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Abstract

Semantic segmentation of an image scene provides semantic information of image regions while less information of
objects. In this paper, we propose a method of hierarchical semantic segmentation, including scene level and object
level, which aims at labeling both scene regions and objects in an image. In the scene level, we use a feature-based
MRF model to recognize the scene categories. The raw probability for each category is predicted via a one-vs-all
classification mode. The features and raw probability of superpixels are embedded into the MRF model. With the
graph-cut inference, we get the raw scene-level labeling result. In the object level, we use a constraint-based geodesic
propagation to get object segmentation. The category and appearance features are utilized as the prior constraints to
guide the direction of object label propagation. In this hierarchical model, the scene-level labeling and the
object-level labeling have a mutual relationship, which regions and objects are optimized interactively. The experimental
results on two datasets show the well performance of our method.
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1 Introduction
Semantic segmentation is a fundamental task in computer
vision, which is a basic work for many applications, such
as image editing, image-based modeling and autonomous
driving [1–3]. The typical approaches of semantic seg-
mentation include the parametric ones [4–8] and the
nonparametric ones [9–13], which both achieve promis-
ing performance. Previous works focus on assigning a
unique category label to each pixel correctly, generat-
ing region segments with semantic information. However,
these segments have little information of objects in the
scene. Specifically, all the objects from the same category
are considered as a whole object, thus making it difficult
to distinguish different instances. For clarity, we use the
same object definition as that used in [14, 15], in order to
differentiate from material. The objects are better char-
acterized by overall shape than local appearance, while
material categories have no consistent shape but fairly
consistent texture.
Besides the typical semantic segmentation approaches,

many approaches aim at the accuracy improvement of
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object segment, such as the interactive segmentation
[16–18] and the co-segmentation [19–21]. In these works,
the prior of latent object is provided with either the user
scribbles or the object coherency to generate exact seg-
ments, while these segments usually have no semantic
information of objects.
In fact, the details of objects are useful for precise under-

standing of the image scene. For example, in Fig. 1, the
scene-level semantic labeling tells us that this image shows
person and horse in a natural scene. The object-level
semantic labeling gives us more details about the scene,
such as the numbers of person and horse, and the lay-
outs of each person and horse. With these details, we can
even infer that this scene may be a snapshot of a polo
game. Therefore, object details are effective for precise
scene parsing, and should be predicted accurately. Con-
sidering the diversity of objects in texture, shape and pose,
object labeling is still a challenge problem, though there
have been several approaches dealing with this problem
[1, 15, 22, 23].
In this paper, we propose a hierarchical semantic seg-

mentation method which aims at understanding both
scene regions and objects. Under the assumption that the
scene-level and the object-level labeling are stimulative
for each other, we first get a scene-level labeling via a
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Fig. 1Motivation. From left to right, the initial image, the motivation of scene-level labeling, and the motivation of object-level labeling. In the
scene level, different colors indicate different categories. In the object level, different colors indicate different objects

feature-based MRF, and then utilize the category prior as
well as the appearance features to improve the labeling
of object. We give a definition of object labeling which
is similar to that of semantic labeling, i.e., assigning a
unique object label to each pixel. Then a constraint-based
geodesic propagation algorithm is proposed to achieve
object segments.
The main contributions of this paper include the fol-

lowing: (1) A multi-level semantic labeling framework is
proposed for understanding of both regions and objects;
(2) A constraint-based geodesic propagation algorithm is
introduced for object labeling. The rest of this paper is
organized as follows. A precise overview is described in
Section 2.1. Then Sections 2.2 and 2.3 give the details
of scene-level and object-level labeling respectively. We
show our experimental results in Section 3 and give a brief
conclusion in Section 4.

2 Methods
2.1 Hierarchical model overview
The framework of our hierarchical model includes scene-
level labeling and object-level labeling. The overview is
illustrated in Fig. 2.
In the scene-level labeling, we use a feature-based MRF

model to recognize categories in a scene. To make the
labeling more efficiently, we over-segment the image
into a set of superpixels using turbopixel algorithm [24].
On the over-segmented image, pixel-wise features are
mapped into a feature vector of the corresponding super-
pixel, including filter responses, boundary features, pyra-
mids of HOG, and RGB colors. We utilize a one-vs-all
classification mode to get the raw probability for each
category. The raw probability and features are embed-
ded into the MRF model as unary potential and binary
potential respectively. With the graph-cut inference, we
get the raw scene-level labeling result. Besides, we con-
duct object detection with SVM algorithm, predicting
object candidates. The number of instances is identi-
fied based on the raw probability and object candidates.
The final scene-level labeling is adjusted with the object-
level labeling, generating a more precise scene-level
result.

In the object-level labeling, we conduct saliency detec-
tion to get the saliency map. The region of interest (ROI)
for objects is obtained based on the saliency map and the
raw probability map. A graph model is formulated over
this ROI, of which a node denotes one superpixel and an
edge denotes the adjacency of superpixels. The weights
on edges are computed from multi-dimension features of
each superpixel, including the HOG descriptor, texture
descriptor, Lab colors, and gradient features. These fea-
tures are different from those used for scene-level labeling.
The weights on nodes consist of the saliency confidence
and the raw probability, which are mapped into geodesic
distance. We conduct geodesic propagation on the graph
model. In each step of propagation, a node with the small-
est geodesic distance is selected as the seed node. We fix
the label of this seed and update the status of its neighbors
for next propagation step. When all the nodes are fixed,
we get the object labeling result.

2.2 Scene labeling
2.2.1 Features for recognition
We utilize a one-vs-all mode to train the classifier for each
category with dense samples from the training images.
The feature vector fv(i) of superpixel i consists of filter
response features [4], boundary features [25], pyramids of
HOG [26], and RGB color features. The filter response,
boundary and color features are sampled for each pixel,
and mapped to superpixel level by averaging pixels over
each superpixel. The pyramids of HOG are computed over
a patch region of each superpixel. In testing, the classifiers
learned by the Joint Boosting algorithm [4] generate the
initial raw probabilities of each category l for i, which is
denoted as P(i, l).

2.2.2 MRFmodel
The objective of scene-level labeling is to assign each
superpixel i a category label li from fixed category label set
L. The energy E(L) of our MRF model over all superpixels
is defined as follows:

E(L) =
∑

i
ψ(li) + λ�

∑

(i,j)
φij(li, lj), (1)
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Fig. 2 Overview of our framework. See the text for more details

The unary term ψ(li) measures the cost of assigning
label li to superpixel i , and the pairwise term φij(li, lj)
measures the penalty of different assignment between
similar adjacent superpixels i and j. Our unary term is an
exponential form of the normalized raw probabilities, i.e.
ψ(li) = exp(−P(i, l)). Our binary term is computed as
exp(−z ∗ (‖fv(i) − fv(j)‖)2) ,where z is a normalization
parameter.
We use graph-cut algorithm [27] to get the scene-

level labeling result. The region of object category can be
refined with the following object-level labeling.

2.2.3 Recognition for objects
It is a challenge to identify object number accurately in the
scene. We first perform object detection to get a raw esti-
mation of object candidates. The detectors are learned by
SVM algorithm, proposing a set of object hypothesis {H},
in which each h ∈ {H} has a bounding box and a score.
Then, we rank these hypotheses according to their scores
and prune the hypotheses whose scores are lower than
threshold Th. The rest hypotheses in the pruned {H} are
the object candidates that need to be labeled. In our imple-
mentation, Th is learned on the training images with their
bounding boxes. We estimate the score distribution with
95% confidence interval. Theoretically, Th should be the
value which meets over 95% true positive predictions, i.e.,
over 95% bounding boxes whose scores are higher than
Th are true positive. Considering the outliers of bounding
box in testing, however, we broaden this restriction and
actually select Th as the value which meets over 85% true

positive predictions, expecting to reduce the false negative
predictions.
In practice, when Th can not work well for a spe-

cific image, for example, if the pruned {H} has no object
candidates or much more object candidates than com-
mon amount, then we adjust the number of candidates
experimentally.

2.3 Object labeling
The objective of object-level labeling is to assign each
pixel a unique object label. The scene-level labeling gives a
rough region of object category. We perform object label-
ing on such region instead of the whole image. In this
section, we start with how our ROI region is identified.

2.3.1 ROI region
Objects in an image scene usually attract more attentions
of a human being than materials; therefore, we assume
that saliency detection may predict valid object region.
Some approaches have utilized saliency information for
object segmentation [28, 29]. In our implementation, we
utilize the algorithm of Goferman et al. [28] to get a down-
sampling output saliency map, and then up-sampling out-
put to the original size of an image. An example of saliency
map is shown in Fig. 3.
For a specific category C, the ROI region of its instances

is supposed to include (1) superpixels whose probabili-
ties of C are higher than other categories, (2) superpixels
whose probabilities of C are higher than a threshold Tp,
and (3) superpixels whose saliency values are higher than
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Fig. 3 Saliency map. The brighter the region is, the higher object probability it has

a threshold Ts. The thresholds Tp and Ts are estimated
in the similar way to Th. We estimate the distributions
of raw probability and saliency respectively on training
images. Then the values which meet over 85% superpixels
are selected as Tp and Ts respectively.

2.3.2 Feature weights on graph
Once the ROI is identified, a graph model is then for-
mulated, where each node denotes one superpixel in the
ROI and each edge denotes the adjacency of superpix-
els. The weights on graph consist of appearance features,
including the HOG descriptor, texture descriptor, Lab col-
ors, and gradient features. The first three types of features
are embedded in the weights of nodes, and the gradi-
ent features are embedded in the weights of edges. These
features are different from the fv used for scene label-
ing. We observe experimentally that, for object labeling,
color features in Lab space perform better than that in
RGB space. We leverage these features as the prior con-
straints. Each kind of feature is described in a bag of words
style, as did in [30]. A pixel-level HOG spatial pyramid
is constructed with 8×8 blocks, 4 pixel step size, and 2
scales per octave. These HOG features are concatenated
into a one-dimensional vector.We cluster these features to
1000 kmeans centers, resulting in a HOG descriptor. The
pixel-level texture features are extracted with a Gaussian
filterbank and quantized to nearest 256 kmeans centers.
The histogram of 256 bins is used as the texture descriptor.

In Lab color space, the color features are densely sampled
and quantized to the nearest 128 kmeans centers. The gra-
dient features which reflect the boundaries of objects are
used as propagation constraint, including both horizon-
tal and vertical gradients. All these pixel-level features are
mapped to superpixel level. The HOG, texture and color
features are encoded as the weight difference D(i, j) in a
linear combination, as shown in Eq. 2.

D(i, j) = λ1 ∗ ‖Fhog(i) − Fhog( j)‖
+ λ2 ∗ ‖Ftex(i) − Ftex( j)‖
+ λ3 ∗ ‖Fcolor(i) − Fcolor( j)‖

(2)

where i and j denote the adjacent nodes, Fhog , Ftex, and
Fcolor indicate the HOG, texture, and color features. In
our implementation, we set λ1 0.1, λ2 0.3, and λ3 0.6
experimentally.

2.3.3 Geodesic propagation
The geodesic propagation is considered to be valid for
semantic labeling [12, 31]. We follow the definition of
geodesic distance in [12, 31], while modify the details of
implementation.
In the graph model for geodesic propagation, the weight

on node is computed as the geodesic distance, and the
weight on edge is the difference cost. The object labels
propagate iteratively throughout all the superpixels in the
ROI. If the raw probability of node i for category C is

a b c d
Fig. 4 Annotations of Polo. a The initial image, b the groundtruth labeling of categories, c the groundtruth labeling of instances, and d the
bounding boxes of instances. Best viewed in color
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a b c d
Fig. 5 Annotations of TUD. a The initial image, b the groundtruth labeling of categories, c the groundtruth labeling of instances, and d the
bounding boxes of instances. Best viewed in color

higher than Tp and the saliency value of i is higher than Ts
as well, The weight on node i consists of the probability,
the saliency and the bounding box score. Otherwise, the
weight on node i consists of the probability of other cate-
gory and the negation value of saliency, as shown in Eq. 3.

Op(i, o) =
{
ib(i, o) ∗ B(o) + P(i,C) + S(i), �w

(1 − P(i,C)) + (1 − S(i)), else
(3)

s.t. �w : P(i,C) > Tp ∩ S(i) > Ts

where Op(i, o) denotes the probability of each node i
belong to the object o, P(i,C) is raw probability of category
C, S(i) is the saliency value of i. ib(i, o) indicates whether
i is inside of the scope of o, ib(i, o) ∈ {0, 1}. B(o) is the
detected bounding box score of o.
The weights on nodes are normalized and converted to

initial geodesic distances, as shown in Eq. 4. The geodesic
distances have inverse proportion to weights, i.e., a node
with a higher weight has a shorter distance.

geoDis(i, o) = exp(1 − Op(i, o)) (4)

At the beginning of propagation, all the nodes have the
status unlabeled. In each step of propagation, the node
with the shortest geodesic distance among all labels of all
nodes is selected as the current seed s. The related object
label l of this distance is identified as the final label of s,
thus the object label of s is determined. Then the node s
has an updated status labeled, and will not be considered
in the following propagation. Next, the unlabeled neigh-
bors of s are prepared for the update of their geodesic
distances. As shown in Eq. 5, ifD(s, j) is lower than thresh-
old T1 and the gradient difference bdry(s, j) between s and
its neighbor j is lower than threshold T2, then the weight

Table 1 Performance comparison of scene-level labeling on Polo

Method Total accuracy Average accuracy

Shotton [4] 83.9 77.1

Ours 85.3 81.7

on edge We(s, j) is equal to bdry(s, j), else it is a combina-
tion of D(s, j) and bdry(s, j). λd and λb are set to 0.2 and
0.8 experimentally.

We(s, j) =
{
bdry(s, j), �d

λd ∗ D(s, j) + λb ∗ bdry(s, j), else
(5)

s.t. �d : D(s, j) < T1 ∩ bdry(s, j) < T2

If the sum of geoDis(s, o) and We(s, j) is shorter than
the previous distance geoDis(j, o), we update geoDis(j, o)
with the new distance, else we maintain the geoDis(j, o)
unchanged.

geoDis(j, o) =
{
geoDis(s, o) + We(s, j), �c

geoDis(j, o), else
(6)

s.t. �c : geoDis(s, o) + We(s, j) < geoDis(j, o)

3 Results and discussion
3.1 Dataset and experimental setup
To evaluate the performance of our method, we use the
public datasets Polo [13, 15] and TUD [32, 33].
Polo dataset. This dataset contains 317 polo scene

images, including 6 categories, i.e., sky, grass, person,
horse, ground, and tree. We split these 317 images into
80 training images and 237 testing images, as did in
[13, 15]. The horse and person category are the object
categories, and the others are material categories. The
80 training images contain 208 horse instances and the
237 testing images contain over 500 instances of differ-
ent poses, appearances, and scales. Each image in this
dataset contains one or more than one object instances,
some of which have occlusions. Therefore, this dataset is
applicable to test the performance of object labeling.

Table 2 Performance comparison of scene-level labeling on TUD

Method Total accuracy Average accuracy

Shotton [4] 95.1 91.9

Ours 95.5 92.8
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Fig. 6 Examples of scene-level labeling result on Polo dataset. Best viewed in color

In this dataset, the category annotation map of each
image is provided, while the annotations of object
instances are not given. In order to evaluate our method
quantitatively, we need to annotate the groundtruth of
object instances. For an object category, to make our
object annotation fit with the category region of provided
annotation, we develop an annotation tool which tailors
our annotation to its category boundary. In this way, pix-
els outside our object annotation are considered as void.
In addition, we also annotate the bounding boxes for the
training of object detection.
The label maps of category and object are shown in

Fig. 4b, c respectively. In (b), different colors indicate dif-
ferent categories. In (c), different colors indicate different
instances. Black indicates void in both category and object
label maps. We order the instances in a scene by their lay-
outs from left to right. The first instance is visualized in

red, and the second in yellow, etc. Subfigure (d) shows the
annotated bounding box of each instance.
TUD dataset. This dataset is priviously used for track-

ing by detection. It provides 201 images from a pedestrian
sequence with 1216 tight bounding boxes and instance
annotations of the pedestrians. Most of the pedestrians
are side-view poses and many are partially occluded in
the whole sequence. Pedestrians with at least 50% visibil-
ity are annotated in this dataset. We randomly split 100
images for training and the other 101 images for test-
ing. In this dataset, the category annotation maps are
not provided, thus we annotate the categories manually,
including ground, person, building, and car. Besides, we
make the annotation of person category fit with the given
instance annotations. As illustrated in Fig. 5, the colors in
(b) indicate the category labels and the colors in (c) and
(d) indicate instances.

Fig. 7 Examples of scene-level labeling result on TUD dataset. Best viewed in color
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a b c
Fig. 8 Comparison of raw labeling and final labeling of our method. a The image. b, c The raw and final labeling respectively. Our method improves
the boundaries of objects

Baseline methods. We adopt several baseline methods
for quantitative comparison. For scene-level labeling com-
parison, the baseline is referred to that of Shotton et al.
[4], which is the typical method in scene-level man-
ner. For object-level labeling comparison, the baseline
methods include E-SVM and HV+GC, similar to that of
[15]. E-SVM generates segmentation by transferring tem-
plate masks to the detected objects. HV+GC gets the
instance segmentation by performing GrabCut on the
voted hypotheses.
Running time. The average resolution per image is

roughly 500*350 pixels for Polo dataset , and 640×480 pix-
els for TUD. Our implementation of Matlab code takes 5
min for learning per image, and less than 1 min for label-
ing of scene-level and object-level on a desktop with a
3.2-GHz Intel i5 CPU and a 12-Gb memory.

3.2 Scene labeling results
For the Polo dataset, we select 10 sample training images
from the training set to learn our object detector. These
sample images include object instances with variation in
scale, pose, and occlusion. The other 70 images of train-
ing set are used as validation. The learned detector is
performed on each test image, generatingmultiple bound-
ing box predictions, which are denoted as {H}. We prune

Table 3 Performance comparison of object labeling on Polo

Method Mi-AP Mi-AR Ma-AP Ma-AR

E-SVM 38.5 33.6 43.9 38.3

HV+GC 44.6 38.7 61.7 49.4

He and Gould [15] 50.9 53.7 57.4 68.8

Ours 55.3 58.2 61.7 71.8

{H} to include up to 7 objects, with Th equal to 0.35
experimentally.
For the TUD dataset, we also select 10 sample images

from the training set. Images in this dataset have
some similarities since they are from the same tracking
sequence. To avoid overfitting, we take a validation with a
subset of training images instead of the whole training set.
The {H} is pruned to include up to 10 objects.
We modify the framework of TextonBoost [4] with 500

round traning times to generate the raw category proba-
bility. In the graph-cut optimization, we set the configura-
tion of 1000 times iteration.
We use two metrics for scene-level labeling compari-

son, i.e., total accuracy and average accuracy. The total
accuracy is the overall accuracy per pixel, and the average
accuracy is the average accuracy per category. Tables 1 and
2 show the comparisons on Polo and TUD datasets. As
we can see from these tables, our method performs bet-
ter than that of Shotton et al. [4] in both total and average
accuracy, especially the average one. The reason is that our
method performs well for both material and object cate-
gories, while theirs is good at the material categories but
poor at the object categories. Figures 6 and 7 show some
examples of our scene-level labeling result on Polo and
TUD datasets respectively.

Table 4 Performance comparison of object labeling on TUD

Method Mi-AP Mi-AR Ma-AP Ma-AR

E-SVM 33.7 29.5 49.5 33.0

HV+GC 24.9 42.9 41.6 51.9

He and Gould [15] 62.6 56.9 64.8 64.5

Ours 62.9 59.8 65.6 64.7
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Fig. 9 Examples of object labeling result on Polo dataset. Different colors indicate different instances. Other categories are visualized as void

Figure 8 shows the raw labeling and the final label-
ing of our method. The raw labeling is the initialization
of probabilities. The final labeling is fine-tuned with our
object labeling result. Comparing these two results, our
method improves the overall accuracy as well as the object
segmentation. See the figure for details.

3.3 Object labeling results
The accuracy of object labeling is different from that
of semantic labeling. For example, assigning a wrong

category label to a pixel will make an inaccurate under-
standing of scene; however, assigning a wrong object label
to a pixel will not change the fact that it is an object
of given category, as the purpose of object labeling is to
partition the multiple instances of the same category.
Therefore, we use different criteria for object labeling.

We calculate four evaluation metrics of (1) pixel-wise
precision rate per object averaged over all object pre-
dictions (Mi-AP), (2) pixel-wise recall rate per object of
groundtruth (Mi-AR), (3) pixel-wise precision rate over all

Fig. 10 Examples of object labeling result on TUD dataset. Different colors indicate different instances. Other categories are visualized as void
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pixels (Ma-AP), and (4) pixel-wise recall rate over all pixels
(Ma-AR).
To compare quantitatively with the groundtruth, we

need to search the matching pairs between the predic-
tion and the annotation. We reorder the segments of each
instance from left to right, thus the matching pairs can be
found efficiently. The comparisons of object labeling on
Polo and TUD are listed in Tables 3 and 4. According to
these tables, our method performs better than that of He
and Gould [15] in the four metrics. Besides, we are better
than the baselines of E-SVM and HV+GC, except in the
Ma-AP of the Polo dataset.
In our experiment, the threshold Tp and Ts are 0.3 and

0.45, T1 and T2 are 0.85 and 0.5 for the Polo dataset.
For TUD dataset, these parameters are 0.5, 0.2, 0.85, and
0.8 respectively. Some examples of object labeling result
are shown in Figs. 9 and 10. These examples include
multiple instances in different scales, poses, and even
occlusions. Different instances are visualized in differ-
ent colors and the region of non-object is visualized
as void.

4 Conclusions
In this paper, we propose a hierarchical semantic seg-
mentation method of both scene-level and object-level
labeling. The two levels work together to give a more
accurate understanding of an image scene. In the scene-
level, we use a feature-based MRF model to recognize
the categories. In the object-level, we use a constraint-
based geodesic propagation to segment each instance. The
experimental results show the good performance of our
framework. However, a most important prior for object
segmentation is not used explicitly in this work, i.e., shape
information. Therefore, in future, we attempt to utilize
the shape prior to improve the accuracy. We are going
to set up a new dataset of our own for object labeling,
which includes much more object instances than the two
datasets we used in this work. In future, we will evaluate
and improve our method and conduct many comparison
experiments on our dataset.
Besides, we will utilize more discriminative features to

segment object instances, such as the features captured
by convolutional neural networks. Our method can be
applied to autonomous driving systems, robots, etc. Con-
sidering the computational complexity, we may refer to
some parallel methods [34, 35].
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