
RESEARCH Open Access

A fast framework construction and
visualization method for particle-based
fluid
Fengquan Zhang1*, Zhaowei Wang1, Jian Chang2, Jianjun Zhang2 and Feng Tian3

Abstract

Fast and vivid fluid simulation and visualization is a challenge topic of study in recent years. Particle-based
simulation method has been widely used in the art animation modeling and multimedia field. However, the
requirements of huge numerical calculation and high quality of visualization usually result in a poor computing
efficiency. In this work, in order to improve those issues, we present a fast framework for 3D fluid fast constructing
and visualization which parallelizes the fluid algorithm based on the GPU computing framework and designs a
direct surface visualization method for particle-based fluid data such as WCSPH, IISPH, and PCISPH. Considering on
conventional polygonization or adaptive mesh methods may incur high computing costs and detail losses, an
improved particle-based method is provided for real-time fluid surface rendering with the screen-space technology
and the utilities of the modern graphics hardware to achieve the high performance rendering; meanwhile, it
effectively protects fluid details. Furthermore, to realize the fast construction of scenes, an optimized design of
parallel framework and interface is also discussed in our paper. Our method is convenient to enforce, and the
results demonstrate a significant improvement in the performance and efficiency by being compared with several
examples.

Keywords: Art visualization, Multimedia, Fluid simulation, Bilateral filter, Particle-based

1 Introduction
Realistic and real-time simulation of physically based
fluid is a hot research topic in virtual reality. Fluid simu-
lation is used in many areas such as art visualization,
video game, image effects, industry simulation, and
entertainment media. Physically based method has been
applied in fluid simulation for achieving vivid and high--
quality visual image. In interactive fluid simulation, as
one common physical simulation method, the particle-
based method, such as Smooth Particle Hydrodynamics
(SPH), has been extensively used for creating realistic
image effects of fluids in image and video game due to
superiority of Lagrangian representations [1, 2].
In these technologies, however, the rendering of fine

details and lower cost for fluid surface are usually the
complex problems because of the irregularly moving and

expensive consumption, and some works have been
presented to address this problem [3–6]. Among these
methods, solving a scalar density field has been shown
to be an effective method. Since it is general that the
method needs to compute a polygonized isosurface of
3D field with marching cubes, the resolution of mesh
will make a large influence about the quality of fluid
surface and performance. The other issue comes from
employing the computational power and parallelism of
the accelerated GPUs. We find that there are few data
dependencies in the standard particle-based method.
This makes it possible to enforce the simulation and
rendering on the GPUs platform, thus decreasing the
complex data exchange between system and graphics
memory.
In this work, we focus on the parallel framework

design and visualization method for fast constructing
and online rendering. The key characteristic of this work
is that the entire physical simulation, including SPH
computation and visualization of the particle sets, is

* Correspondence: nicky2008@163.com
1Beijing Key Laboratory on Integration and Analysis of Large-scale Stream
Data, North China University of Technology, Beijing, China
Full list of author information is available at the end of the article

EURASIP Journal on Image
and Video Processing

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79
DOI 10.1186/s13640-017-0227-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0227-9&domain=pdf
mailto:nicky2008@163.com
http://creativecommons.org/licenses/by/4.0/

carried out on our proposed parallel framework. As far
as we know, this is the first address about the design of
particle framework which can execute all the simulation
works from solution deployment to fluid image effects.
The main contributions of our work are as follows:

(1).Efficient visualization. A direct surface visualization
pipeline for particle fluids such WCSPH, IISPH, and
PBF is designed based on screen-space method,
which utilizes GPU programmable pipeline to filter
internal particles in geometric handling and can ren-
der fluid surface by visible particles in sub pixels. In
order to get smooth surface, a new filtering model is
presented, instead of Gaussian filter, the bilateral fil-
ter is used for depth image to create smooth fluid.
Our method does not need conventional surface
reconstruction steps and protects details.

(2).Fast constructing. Based on the features of less data
dependencies in particle methods, we propose a fast
constructing framework on the multi-GPU platform.
A flexible interface is designed to deploy art effects
conveniently based on the unified message layer. A
concept of particle buffer is presented to execute the
particle system management, and the algorithm is
abstracted to a running instance. The framework can
automatically establish the system mapping accord-
ing to the requirement of user, which guarantees
that the operation of application is fast and friendly.

2 Related works
The real-time fluid simulation is a challenge work,
where the animation or art visual special is computed
with a large scale of numerical modeling. Difficulties in
the creation of an efficient method for fluid dynamics
arise from the difference of appearances of animation
which can be obtained bubbles, fluid-solid interaction,
multi-phase interface, viscoelastic object et al. [7–11].
Existing methods such as predictive-corrective incom-
pressible SPH (PCISPH), point-based fluid (PBF), and
implicit incompressible SPH (IISPH) [12–16] create
many vivid fluid animations with various characters.
However, most of methods of simulation and
visualization are unreal-time due to the complexity of
physics computing. SPH is a famous particle-based
method to get fluid behaviors, and it has the specialty in
high degree of parallelism and has been tested on the
variety of Graphic Processing Units (GPUs) platform
[17–19]. SPH method can well accelerate by these de-
vices and obtain a high speedup, which provide a solid
foundation for online simulation and rendering. The
earliest computer unified device architecture (CUDA)
implementation of the SPH fluid was executed on the
platform of INGV-CT [20]. Then, the full implementa-
tion on a single GPU was presented on some projects

[21, 22]. With the increasing of requirement, multi-GPU
versions of the SPH were introduced to simulate higher
resolution of particle fluid [23, 24]. Based on their
works, we will build a parallel framework to realize the
objective in this paper.
In recent years, the visualization techniques of fluid

are presented to reconstruct surfaces in many literatures.
The main difficulty in surface reconstruction is not only
to create smooth surface, but also to protect fine details,
for example splashes, sheets, and droplets [25]. The
traditional methods for visualization of fluid are
polygon-based, voxel-based, and point sprite algorithm
[3, 26]. A mesh-based level-set method was proposed in
[27], which generated good fluid surface but with the
high computing cost. Zhu and Bridson [4] proposed a
method with an implicit function to get scalar field
creating smooth surfaces. However, the technique leads
some artifacts in concave regions. Guennebaud and
Gross [28] presented an improved Moving Least Squares
(MLS) method to improve the stability in low sampled
and high curved sections. Unfortunately, because the
computing of projection is cost expensive, it cannot be
used for upsampling points in real time. In [29], an
adaptive scalar field model was proposed for recon-
structing fluid surface. Although it can generate high
quality fluid, its accuracy depends on very large Marching
Cube (MC) grids, resulting in the large computational
time and memory requirements. Akinci [30] employed a
multi-pass rendering method to reconstruct large-scale
particle fluid surface with GPU pipeline, which had a good
performance improvement compared to with ray casting
method. However, it is only for rendering of form and
foam fluid.
In this paper, our visualization method is inspired by

the technique of [6], which renders surface using the
screen-space algorithm. Compared with the traditional
method, method [30] can render large particle fluids on
the GPU and avoid grid drawbacks. However, there are
some limitations when used for rendering surface. First,
the surface of fluid is not smooth enough, especially in
concave regions. Then, the effects of lighting are not
natural and cannot effectively preserve the details of
splashes and droplets. Moreover, it is easy to emerge
boundary diffusion due to the method of filtering. Our
interface of parallel framework is inspired by the method
of [24], which implements the SPH simulation on mul-
tiple GPUs. However, method [24] is not fit for fluid ren-
dering. With the widely demand in complex art effects,
designing a high efficient framework for particle fluid is
a very important requirement. Therefore, based on the
feature of particle method, a friendly interface of parallel
framework is designed in this paper, which can adap-
tively model and produce image effects and animations
by fast construction.

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 2 of 13

3 Particle-based framework
Some particle-based methods have been presented in
fluid simulations. Below, we focus our implementation
using SPH method and briefly introduce the standard
SPH model. In SPH, the fluid is expressed by irregular
particle sets, and each particle has its mass and density.
In each time step, physical quantities can be computed
with summing up the weighted contributions of around
particles. For particle i, mass mi, position ri, and density
ρi are interpolated by a sum of the weighted of neighbor-
ing particle j as

ρi ¼
X

j mjW rij; h
� � ð1Þ

where rij = ri − rj, W is the smoothing kernel and h is the
smoothing length. In our simulation, m and h are con-
stant. The pressure pi is computed by a function of the
density of the filed, and the Tait equation is used as

pi ¼ kρ0
ρi
ρ0

� �γ

−1
� �

ð2Þ

where γ and k are stiffness coefficient and ρ0 is the rest
density. In SPH framework, the pressure and viscous
force of particles are derived from the Navier-Stokes
equation as

ρi
φvi
φt

¼ − ∇h pi rið Þ þ μ Δh vi rið Þ þ f i ð3Þ

where vi is the velocity of particle i, fi is an external
force as gravity, μ is the viscosity coefficient, and
〈∇p〉(ri) and 〈Δv〉(ri) denote the pressure gradient and
the velocity Laplacian. We refer readers to see [2] for
more details about different particle methods and
applications in image and animation effects.

4 Method
Before visualization, we first show some data to illustrate
the relation of the number of particles and computation
time. Although the method of adaptive meshing can
retain some details, it incurs much performance cost in
sampling, and hardly achieve real-time rendering with
GPU. As is shown in Table 1, when the number of parti-
cles increases from 122 to 234 K, the time of surface
reconstruction increases by 2.121 times meanwhile ren-
dering time increases by 1.134 times. It then can be

indicated that the time of surface reconstruction has
positive correlation with the scale of particle sets.
To improve the problem shown above, we design and

realize a direct rendering algorithm based on screen
space for particle-based fluid, which utilizes GPU
programmable pipeline to filter internal particles in geo-
metric handling, and render fluid surface by visible parti-
cles in subpixels. The proposed algorithm does not need
surface reconstruction steps in conventional rendering
and retains all the details in original simulation. Major
steps are summarized as follows:

(3).Do background mapping rendering;
(4).Generate fluid geometric buffer: draw particles as

spheres, then use hardware depth measurement to
acquire surface depth, compute, and save fluid
texture information in the shader;

(5).Use depth information acquired in step 2 to
smoothen the depth;

(6).Draw all 3D points as spheres and compute fluid
depth by hardware Alpha;

(7).Do fluid shading: apply illumination algorithm on
geometric buffer to compute refraction and
reflection rays by fluid depth and then use the rays
to sample from background mapping for presenting
background color, at last, fuse these colors.

Background is used to define non-transparent models
and environment whereas foreground means transparent
solid object and fluid. The above algorithm decouples
foreground and background rendering. For background
rendering, any known method is allowed as long as the
rendering can retain non-transparent objects’ depth buf-
fer value. In this way, the proposed algorithm can be
easily integrated with existed systems [31, 32].

4.1 Background mapping rendering
The background mapping is adaptively rendered by dy-
namic selecting proper pipelines. The selection process
is explained as follows. The number of non-transparent
objects is expressed as Ns, the number of lights as Nl,
and the ratio of these two values as v =Ns/Nl. We then
define a threshold value as n. When v < n, rendering
pipelines based on screen space is used. Otherwise, con-
ventional rendering pipeline is used. Since depth of
background mapping is required for fluid rendering,
frame buffer is turned on after a certain rendering pipe-
line is chosen to draw scenes into textures as back-
ground mapping. If the forward pipeline rendering is
chosen, the depth mapping is required when setting
frame buffer. If the screen space rendering is chosen, the
depth information in its geometric buffer can be used
repeatedly.

Table 1 The time relation of surface reconstruction, rendering
in different number of particles

Time 122 K 234 K Ratio (1.91)

Surface reconstruction (ms) 24.101 51.094 2.121

Rendering (ms) 29.728 45.054 1.134

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 3 of 13

When v < n, we use the technology of deferred shading
for rendering of screen space, which includes the geo-
metric processing stage and the lighting computation
stage. In the stage of geometric stage, it only uses geo-
metric data of object in the scene, and it is responsible
for transforming the vertices into the viewing coordinate
at the same time the filling of the position of vertex, the
direction of the normal vector, and the color of the dif-
fuse reflection into the G-Buffer. In the process of light-
ing computation, the data in G-buffer and the properties
of the light source are used to calculate the illumination
of each pixel by texture operation.

4.2 Generation of fluid geometric buffer
We can utilize hardware acceleration function of GPU
to remove invisible primitives in geometric handling.
Rendering depth is defined as z value from near to far
range. Then after perspective transformation, a new z′

value can be expressed by

z
0 ¼ farþ near

far�near
þ 1

z
�2�far�near
far�near

ð4Þ

After z’ s normalization in [− 1,1], the value of near
range plane is in − 1 while the value of far range plane is
in 1, then all primitives out of this range will be removed
automatically by hardware and would not be involved in
the next step of pipeline rendering. The value saved in
depth buffer is the nonlinear depth value z’ of the primi-
tive in the eye coordinate system.
We apply point sprites to draw 3D particle point cloud

to make sure that each applicable 3D point covers
minimal pixels in rasterization. Point sprites, a regular
Billboard method, refer to a movable image on the
screen. Simple point sprites image bear one-to-one cor-
respondence with pixels on the screen. In this way, GPU
will generate texture coordinates ((x, y) x, y ∈ [0, 1]) for
each 3D point and discard pixels outside the range of x2

+ y2 < = 1. Therefore, pixels in screen circles can be cov-
ered in rasterization.
Since point sprites contain only 2D information, its range

has to be defined in rendering according to perspective
principles. The value would contribute to the rendering
quality; therefore, different weights are assigned to different
scenes. In this paper, we use the scale by point of sight as

Sp ¼ vs
a
d ð5Þ

where vs denotes the projection length on Z axis, and d
for the distance from the viewing plane. Weight factor a,
is subject to amendment for artistic purposes.
In fragment, we amend the depth of point sprites to

make sure that overlapping surface particles can pass
hardware depth test and retain details. More specifically,

we use the point position Peye, normal vector Np, and
the value of point sprites to compute projection on the
screen space Pprj as

Pprj x; y; z;wð Þ ¼ Mp Peye þ SpNp
� � ð6Þ

Np denotes the normal vector of point sprites on the
screen space. And from the texture coordinates (x′, y′) in
the local coordinates system, we can infer that

Np ¼ x′; y′; 1−x2−y2
� � ð7Þ

Then, the amended depth Dn can be expressed as the
ratio of component z and w:

Dn ¼ Pprj zð Þ
Pprj wð Þ ð8Þ

In screen space, rendering, shading, and illuminating
computation are processed in fragment, when 3D primi-
tives are transferred into 2D information corresponding
to depth value. Some of the geometric information can
be retrieved by the fragmented 2D information and
depth value, such as the coordinates of a point in the
eye coordinate system whereas irrecoverable information
has to be written into frame buffer in primitive vertex
processing stage as texture output. After the depth value
is amended, the new depth is written into hardware
depth buffer by the fragment shader. Then, the buffer is
filled and outputted by the layout of fluid geometric buf-
fer as shown in Table 2. The geometric buffer of particle
consists of four channels. We use 32-bit 4-channel float-
ing point textures to fill the buffer, where the RGBA four
channels store the corresponding geometric properties.
The remaining bits save the material properties of fluid
using the pack mode. R channel is a 32-bit floating data
that saves z value of current point in the eye coordinate.
G channel is a 32-bit pack value, which saves the color
of the transparent object. Each color component is
stored in 8-bit memory space. B channel is used for the
absorption coefficient. The attenuation factor of light is
represented with three 8-bit binaries. A channel is 32-bit
pack value that holds the transparent property, where
24-bit position is used to store the index of refraction of
the transparent object and 8-bit holds the transparency.

4.3 Generation of fluid surface
Geometric buffer which generates surface fluid takes
place in GPU primitive vertex processing and fragment
stage. At this stage, geometric buffer only contains out-
most information of SPH simulation particles, namely
the geometric information of 3D points covering fluid
surface. SPH simulation uses particles to express fluid.
Although the introduction of point sprites ensure that
all points contributing to the screen pixels are rendered,
discrete points cannot create a smooth fluid surface.

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 4 of 13

To smooth particle’s depth buffer, we combine with
the characteristics of GPU rasterization rendering. Gen-
erally speaking, Gaussian functions are often used for
smoothing purposes in image processing by applying
high-pass filtering on the original image. Yet the priority
of Gaussian filter is pixel’s spatial distance, so little con-
sideration is given to the resemblance of pixels. There-
fore, the result is always fuzzy and obscure with much
detail loss, as is shown in Fig. 1b, image smoothed by
kernel function as Eq. 9, in which u and v are pixel’s co-
ordinates, and standard deviation in Gaussian distribu-
tion. Gaussian smoothing is the process of computing
the weight average of surrounding pixels.

G u; vð Þ ¼ 1
2πσ2

e−
u2þv2

2σ2 ð9Þ

From Fig. 1b, we can see that smoothing on the same
image and depth range can produce satisfying results,
whereas obvious details loss occurs when there is a depth
difference or the margin is outside Gaussian smoothing.
We then use bilateral filter to smooth fluid depth buffer as
is shown in Fig. 2c. Different from Gaussian filter, bilateral
filter can retain margin since it weighs both spatial distance

and the similarity of pixels. Figure 2d shows the original 3D
color frequency images, and the smoothed images are
shown by Gaussian and by bilateral filter respectively. It is
clear that bilateral filter smooth high-frequency signals
while retaining marginal features of the original image.
In Gaussian filter, surrounding pixels are assigned with

different Gaussian weight and then are averaged. A
weight factor is generated by the spatial distance be-
tween two pixels. From the Gaussian distribution curve,
we know that the closer one pixel is to the target pixel,
the bigger its contribution to the final result is, and also
vice versa. The advance of bilateral filter is to add an-
other weight factor to retain marginal details, as is
expressed in

h xð Þ ¼ k−1 xð Þ
Z ∞

−∞

Z ∞

−∞
f ξð Þc ξ; xð Þs f ξð Þ; f xð Þð Þdξ

ð10Þ

kr xð Þ ¼
Z ∞

−∞

Z ∞

−∞
c ξ; xð Þs f ξð Þ; f xð Þð Þdξ ð11Þ

where h(x) is the image of the result. s denotes pixels’
similarity, c(ξ, x) for spatial similarity, and kr(x) for result

Table 2 The mode of buffer allocation

The layout of geometry buffer

R (32 bit) G (32 bit) B (32 bit) A (32 bit)

Peye(Z) Color Absorption coefficient Transparent property

R (8 bit) G (8 bit) B (8 bit) A (8 bit) Ar (8 bit) Ag (8 bit) Ab (8 bit) Null Refractive index (24 bit) Transparency (8 bit)

Fig. 1 Comparison of different smoothing methods. a Unsmoothed. b Smoothed by Gaussian filter. c Smoothed by bilateral filter. d From the left
to right: original image, Gaussian filter, bilateral filter

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 5 of 13

normalization. It integrates two weight factors. c(ξ, x)
and s(ξ, x) is defined respectively as

c ξ; xð Þ ¼ e
−1
2

d ξ;xð Þ
σd

� �2

ð12Þ

s ξ; xð Þ ¼ e
1
2

σ f ξð Þ;f xð Þð Þ
σd

� �2

ð13Þ
Equations (11) and (12) are infinite integration in the

space. In this paper, we use the function of summation
of its discrete condition, in a 4*4 pixel space as

h xð Þ ¼ k−1 xð Þ
X

Ωf ξð Þc ξ; xð Þs f ξð Þ; f xð Þð Þ ð14Þ

For making the comparison clearer, we render the
smoothed image by our method. From the Fig. 2, we can
find that image processed by our bilateral filter creates
smoothed surface and protects droplets at the same
time.

4.4 Integration of foreground and background mapping
After the geometric buffer is generated, we first use the
bilateral buffer on its depth buffer to obtain a smooth
surface, and then, we integrate foreground and back-
ground scenes by background mapping. At last, we add

a step as post-production to enhance the fluid photo-
realistic and output the result into the frame buffer. As
is shown in Fig. 3, the arrows indicate sequences of out-
put buffer in different stages.
Since the traveling of light in transparent medium is

subject to Beer–Lambert law, monochromatic light, after
passing through medium with thickness, it loses lumi-
nous strength since the medium absorbs part of its lumi-
nous energy. The denser the absorbing medium is, the
medium is thicker, and the luminous loss is more obvi-
ous. The relation can be briefly expressed by

A ¼ lg
1
T

� �
¼ K ∙l∙c ð15Þ

where T stands for transmittance, K for absorption coef-
ficient, l is the thickness, and c is the density of the light
absorption object.
A vivid simulation of transparent fluid requires the

thickness of the fluid. But the information generating
fluid geometric buffer is in the screen surface; therefore,
it cannot be recovered from the geometric buffer. We
need to compute the fluid thickness on the viewing
plane from 3D point cloud. In order to do so, we intro-
duce point sprites again. Different from generation of

Fig. 2 The smoothed image by our filter. a Before smoothing. b After smoothing

Fig. 3 Mapping process

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 6 of 13

geometric buffer, we turn off hardware depth detection
and use GPU’s alpha mixing function to acquire thick-
ness. The weight is calculated by

T ¼ Nze
−2r2 ð16Þ

where Nz stands for normal vector’s component on z
axis,and r for radius of point sprites. In fragment, the ac-
quired thickness is packed into 8-bit tri-channel frame
buffer. Thickness value has little weight in shading;
therefore, we use down sampling for thickness image
generation. The frame buffer in 1/4 original resolution is
used to output the thickness image. The original reso-
lution is used for sampling in later integration. The lin-
ear interpolation of GPU can smooth depth buffer.
Foreground-background shading and integration are

carried out in screen space. More specifically, back-
ground mapping and fluid geometric buffer structure are
used in fragment buffer for foreground-background inte-
gration and fluid shading. First, for the pixel in question,
we retrieve sample S from its corresponding geometric
buffer. The sample will define property of pixel. If sam-
ples component on R, SR > 0, then the pixel contains
fluid information, and illumination on the pixel should
be computed first before shading. On the contrary, the
background color can be copied and output as the
current pixel color. If the pixel in question has fore-
ground information, we should also compute illumin-
ation before shading. Since bilateral filter has already
done for fluid particle depth buffer, we should recon-
struct Peye(Z) according to the formula as follows:

Peye ¼ −uv x; yð Þ f x; f y
� �

zeye; zeye
� �

ð17Þ

zeye = sx, uv (x, y) are pixel coordinates in the screen
space. fx and fy are calculated by the frame buffer and
field of view:

f x ¼ tan fovð Þ�aspect; f y ¼ tan fovð Þ ð18Þ

At the same time, the reconstructed Peye(Z) is intro-
duced to calculate the pixel’s normal vector in the eye co-
ordinates system. First, we set the calculated point as the
center, as shown in Fig. 4a, and then we use difference op-
eration of surrounding pixels depth information to acquire
base of local coordinates, and finally, we apply multiplica-
tion cross to obtain the normal vector in the eye coordi-
nates system. More specifically, we acquire surrounding
pixel’s sample in UDLR directions and reconstruct Peye(Z).
The acquired four points can be then used to calculate the
local bounding box, as shown in Fig. 4b:

Lbb ¼ min x; y; zð Þ; max x; y; zð Þ ð19Þ

Normal vector of the point is expressed in:

N0 ¼ normalize Lbb minð Þ � Lbb maxð Þð Þ ð20Þ
The reconstructed Peye and surface vector N0 are

introduced into Phong illumination model to calculate
foreground color and output color value is as C0. Thick-
ness value T0 is sampled from thickness mapping. The
fluid property on the pixel in question is obtained in the
fluid geometric buffer. The direction of refracted light,
Lr is computed after two refractions by the method of
paper [31]. The new color value Cb is sampled from
background mapping according to Lr. At last, we use Eq.
21 to compute the final pixel color C and output the
results to the frame buffer.

C ¼ Cbe
1
T0 þ aC0 ð21Þ

5 Results
5.1 Framework of platform
In order to make full use of computing resources of
CPU and GPU, we construct a mixing of CPU-GPU

Fig. 4 The reconstruction of normal. a Centre point. b Local bounding box

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 7 of 13

heterogeneous physical accelerating architecture based
on service clusters, which provide a convenient and effi-
cient simulation platform for particle-based fluid. The
parallel acceleration platform includes a multi-GPU
cluster system. Each computing node includes four GPU
devices. The details of platform are as follows:

(1)Multi-GPU clusters. The node machine uses Intel-
based commercial server, and different nodes are
linked with high-speed communication network.
Each node contains multiple high-performance
GPUs.

(2)Unified message layer. It encapsulates CUDA and
OpenMP as a unified message passing layer. Message
Passing Interface (MPI) is a popular parallel
programming environment, which is used to transfer
and control various data and information. In the
CUDA programming model, the GPU as a
coprocessor generates a large number of threads to
solve the data that can be expressed as parallel data
with a very high computational density. This layer is
the basis for accelerating platform and is responsible
for resource scheduling and computing
parallelization.

(3)Engine of simulation and visualization. It includes
two engines of physics computing and surface
rendering. The engine uses the component
architecture, and the specific algorithm is
implemented by plug-ins, which ensures the robust-
ness of the system and flexible scalability.

(4)Performance analysis. The platform developers can
realize different physical simulation and rendering
algorithms, while providing performance analysis
function is to facilitate tracking and analysis of
system performance.

Users in the parallel acceleration platform have two
different roles: general users and system administrators,
as shown in Fig. 5. The system administrator is the re-
sponsible for the general maintenance of system, net-
work security, data confidentiality, software hardware
upgrade, system deploy, and configuration. The platform
can provide unified portal and resource of high perform-
ance for the general users to deploy their computing and
simulations. From the perspective of general users, the
parallel platform is consistent, and users can query the
current system operation, such as the number of GPUs
and available storage size. General users also can utilize
the programming interface provided by the platform to
build, submit, and enforce more effective and convenient
computational resource for various applications. Fur-
thermore, the platform can support various computa-
tional tasks by opening the underlying interface for
special users.

5.2 Interface design
SPH is a meshless Lagrangian method, which uses par-
ticle interpolation to calculate the fluid dynamics. The
basic equations of fluid mechanics are transformed into
the SPH equation, which can be evaluated by the kernel
function. Particularly, the kernel function and
interpolation method are the core concerns of SPH solu-
tion. Therefore, we integrate a variety of parallel imple-
mentation of physics kernel functions to meet the
requirement of different users. With the increasing num-
ber of particles, it can be accelerated by computing re-
source of the GPU clusters. Although multi-GPU
clusters can effectively solve the computational task of
large-scale particles, the design and development of par-
allel program for the ordinary developers and re-
searchers are difficult and still need to take time to
learn. Therefore, in order to effectively utilize the plat-
form with simplifying the development and deployment
of the algorithm, we define the advanced development
interface based on the unified message layer and we de-
fine the advanced development interface based on the
unified message layer, which optimizes the particle

Fig. 5 The use case of platform

Fig. 6 The design of platform interface

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 8 of 13

simulation. Through the abstraction of the simulation
process, the hardware details of the multi-GPU cluster
are hidden so that the developer can focus on the devel-
opment of the algorithm itself.
For the interface of platform, each program executes the

SPH algorithm becoming a running instance as shown in
Fig. 6, and each instance holds the current context (host
context) of the current runtime. The client context main-
tains the delivery of the current application with the cluster

message and the distribution of the data. In the design of
the development interface, the client does not have to
communicate with the nodes in the cluster, just obtain
through the front and end of the controller, and the con-
troller’s role is equivalent to the proxy and interpreter, by
interpreting the client’s message asynchronous to complete
the task of the establishment and distribution. Controller
back-end automatically maintains work unit (Worker) with
heterogeneous unified communication platform based on

Fig. 7 Parallelize the serial instruction

Fig. 8 The instance of fluid-solid PBuffer

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 9 of 13

tasks’ loads. Each worker can use its storage resource for
the specific computing tasks. The communication and data
exchange between the work units are also done by the uni-
fied communication platform.
The client API abstracts the SPH calculation process

into large granularity commands, such as creating a par-
ticle (CREATE), setting a particle attribute (PROP), and
creating an accelerated structure (CREATE_ACC). The
client program uses the commands provided by the API
to design the serial SPH algorithm. When the program
is running, the client context will synchronize these
commands and submit them to the controller. Then, the
controller will interpret the instructions in the execution
command stream buffer. For mapping the present serial
instruction to parallel instruction of multi-GPU cluster,
the computing units are dispatched by the unified com-
munication platform, and the cell and controller can
have two-way communications, as shown in Fig. 7.

5.3 Buffer design
In order to meet the wide requirements of fluid
image effects, our framework concerns the particles
of different properties. For example, the fluid-solid
interaction coupling method includes two types of
fluid and solid particles. In this case, an efficient
mechanism for describing different particles is re-
quired. In addition, to hide the development details
of the parallel program by users, the platform needs
to provide a unified interface to manage the storage
strategy. In view of the above problems, this paper
presents the concept of particle buffer (PBuffer) to
achieve the particle system management. Particle buf-
fer is a storage model of logically different instances
of a particle type, which are uniformly distributed by
the system transferring to different computing nodes
at runtime, this is, from the perspective of accelerat-
ing the platform, it is still the transmission of binary
message. In this way, users can design different types
of particles according to the idea of serial programs
and allocate storage for their instances without the
storage of parallel programs consideration. The accel-
eration platform also does not need to care about the
type of particles, which maintains the computing re-
sources by the logical relationship between the con-
troller and the client.
From the perspective of the client, particle buffer is a

container of particle properties. An undefined particle
buffer only contains the property of TypeID, and user
can define different particle types by adding various
Slots during the initialization. The different type of par-
ticle buffer instances can be generated when the algo-
rithm is executed. Taking the fluid-solid interaction
scene as an example, the method defines two types of
particles: PBufferSolid and PBufferFluid. Each particle is
Slot such as Position, Velocity, and Density. The solid
particle additionally includes the MassCenter and
Temperature. Different type of particles generates differ-
ent number of instances based on the simulated scenes,
as shown in Fig. 8. The scene composes of instances of

Fig. 9 The overview of platform tool

Fig. 10 The interaction of fluid-solid

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 10 of 13

multiple solid particles such as Duck, Armadillo, and
fluid instance of Stream. Finally, the CUDA script is sub-
mitted to compute the physical function, interaction
model, and visualization method. The client context
contains the logical structure of different types of parti-
cles defined by the developer through the interface.
After the context of client is established, the system
automatically establishes the mapping of internal distrib-
uted storage according to the type information and de-
ploys the acceleration structure based on user’s
configuration. The storage is allocated by communica-
tion of the system controller and acceleration platform
after the simulation starts.
The platform of simulation provides a complete tool

chain to support the application development and ex-
periment of art effects. It consists of scene editor, run-
time player, and secondary development interface. The
overview of platform tool is shown in Fig. 9. The user
can import 3D model into the editor. We choose Col-
lada as the intermediate format, an XML-based common
3D scene exchange file, which can be compiled into a
binary format to speed up model loading and editing.
Figure 10 shows that the effect of fluid-solid interaction
is constructed by our system.

6 Discussions
In the section, we design some interactive fluid scenes to
illustrate the visualization effect and performance. All
results are generated on multi-GPU cluster platform
with four worker nodes, each node has two GPUs, win-
dows10 OS, NVIDIA Geforce GTX 480 GPU.
Figure 11 shows a comparison between screen-space

method [4, 6], anisotropic kernel method [33] and our
direct particle-based method. The scene used for
comparison is a simulation of the armadillo break
with 400K particles. As shown in the (Fig. 11), although
the depth buffer is smoothed by screen-space tech-
niques, the near perspective is rather rough. Zhu’s
approach gets smoother surfaces than above methods,

but it still displays some bumpy surfaces and loses
some small features. The method of anisotropic
kernel [33] generates high quality surfaces, but its
volume is reduced and small bumps become evident
as soon as the surface is magnified. Our approach
obtains much smoother surface than all the methods
mentioned above.
Figure 12 shows a detail comparing of classic isotropic

kernel surface reconstruction [34] with our method. As
the figure shown, the traditional density field surface re-
construction method produces rough surfaces and loses
many details of surface, while our method can well keep
drops, ripples, and splashes obviously.
Apart from its detail-retaining advantage, particle-

based SPH method exerts better performance than con-
ventional surface reconstruction rendering. We compare
our direct particle-based rendering (DPD), adapting sur-
face reconstruction (ASR) [35], and conventional surface
reconstruction (CSR) [34] on the same scene with differ-
ent particle scales. The results are summarized in
Table 3.
Figure 13 shows visual result executed on our plat-

form. On the one hand, it is clear that the performance
of our method is not sensitive to particle scales, whereas
the execution time of adaptive method and conventional
mesh method increases as the particle scale increases.

Fig. 11 Comparison of different surface reconstruction approaches

Fig. 12 Our direct particle-based rendering against isotropic kernel
[34] (left, our direct rendering; right, MC)

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 11 of 13

The reason is adaptive method requires construction of
scalar field from simulation particles before surface
shading. On the other hand, this time-consuming com-
putation is omitted in our method, which utilizes GPU
hardware to screen large amount of invisible internal
points. In this way, the increase of particle scale does
not produce more visible pixels. Therefore, our method
can remain sound and stable.

7 Conclusions
In this paper, we propose a fast framework construction
and visualization method, which utilize programmable
GPU to realize the rendering and constructing for wide
application on art fluid effects. A direct surface
visualization pipeline for particle sets is designed based
on screen-space method, which render fluid surface by
visible particles in subpixels. For obtaining smooth
surface, a new filtering model is designed, instead of
Gaussian filter; the bilateral filter is used for depth image
to create smooth fluid. Our method does not need con-
ventional surface reconstruction steps and can protect
details of fluid. Furthermore, we propose a fast con-
structing framework on the multi-GPU platform. An
efficient framework is implemented based on the features
of particle method. The framework can automatically
establish the system mapping according to the require-
ment of user, which guarantees that the operation of
application is fast and friendly. However, some problems
exist in our framework, and they may be addressed in
the future work. Our following work is to enhance the
platform function, making more complex and realistic
art fluid effects such as multi-fluids interaction and
multi-phase fluids in artistic effects.

Funding
This paper is supported by the National Natural Science Foundation of China
(no. 61402016, no. 61502094), Ministry of Education Humanities and Social
Sciences Foundation (no. 14YJCZH200), Beijing Natural Science Foundation
(no. 4154067), Research Plan of Beijing (no. KM201610009008), Youth Talent
project of Beijing (no. 2016000026833ZK09), and NCUT Foundation of (no.
XN018001).

Availability of data and materials
The data will be shared on Fengquan zhang personal website soon.

Authors’ contributions
The work presented in this paper was carried out in collaboration between
all authors. FZ and ZW carried out the main part of this manuscript. JC and
JZ is a supervisor of this research. FT has assisted in the experimental part of
the work. All authors read and approved the final manuscript.

Authors’ information
Zhaowei Wang, female, School of Mechanical Engineering, University of
Science and Technology Beijing. Her main research interests are computer
vision, pattern recognition, affective computing, and interdisciplinary
research across computer science and art design. Jingyan Qin, female,
Professor, PhD. degree, School of Mechanical Engineering, University of
Science and Technology Beijing. Her main research interests are interaction
design, information design, and information visualization on big data.
Fengquan Zhang is currently an Associate Professor at the North China
University of Technology. He received the Ph.D. degree in computer science
from the State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University. His research interests concern on physical-based simula-
tion, image processing, computer animation, rendering, and interactive
game. Moreover, recent projects mainly comprise the interaction animation
and game using OptiTrack, Kinect, Leap motion, and Web/Depth camera.
Zhaowei Wang is currently a master’s student at the North China University
of Technology, China. His research interests include image processing,
pattern recognition, computer graphic, and visualization.
Jian Chang is an associate professor at the National Centre for Computer
Animation, Bournemouth University. He received his PhD degree in
computer graphics in 2007 at the National Centre for Computer Animation,
Bournemouth University. His research focuses on a number of topics relating
to geometric modeling, algorithmic art, character rigging and skinning,
motion synthesis, deformation, and physically based animation. He also has
strong interest in applications in medical visualization and simulation.
Jian Zhang is currently a professor of computer graphics at the National
Centre for Computer Animation, Bournemouth University, UK, and leads the
Computer Animation Research Centre. He is also a cofounder of the UK’s
Centre for Digital Entertainment, funded by the Engineering and Physical
Sciences Research Council. His research focuses on a number of topics
relating to 3D virtual human modeling, animation, and simulation, including
geometric modeling, rigging and skinning, motion synthesis, deformation,
and physics-based simulation.
Feng Tian received the Ph.D. degree in computer science from the State Key
Laboratory of Virtual Reality Technology and Systems, Beihang University. He
is currently an Associate Professor at the Northeast Petroleum University. His
research interests concern on pattern recognition, image processing,
computer vision, and artificial intelligence.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Beijing Key Laboratory on Integration and Analysis of Large-scale Stream
Data, North China University of Technology, Beijing, China. 2National Centre
for Computer Animation, Bournemouth University, Poole, UK. 3School of
Computer and Information Technology, Northeast Petroleum University,
Daqing, China.

Table 3 Performance comparison of the three methods

Time 52 K 71 K 102 K 152 K 231 K

DPD (ms) 8.3342 8.6535 9.8766 11.2793 12.5132

ASR (ms) 9.5802 13.5785 17.701 27.8085 34.3209

CSR (ms) 9.0147 12.4849 14.5257 25.0425 30.5764

Fig. 13 Comparison of the three rendering methods

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 12 of 13

Received: 27 August 2017 Accepted: 12 November 2017

References
1. T Weaver, Z Xiao, Fluid simulation by the smooth particle hydrodynamics

method: a survey. Int. Conf. Comput. Gaph. Theory. Appl., 1–11 (2016)
2. M Ihmsen, J Orthmann, B Solenthaler, et al., SPH fluid in computer graphics.

Eurographics Starsbourg, 21–42 (2014)
3. WE Lorensen, HE Cline, Marching cubes: a high resolution 3D surface

construction algorithm. ACM SIGGRAPH Comput. Graph., 21(4):163-169
(1987)

4. Y Zhu, R Bridson, Animating sand as a fluid. Transac Graph ACM. 24,
965–972 (2005)

5. B Solenthaler, YC Zhang, R Pajarola, Efficient refinement of dynamic point
data, IEEE/Eurographics Symposium on Point-Based Graphics, 65-72 (2007)

6. J Wladimir, S Green, M Sainz, Screen space fluid rendering with
curvature flow. Proceeding of Symposium on Interactive 3D Graphics
and Games, 91–99 (2009)

7. J Bender, D Koschier, Divergence-free SPH for incompressible and viscous
fluids. IEEE Trans. Vis. Comput. Graph. 23(3), 1193–1206 (2017)

8. B Ren, X Yan, CF Li, T Yang, MC Lin, SM Hu, Fast SPH simulation for gaseous
fluids. Vis. Comput. 32(4), 523–534 (2016)

9. X Shao, Z Zhou, J Zhang, W Wu, Realistic and stable simulation of
turbulent details behind objects in SPH. J. Comput. Animation. Virt. W.
26(1), 79–94 (2015)

10. L Fernando, M Sandim, F Petronetto, et al., Particle-based fluids for viscous
jet buckling. Comput. Graph. 52(C), 106–115 (2015)

11. J Bender, D Koschier, Divergence-free smoothed particle hydrodynamics.
Proceedings ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Los Angeles, 147–155 (2015)

12. T Takahashi, MC Lin, A multilevel SPH solver with unified solid boundary
handling. Computer Graphics Forum, Online. 35(7), 517–526 (2016)

13. M Sandim, D Cedrim, L Gustavo, et al., Boundary detection in particle-based
fluids. Comput. Graph. Forum 35(2), 1–10 (2016)

14. T Takahashi, Y Dobashi, T Nishita, MC. Lin. An efficient hybrid
incomprehensible SPH solver with interface handling for boundary
conditions. Version of record online: 6 September, (2017)

15. T Yang, MC Lin, RR Martin, J Chang, S-M Hu. Versatile interactions at
interfaces for SPH-based simulations. Proceedings ACM SIGGRAPH/
Eurographics Symposium on Computer Animation, Zurich. 57–66, (2016)

16. D Goes, C Wallez, J Huang, et al., Power particles: an incompressible fluid
solver based on power diagrams. ACM Trans. Graph. 34(4), 50 (2015)

17. BD Rogers, D Valdez, New multi-GPU implementation for smoothed particle
hydrodynamics on heterogeneous clusters. Comput. Phys. Commun. 184,
1848–1860 (2013)

18. M Harris, Fast fluid dynamics simulation on the GPU. GPU Gems, 637–665
(2004)

19. T Harada, S Koshizuka, Y Kawaguchi. Smoothed particle hydrodynamics on
GPUs. Proceedings of Computer Graphics International, 63–70, (2007)

20. A Herault, G Bilotta, RA Dalrymple, SPH on GPU with CUDA. J. Hydraul. Res.
48, 74–79 (2010)

21. J Cornelis, M Ihmsen, A Peer, M Teschner, IISPH-FLIP for incompressible
fluids. Comput. Graph. Forum 33(2), 255–262 (2014)

22. R Bridson. Fluid simulation for computer graphics. (A KPeters/CRC
Press, Boca Raton, 2015)

23. F Zhang, X Shen, X Long, et al., A particle model for fluid simulation on the
multi-graphics processing unit. Int. J. Numer. Model. 26, 397–414 (2013)

24. E Rustico, G Bilotta, A Herault, C Negro, Advances in multi-GPU smoothed
particle hydrodynamics simulations. IEEE Transc. Parallel Distributed Syst.
25(1), 43–53 (2014)

25. L Shi, G Chen, W Cao, et al, Analysis enhanced particle-based flow
visualization, International Symposium on Electronic Image, Vis. Data. Anal.
12-21 (2017)

26. R Yasuda, T Harada, Y Kawaguchi, Fast rendering of particle-based fluid by
utilizing simulation data, Proceedings of Eurographics short paper, 61–64
(2009)

27. S Premoze, T Tasdizen, J Bigler, et.al, Particle-based simulation of fluids,
Proceedings of Eurographics, 401–410 (2003)

28. G Guennebaud, M Gross, Algebraic point set surfaces, Proceedings of ACM
SIGGRAPH Papers. 23, (2007)

29. F Zhang, X Shen, X Long, An adaptvie model for particle fluid surface
reconstruction. IEICE Trans. Inf. Syst. 5, 1247–1249 (2013) vol. E96-D

30. N Akinci, A Dippel, G Akinci, et al, Screen space foam rendering,
Proceedings of Computer Graphics, Visualization and Computer Vision, 1–10
(2012)

31. C Wyman, G Nichols, Adaptive caustic maps using deferred shading, journal
of compute graphic. Forum 28(2), 309–318 (2009)

32. T Scott, C Wyman, Interactive refractions with total internal reflection,
Proceedings of Graphics Interface, Montreal, Canada, 185–9190 (2007)

33. J Yu, G Turk, Reconstructing surfaces of particle-based fluids using.
Eurographics/ACM Siggraph Symposium on Computer Animation, 1–10
(2010)

34. M Muller, D Charypar, M Gross, Particle-based fluid simulation for interactive
applications. In Symposium on Computer Animation, 154–159 (2003)

35. Y Zhang, B Solenthaler, R Pajarola, Adaptive sampling and rendering of
fluids on the GPU. IEEE/EG Symposium on Volume and Point-Based
Graphics, 1–10 (2008)

Zhang et al. EURASIP Journal on Image and Video Processing (2017) 2017:79 Page 13 of 13

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwil_dPbsajXAhWI1RoKHbPoD8YQFggtMAA&url=https%3A%2F%2Fdiglib.eg.org%2Fhandle%2F10.2312%2Fegs.20091049.061-064&usg=AOvVaw0G8pBzItIbgDyi1NxTT_Ji

	Abstract
	Introduction
	Related works
	Particle-based framework
	Method
	Background mapping rendering
	Generation of fluid geometric buffer
	Generation of fluid surface
	Integration of foreground and background mapping

	Results
	Framework of platform
	Interface design
	Buffer design

	Discussions
	Conclusions
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	Author details
	References

