorithm
needs to collect a large number of samples and training
parameters. Typically, SVM-based algorithm is applied
to road detection through semi-supervised or supervised
online learning [20, 21]. For example, Zhou et al. [22]
proposed an effective approach to use SVM for road de-
tection with self-supervised online learning. Yun et al.
[23] adopted the boosting, SVM, and random forest clas-
sifiers to evaluate the correlation feature set and raw

feature set. To fully utilize potential region feature corre-
lations and improve the classification accuracy, this algo-
rithm also introduces the feature combination method
into road detection. K-means algorithm and density-
based spatial clustering of applications with noise
(DBSCAN) algorithms are also significant means of clus-
tering road regions [24, 25]. Road detection is also im-
plemented using a neural network [26]. Although it can
achieve high accuracy, its performance often depends on
the large amount of training data and complex
computations.
The vanishing line is an important component in road

detection. With the aid of a set of prior information,
road detection is improved. The vanishing line is located
horizontally between the road and sky. The upper part is
the sky and the lower part is the road in general. The
distribution characteristics of the road region assist in
segmenting the road region to reduce the error rate of
vanishing line detection. Most common methods, such
as Prewitt, Sobel, and Gabor filters, detect the vanishing
line [27]. To date, many algorithms have attempted to
handle off-road conditions. These algorithms have their
own advantages and disadvantages. Compared with the
significant advances in paved road detection, little pro-
gress has been made for unpaved roads [10, 15].
When a vehicle is driven on an unpaved road, illumin-

ation variation easily leads to a poor visual condition,
which makes it difficult for the driver to distinguish the
unpaved road. Compared with the paved road, there is
still a large space for improvement in unpaved road de-
tection. First, with respect to road textures, unpaved
roads mostly have poor conditions, such as shadows and
ruts. Second, the road boundary is fuzzy and difficult to
identify. Sometimes the ruts are more obvious than the
road boundary. Last, there are some variable factors,
such as varying illumination and changing weather con-
ditions. It is significant to propose a good performing al-
gorithm using computer vision for practical applications
of unpaved road [10]. Therefore, we propose a new,
more efficient method for unpaved road detection based
on infrared images in this paper.
In this paper, we propose a novel algorithm for the un-

paved road detection based on infrared images that can
achieve good performance in terms of detection accuracy
and speed. It has a positive theoretical significance in de-
tection of the vanishing line, segmentation, and fuzzy clus-
tering. Recognition and boundary extraction of unpaved
roads based on infrared images can overcome illumination
and weather changes in the unpaved road. Specifically, we
use the detection of the vanishing line as assisting infor-
mation to segment the road to reduce the error rate. As a
result, our paper addresses the above-mentioned problems
of unpaved road detection by decomposing the road de-
tection process into several steps: (1) The region of
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interest (ROI) is obtained, and the trapezoid mode is
established. (2) An improved SVM classifier is constructed
based on the unidentified connected region, and a road
probability confidence map is also generated according to
the recognition results. (3) The road region is determined
by the spatial fuzzy clustering algorithm. The fuzzy C-
means (FCM) algorithm that combined with the trapez-
oidal forecasting model and the probability confidence
map is adopted to improve the accuracy of road boundary
detection. Meanwhile, gray-based histogram backprojec-
tion compensates for the missing parts after road cluster-
ing due to segmentation and other reasons. Therefore, we
can obtain more accurate boundary information.
The remainder of this paper is organized as follows.

The proposed algorithm is detailed in Section 2. Section
3 presents the experimental results and a discussion of
the proposed algorithm. Finally, Section 4 draws some
conclusions for the paper.

2 Methods
In this section, we detail the proposed FCM-based un-
paved road detection framework. It is designed with the
following steps: (1) vanishing line detection based on the
normal distribution with infrared images; (2) an image
segmentation method that uses the double-Otsu algo-
rithm and the trapezoid prediction is obtained; (3) image
classification with the improved SVM and construction of
the probability confidence map according to the classifica-
tion results; (4) spatial fuzzy clustering algorithm based on
FCM combined with the trapezoidal forecasting model
and the probability confidence map to complete road rec-
ognition; and (5) grayscale-based histogram backprojec-
tion to weaken the interference caused by road shadows.

2.1 Vanishing line detection
Normally, an unpaved road boundary is blurry and diffi-
cult to recognize. Real-time image information should
be utilized as much as possible to improve the detection
accuracy. Real-time video collected by an infrared
imager contains substantial prior information: (1) the
road presents fixed geometrical features, such as trian-
gles or trapezoid; (2) the upper region of the infrared
image is the sky, the middle area is the road, and both
sides are mostly non-road areas; and (3) consecutive
frames of infrared images present spatio-temporal con-
tinuity. The road changes are relatively continuous and
stable without abrupt changes. The position of the road
region in the next frame can be predicted based on the
image information in the previous frame.

2.1.1 Image pre-processing
Images captured by a vehicle-mounted infrared imager
have 702 × 576 pixels, as shown in Fig. 1. By removing

the worthless border, the image is resized to 696 × 450
pixels to obtain the ROI. Based on image pre-processing,
the original infrared image can remove noise to enhance
the contrast and weaken the inference in the image.
After histogram equalization, the infrared image is
shown in Fig. 2. The detailed boundaries of the road are
enhanced without affecting the overall contrast of the
entire image.

2.1.2 Vanishing line detection
Vanishing line detection can remove irrelevant areas
over the horizon to reduce computations and improve
accuracy. As the juncture area of the sky and the road
area, the vanishing line always appears as a longer line.
Furthermore, it has an obvious vertical gradient.
In this paper, the vanishing line detection and tracking

method based on the normal distribution is proposed
according to the estimate of the vanishing line. Bayesian
posterior is used to detect the vanishing line with a
priori probability that obeys the normal distribution.
When the current frame detects the vertical gradient
feature, the probability at position hm is:

p hm
tð Þ li tð Þ
���� �

¼
p li

tð Þ hm tð Þ
���� �

� p hm hm
t−1ð Þ

���� �

p l tð Þ
i

� � ð1Þ

where p(hm
(t)|li

(t)) is the probability of the vanishing line at
the position hmwhen the current frame detects vertical gra-
dient feature. The vertical gradient feature is the probability
of vanishing line denoted by p(li

(t)|hm
(t)). p(hm

(t)|hm
(t− 1)) is a

priori probability, that is, the current frame probability is
predicted from the last frame normal distribution. pðlðtÞi Þ
denotes the ith linearl in vanishing line probability.

Fig. 1 Infrared image
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where pðlðtÞi jhÞ is a constant to all of the image frames.
Bayesian posterior probability can be calculated with the
aim of accurately localizing the vanishing line.

2.2 Segmentation method
2.2.1 Double-threshold segmentation based on the Otsu
method
As one of the most effective and widely used methods
[28, 29], Otsu threshold method is adopted for road seg-
mentation. It selects a threshold using the histogram of
a grayscale image to find the image’s optimal threshold,
which maximizes the inter-class variance to obtain a lar-
ger separation between the foreground and background.
Moreover, it has low computation complexity, which is
suitable for a real-time system. Given an image I that
contains N pixels and gray levels ranging from 0 to m −
1, there are ni pixels for gray level i and its probability is
pi:

pi ¼ ni=N ð3Þ

N ¼
Xm−1

i¼0

ni ð4Þ

We set the threshold as t, the ratio of the number of
pixels in the ROI to the entire image area is denoted
asω0(t), and the mean grayscale value of the target re-
gion is μ0(t). The ratio of the pixels in the non-target re-
gion to the entire image is ω1(t), and the mean of non-
target region is μ1(t).We obtain the following equations:

ω0 tð Þ ¼
X
0≤ i≤ t

p ið Þ

μ0 tð Þ ¼
X
0≤ i≤ t

ip ið Þ=ω0 tð Þ

8><
>: ð5Þ

ω1 tð Þ ¼
X

0≤ i≤m−1

p ið Þ

μ1 tð Þ ¼
X

0≤ i≤m−1

ip ið Þ=ω1 tð Þ

8><
>: ð6Þ

Average grayscale value of the entire image can be
expressed as:

μ ¼ ω0 tð Þμ0 tð Þ þ ω1 tð Þμ1 tð Þ ð7Þ
The inter-class variance value ϑ:

ϑ ¼ ω0 tð Þ μ0 tð Þ−μð Þ2 þ ω1 tð Þ μ1 tð Þ−μð Þ2 ð8Þ
We choose T as the optimal segmentation threshold

when ϑ achieves the maximum value using the traversal
method.
Otsu threshold segmentation can effectively extract

the road region. However, the intensity between the road
and surrounding scenery is always small, which causes
poor segmentation results. Furthermore, the shadows
are closer to the non-road region. Therefore, threshold
segmentation can only be used for the initial classifica-
tion. To solve this problem, we proposed a double-Otsu
threshold segmentation method. For the initial segmen-
tation, Otsu method was used to obtain the threshold
T1. Then, it is used again to segment the image over the
T1~255 range to achieve the second threshold T2. After
that, two segmentation images can be obtained by
thresholds T1 and T2.
Accordingly, the thresholds ranging from 0 to T1 are

chosen for the same operation. We obtain the third seg-
mentation threshold T3, which ranges from 0 to T1.
Then, T3 is utilized to continue with the threshold of the
segmented image. Meanwhile, the image is divided into
blocks using the boundary auxiliary information. Figure 3

Fig. 3 Segmentation map based on double-Otsu method

Fig. 2 Image after histogram equalization
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shows the results of the double-Otsu method. In Fig. 3,
the white region represents the unknown region, the
middle black region denotes the road, and the left black
region represents the non-road. The obtained result is
better than that of one-time Otsu, which can be used to
recognize the road region from the non-road region.
The obtained segmentation results provide a foundation
for further research.

2.2.2 Trapezoidal forecasting model
Since the road region appears to have a trapezoidal geo-
metric shape, there are some correlations between two
adjacent frames that will not change in the video [30].
Therefore, the current frame can be used to predict the
next frame. The trapezoidal forecasting model is pro-
posed based on the characterization of the positional
distribution.
Trapezoidal forecasting model can be established with

the following steps: (1) To form a trapezoidal image, as
shown in Fig. 4a, b, for road prediction in the next
frame, four vertices are extracted from the previous
frame of the road region and give the value range. (2)
Based on the distance parameter of the trapezoidal fore-
casting model, the obtained trapezoidal region can be
used to determine whether the initial segmentation re-
sult is a road region. If the computed distance is far from
a certain value, the connected region is assumed to be a
non-road region. Otherwise, it is a road region. (3) To
extract the road area map as shown in Fig. 4c, we first
use the morphological erosion operation with a 3 × 3
disk-shaped structural element to estimate the back-
ground of the trapezoid vertex image (see Fig. 4b). Then,

the road boundary result (see Fig. 4d) can be obtained
by subtracting the background image from the original
trapezoidal vertex image. As shown in Fig. 4c, d, the re-
sults of boundary recognition are relatively accurate.
The advantage of this method is that it can cut off the
non-road region that is similar to the road region, such
as a trunk. However, trapezoidal forecasting model can-
not independently achieve excellent results.

2.3 Classification method
ML is often used for road recognition. As a supervised
learning technique, SVM selects an optimal hyper-plane
as a decision function. Taking into account the empirical
error and the complexity of the classifier, SVM is widely
used because it can optimize the road boundary [31–33].
Considering the complex recognition tasks, SVM is used
to classify road regions in this paper.
The training results are shown in Fig. 5. The white re-

gions are considered to be road regions, the black re-
gions are non-road regions, and the other regions are
undefined parts of undetected connected areas. The
error rates of the trained classifier and positive sample
are 7.52 and 1.08%, respectively. In Fig. 5, the road re-
gion has large shadow areas and some of it is cut off.
Some parts of the road region in the image are
unidentified.

2.3.1 Improved SVM classifier
For the SVM classifier, this paper presents two improved
methods: feature classification normalization and SVM
combination classifier.

Fig. 4 Trapezoid forecasting model. a Trapezoid vertex figure. b Trapezoid region. c Judged road area map. d Road boundary result
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Normalization method is adopted to normalize three
types of features (grayscale, position, and shape) in the
fusion process. This method can retain the dynamic
range of the features and affect the training results, but
it does not take into account the relationship among
several features and each feature within one type of fea-
ture. Therefore, we propose three features for classifica-
tion and normalization. There are a total of 1314
samples, including 467 positive samples (with 413 sam-
ples of road regions and 54 road shadows) and 467 nega-
tive samples (with 0, 5, and 462 samples of the sky
regions, the surrounding trees, and the non-road region,
respectively).
Figure 6 shows the classification result of

classification-normalized SVM. The obtained result is
more accurate and the road region is completely recog-
nized compared with Fig. 5. The error rate of the trained
classifier is 6.79% and the positive sample is 6.79%. The
testing time is between 0.003 and 0.006 s. Although the
classification normalization loses some of the details of
the image, it can retain the independence of each feature
and weaken the interference among the three features
caused by the fusion.

The SVM combination classifier separately trains three
types of feature information, and each piece of informa-
tion forms the non-classification normalization and clas-
sification normalization features. Therefore, six SVM
classifiers are formed depending on the two classifiers
and three features’ information. Then, we obtain a better
SVM classifier through the given weight parameters after
the training.
First, the feature information of grayscale, position,

and shape are collected. Then, the three features’ infor-
mation and one classifier regarded as the base classifier
are constructed. We choose one group with the lowest
training error rate in each base classifier as the training
set, which can be used to obtain SVM classifier. The ini-
tial weight of the base classifier is given with the corre-
sponding parameter calculated as follows:

ccwnew ¼ α � ccwold þ 1−αð Þ � ccw
pcwnew ¼ α � pcwold þ 1−αð Þ � pcw
acwnew ¼ α � acwold þ 1−αð Þ � acw
cnwnew ¼ α � cnwold þ 1−αð Þ � cnw
pnwnew ¼ α � pnwold þ 1−αð Þ � pnw
anwnew ¼ α � anwold þ 1−αð Þ � anw

8>>>>><
>>>>>:

ð9Þ

where ccwnew, pcwnew, acwnew, cnwnew, pnwnew, and anwnew,

respectively, represent as the training weights of the base
classifier in grayscale information non-classification, lo-
cation information non-classification, shape non-
classification, grayscale information classification, loca-
tion information classification, and shape information
classification. ccwold, pcwold, acwold, cnwold, pnwold, and
anwold, respectively, represent the last corresponding
training weight of the base classifier. The last confidence
measure is denoted as α = 0.5. ccw, pcw, acw, cnw, pnw,
and anw denote the calculated weights in this group.
The formula is given as:

ccw ¼ nccr−ncce
total

pcw ¼ npcr−npce
total

acw ¼ nacr−nace
total

cnw ¼ ncnr−ncne
total

pnw ¼ npnr−npne
total

anw ¼ nanr−nane
total

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð10Þ

where nccr, ncce, ncnr, ncne, npcr, npce, npnr, npne, nacr,
nace, nanr, and nane, respectively, represent the base clas-
sifier that predicts the correct or wrong numbers of the
normalization of non-classification and classification
grayscale information, location information, and shape
information in this group. Their summation is calculated
as follows:

Fig. 5 SVM classification result

Fig. 6 Result of classification-normalized SVM
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total ¼ nccr−ncce þ npcr−npce þ nacr−nace
þ ncnr−ncne þ npnr−npne þ nanr−nane

ð11Þ

The parameters and the training results of six base
classifiers are shown in Table 1. The added contents are
the parameter c denotes penalty factor and σ2 represents
the kernel function parameter. Each base classifier uses
its own penalty factor and kernel function parameters.
The training time is 587 s, and the highest support vec-
tor tree is 100%. The final discriminant is as follows:

SVM ¼ ccw � SVMcc þ pcw � SVMcp þ acw � SVMca

þ cnw � SVMnc þ pnw � SVMnp þ anw � SVMna

ð12Þ

After training, we get the weight parameters of each
classifier: ccw = 0.1347, pnw = 0.2486, anw = 0.347, ccw =
0.1100, pnw = 0.2544, and anw = 0.1176. The error rate of
the combined SVM classifier is 5.04%; the positive sam-
ple error rate is 2.05%, and the testing time is between
0.011 and 0.025 s. The result is shown in Fig. 7.

2.3.2 Construction of a probability confidence map
A confidence map is established according to the results
of SVM discriminant connected area. We set the confi-
dence values as 0 and 1 to represent the non-road region
and road region, respectively. The formula of the prob-
ability confidence is as follows:

p ¼
1

f xð Þ=2þ 0:5
0

f xð Þ≥1
−1 < f xð Þ < 1

f xð Þ≤−1

8<
: ð13Þ

The probability confidence map is converted into a
visual image. The conversion formula is calculated as:

I i; jð Þ ¼ 256�p ð14Þ
There is an unrecognized background region in the

image that has not been subjected to SVM discriminant,
except for the connected region. Given that the result of
SVM discriminant is 0, the probability confidence is 0.5
which cannot identify road region or not. The grayscale
value is 127 in the probability confidence map.
The converted probability confidence map is shown in

Fig. 8. (1) In the first group (Fig. 8a, b), the road region
and road shadow region are marked as white and near
white, respectively. This represents the shadow region
belonging to the road region based on the SVM method.
(2) In the second group (Fig. 8c, d), the road region and
road boundary region are marked as white and near
white, respectively. The non-road region is on the right
side of the image and is marked as black. The grayscale
value of the gray region on the top and left side of the
image is smaller than 127. With the substantial color of
probability confidence map, SVM method can correctly
discriminate the road region from the non-road region.
(3) In the last group (Fig. 8e, f ), the white region repre-
sents the road region, while the other connected regions
are marked as black except for the non-discriminated re-
gions. The probability confidence map shows that the
connected region is related to the road region, with a
more robust stability and fault tolerance.

2.4 Clustering method
We propose to use Otsu method to obtain connected re-
gions and regard each of them as a data point, which
can greatly reduce the size of the data set and computa-
tional complexity. However, the data points will be
sparser and the number of outliers will be increased due
to the reduction of data sets. It is crucial to select proper
initial parameters and features. The road region is gener-
ally in the lower middle image with a relatively stable
grayscale value.

Table 1 Training results of six basic classifiers on penalty factor c and kernel function parameter σ2

Adopted normalized feature c σ2 Training time (s) Number of positive samples Accuracy (%)

Gray feature (non-classification) 4 256 587 1027 82.9

Location feature (non-classification) 8 8 309 518 41.4

Shape feature (non-classification) 8 512 291 538 43.0

Gray feature (classification) 8 1 291 1314 100.0

Location feature (classification) 8 1 271 1314 100.0

Shape feature (classification) 4 1 339 1144 87.1

Fig. 7 Combination of SVM classification result
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It is reasonable to divide the road into three categor-
ies, as shown in Fig. 9, which are the ideally segmented
road regions. The selection of the initialization has a
very significant influence on the performance and results
of the clustering analysis. The initialed cluster centers
are usually several points that are randomly selected
from the given data set or the position of a peak of the
histogram. In this paper, the size of the processed data
set is relatively small, and therefore, it easily generates
empty clusters. The road region clustering problem can
be solved by the prototype clustering model. FCM clus-
tering is one of the prototype clustering methods.

2.4.1 Road identification based on FCM algorithm and
trapezoidal forecasting model
There are many methods for fuzzy clustering [34, 35],
and FCM clustering is adopted in this paper. X = {x1, x2,
..., xm} is defined as a dataset that contains k clusters C1,
C2,..., Ck. wij is a membership value that indicates that
the ability of xi belongs to Cj, and the sum of the mem-
bership values wij for a given point xi is 1. X = {x1, x2, ...,
xm} represents the input data point set in FCM

Fig. 8 Probability confidence maps. a Original image 1#. b Probability confidence map1#. c Original image 2#. d Probability confidence map 2#.
e Original image 3#. f Probability confidence map3#

Fig. 9 Prior schematic diagram
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algorithm, the number of clusters is C, and the output
membership value is w.
In this paper, the points are [x, y, k ∗m, d ∗ t], where x

and y are the central row and column coordinates of the
connected regions, respectively. k denotes the propor-
tional coefficient of the grayscale and the positional infor-

mation is k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
height2þwidth2

p
256 . m is the gray scale mean

value of the connected regions. d denotes the proportional
coefficient of the predictive value and the spatial location
information. t is the prediction features. Second, the clus-
ters are separated into three categories and the membership
matrix is initialized. When the membership matrix is ini-
tialized, we select the virtual center in advance. The center
point is defined as:[110, 100, k ∗ thres, d ∗ t], [110, 596, k ∗
thres, d ∗ t], [255, 348, k ∗ thres, d ∗ t], where the predictive
parameter value d is set as 100 and k = 3.24 by height = 450
and width = 696. Then, the initialized membership matrix
is calculated. Finally, the parameter value of p is set to 2.
The above clustering procedure can be found in [36]. After
the calculation, the connected region is sorted into the
highest membership degree.

2.4.2 Road probability determination based on FCM
algorithm and trapezoidal forecasting model
A single continuity prediction or a single discriminant is
prone to generate errors. When the probability confi-
dence map is used as the prediction model, the accuracy
of SVM classifier cannot achieve 100%. Although FCM
clustering algorithm can reduce the error rate of SVM
algorithm, the efficiency improvement is limited. The
probability confidence map only addresses each frame
image and usually neglects the important characteristic
of video continuity in the video.
There are still some problems that occur by only using

the trapezoidal forecasting model. For example, if the ve-
hicles’ speed increases too fast, the road continuity will
be difficult to maintain in some situations, especially in
excessively fast turns. In this case, the continuity of the
road is greatly influenced by the concentration of traffic.
As shown in Fig. 10, some parts of the road region are
not recognized by the trapezoidal forecasting model
when the road changes rapidly. Moreover, there are
some errors in the identification of the road boundary.
The combination of the two types of forecasting infor-
mation is proposed in this paper.
The results from FCM clustering algorithm belong to

class membership. Based on the characteristics of FCM re-
sults, we propose a discriminant correction model, which is
based on FCM algorithm and trapezoidal forecasting model
of road probability decision model. After the FCM iteration
is finished, the connected region of the largest membership
class can be regarded as a preliminary result. Furthermore,
the membership degree is recalculated by using the mem-
bership probability-based confidence map. Finally, a class of
connected regions can be selected by means of the max-
imum degree of the membership class. The probability con-
fidence map represents the probability of the road region.
In this paper, FCM is divided into three categories. The first
category is the road region, and the other two categories
belong to the non-road region. The recalculated member-
ship formula is as follows:

Fig. 10 FCM clustering result based on trapezoid prediction model

Fig. 11 FCM clustering road boundary recognition result based on
probability confidence map

Fig. 12 Backprojection probability map of infrared image
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wnew ¼ w�p; max wð Þ∈ c1
w� 1−pð Þ; max wð Þ∉ c1

�
ð15Þ

where c1 denotes the first class, w is the membership
after the stopping iteration, and wnew is the final mem-
bership of the connectivity region. p is the probability
confidence for this connected region, and max(w) is the
category of the maximum membership. With the im-
proved method, road region identification and road
boundary recognition obtain higher accuracy.
Compared with Fig. 10, for the same video frame,

Fig. 11 shows a more accurate road recognition result
that agrees with the actual environment.

2.4.3 Road recognition based on histogram backprojection
method
We consider that the above-mentioned algorithms are
all based on connected regions. However, they may lead
to incomplete recognition of the road boundary in the
following three cases:

1. There are undetected connected regions in the
video.

2. Morphological erosion is used to segment the
connected region, which reduces the undetected
regions as well as reduces the road regions.

3. The non-road connected region is too large or too
small, which results in inaccurate road regions.

The histogram backprojection method of the road re-
gion model can solve the above-mentioned problems.
This method, which is based on pixels, effectively com-
pensates for the drawbacks and disadvantages of the
connected region as a basic unit.
The histogram backprojection method converts the

color histogram of the original image into a color prob-
ability distribution. The pixel grayscale value of the ori-
ginal infrared image represents the image intensity. The
pixels in the probability map are used to recognize the
connected regions to determine the real road region.
Figure 12 shows the effect of histogram backprojection.
Although the result of FCM clustering is good, it is

not precise enough to use the connected region as the
basic unit to recognize the road region. In this paper, the
pixel grayscale value of the histogram is used to com-
pensate for the missed road parts using histogram back-
projection method. First, the histogram is formed by the
statistical distribution of the pixel values in the recog-
nized road region. Then, the brightness of the histogram
peak at the corresponding point is calculated, which re-
serves the grayscale 0.8 to 1.2 times. Histogram is cut off
as the probability density curve of the road. The entire

Fig. 14 Road region marking diagram Fig. 15 Road region based on backprojection probability map

Fig. 13 Backprojection probability map based on road region model. a Original image. b Backprojection probability map
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image is transformed into a histogram backprojection
probability map. The histogram backprojection probability
of the image transformed by FCM cluster for the road’s
gray-based model is shown in Fig. 13.
On the basis of the histogram backprojection, the road

regions and road edges are obtained by combining the
results of the road region recognition based on the prob-
ability confidence of FCM with the trapezoid prediction
model. Road region recognition is complemented by the
histogram backprojection. This process involves the fol-
lowing steps: (1) The boundary of the auxiliary backpro-
jection probability map is used to segment the image,
while the top region of the vanishing line is removed. (2)
Road region recognition based on FCM and the prob-
ability confidence map of the trapezoid prediction model
is marked by white pixels (255). From Fig. 14, it can be
seen that the white area (compared with the real road
region) is missing. (3) Whether to keep or delete the
connected region depends on the presence of the white
mark in the residual connected region of the statistical
backprojection probability map.

The new road region is used to recognize the road
boundary, and the corresponding recognition result is
shown in Fig. 15. It observed that the road boundary is
more accurate and accordant with the characteristics of
human vision. The histogram backprojection method
based on grayscale values has a good effect on road re-
gion recognition, which compensates for the deficiency
of the connected region.

2.5 Implementation
The system is implemented on a PC (Intel Core i5 at
3.30 GHz with 16 G RAM). The average running time of
every image frame is evaluated with Matlab R2015a on
Windows 7. The system is tested under complex field
conditions for vanishing line detection, image segmenta-
tion, and clustering. Grayscale histogram with infrared
images is used for feature correspondence. We deliber-
ately selected video clips that were recorded under diffi-
cult conditions. All of the images used in our
experiment are downloaded from a vehicle-mounted in-
frared imager.

3 Results and discussion
In this section, first, we describe the experimental set-
ting, including the sample collection, the parameters,
and classifier choice. Then, the comparison of the van-
ishing line detection results is depicted. Finally, we com-
pare the proposed approach with the state-of-the-art
approaches in terms of accuracy and time consumption.

Fig. 16 Samples after labeling

Fig. 17 Error rate with different Rbf parameters

Table 2 Performance comparison of three SVM classifiers

SVM classifier Determination time
(s)

Accuracy rate
(%)

Non-classified normalization 0.0023~0.0043 92.48

Classified normalization 0.003~0.006 93.21

Combination of base
classifiers

0.011~0.025 94.96
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3.1 The experimental setting
3.1.1 Sample collection
Three features (grayscale, position, and shape) are used
as the extracted features. Although there is no RGB (red,
green and blue) color information, the infrared image
can provide plenty of information in grayscale. Grayscale
frames in the road region are different according to
changes in the road conditions, but the grayscale distri-
bution in a continuous video is stable. Furthermore, the
grayscale value of the road shadow is lower than that of
the road region, where the background is on both sides
of the road in the image. In a relatively simple scene, lo-
cation information can also provide a priori information
which is very important in road recognition. For ex-
ample, the road is at the bottom and the middle of the
image, while the sky is at the top. In addition, we adopt
the shape features due to the meaningful connected re-
gions extracted in our paper.
In this section, extensive experiments are discussed

that were used to validate the effectiveness of the pro-
posed approach on a private image database from a
Chinese military project. The infrared images captured
by the vehicle-mounted infrared imager have a fixed
702 × 576 resolution with the D1 format. We marked 93
images that were selected from the vehicle-mounted in-
frared video in natural fields. These selected images con-
tain road bends, forks, and shadows, which are used to
validate the effectiveness of the proposed approach by

comparing the results with the ground truth. The recur-
ring objects in the images roughly contain roads,
shadows, sky, surrounding trees, and other non-road re-
gions of unknown materials. The marked results are
shown in Fig. 16: white (255) represents the road, and
black (0) represents the shadowed parts of the road. The
sky is marked as 180, the non-road and unknown re-
gions are marked as 120, and the trees are marked as 60.
Then, we extracted features from the marked images to
generate a total of 1854 samples. Among them, there are
826 road samples and 94 road shadow samples, totaling
920 positive samples. Furthermore, there are 934 nega-
tive samples with 0, 10, and 924 samples of the sky re-
gions, surrounding trees and non-road regions,
respectively. Ten-fold cross-validation is adopted to se-
lect the smallest error as the training set.

3.1.2 Parameter setting
Radial basis function (Rbf ) kernel is chosen and the ker-
nel function parameter σ2 and penalty factor c are deter-
mined by the grid method. There are 25 different
groups. σ2 takes [2-2,2-1,20,21,22], and c takes
[21,22,23,24,Inf]. We chose the minimum error rate group
as the selected parameter in the groups. The number of
training samples is reduced to 102 to save time. The
classification performance of different parameters is
shown in Fig. 17. It can be seen that the error rate is the

Fig. 18 Vanishing line detection. a Vertical gradient map based on Sobel operator. b Vanishing line detection result

Fig. 19 Result comparison of vanishing line detection. a By Sobel operator and b by normal distribution
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smallest when setting σ2 = 1 and C = 8 are used as the
parameters for the training set.

3.1.3 Classifier selection
In this paper, we proposed three SVM classifiers: the
non-classified normalization classifier, classified
normalization classifier, and combination classifier with
the above two classifiers, as shown in Table 2. Although
the accuracy of the combined classifier is high compared
with the other two methods, the discriminant procedure
is time-consuming. The accuracy of the classification
normalization classifier is relatively higher compared
with that of the non-classification one, and the add-
itional time is in an acceptable range. Therefore, we
make a trade-off among the three methods to choose
the classification normalization as SVM classifier for
road recognition in this paper.

3.2 Comparison of vanishing line detection
For vanishing line detection, Sobel operator is usually
used because it has important characteristics, such as
fast learning and simple operations that can be used to
quickly obtain continuous and smooth boundaries. Sobel
operator extracts vertical gradient features, as shown in
Fig. 18a. It is easily seen that the vanishing line is very
obvious in the vertical gradient. In fact, it appears as the
longest straight line located in the upper part of the
image. Therefore, the vanishing line can be acquired by

scanning the image to search for the longest straight line
as shown in Fig. 18b.
The unpaved road suffers from the following issues

such as interference caused by shadows and ruts.
Sobel operator ignores the complex structural rela-
tionships in unpaved roads and therefore can hardly
achieve an accurate road detection result. As seen
from Fig. 18a, there are some interferences and devia-
tions of the vanishing line. In order to solve this
problem, we present a normal distribution method as
shown in Fig. 19b. By comparing the results in
Fig. 19a with those in Fig. 19b, we observe that the
normal distribution method that adds a priori infor-
mation is more effective than Sobel operator.

3.3 Analysis of image clustering methods
In this work, several methods are considered for detect-
ing road regions. To make a comparison, we also report
results for some state-of-the-art detection methods, in-
cluding those based on (1) DBSCAN method [24] and
the result is shown in Fig. 20, (2) K-means method
[25] and the result is shown in Fig. 21, (3) least squares
method [17], and (4) histogram [15]. To achieve a more
valid comparison, we adopt the evaluation mechanism
proposed in [37] to analyze the results from the above
road detection algorithms. Accuracy is defined as
follows:

Fig. 20 DBSCAN clustering and road boundary recognition. a Clustering result. b Road boundary recognition

Fig. 21 K-means clustering and road boundary recognition. a Clustering result. b Road boundary recognition
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Accuracy ¼ TPþ TN
TPþ FPþ FNþ TN

ð16Þ

where true positive (TP) is the number of correctly la-
beled road pixels, true negative (TN) is the number of
non-road pixels detected, false positive (FP) is the num-
ber of non-road pixels classified as road pixels, and false
negative (FN) is the number of road pixels erroneously
marked as non-road. The better detection algorithm’s
performance can obtain the greater accuracy value.
Before calculating the accuracy, we first transform the

gray images in Fig. 16 (the ground truth) into binary im-
ages. In our experiment, we regard white (255) and black
(0) as the road and the other conditions are the non-road.
Here, the road pixels are 1 and the non-road pixels are 0.
Moreover, we record the total time consumption and

accuracy of all of the methods, as shown in Table 3.
As seen in the aforementioned analysis, it is easy to

note that our algorithm achieved obvious improvements
and better performance and is more adaptive to real-
time road detection.

4 Conclusions
In this paper, we present a method of unpaved road recog-
nition and boundary extraction using infrared images. In
the proposed approach, the accuracy and robustness of
vanishing line detection can be achieved by means of a nor-
mal distribution. The improved SVM classifier is trained
with the optimal radial kernel parameters and penalty fac-
tor parameters for road detection. Meanwhile, the im-
proved SVM classifier achieves recognition of the
unpredictable road from connected regions. Based on the
obtained connected regions, the road probability confi-
dence map and trapezoidal forecasting model are formed.
Furthermore, we also propose a more suitable FCM cluster
to further improve the accuracy of road region recognition.
After that, the membership of each connected region can
be obtained. The corresponding probability confidence
map is able to update the membership degree of the con-
nected region. The accuracy of the results is 93.20%. Finally,
histogram backprojection method based on the pixel model
is used to complement a road region. The experimental re-
sults show the advantages and effectiveness of the proposed
algorithm.
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