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Abstract

In this paper, we propose a new approach for body gesture recognition. The body motion features considered
quantify a set of Laban Movement Analysis (LMA) concepts. These features are used to build a dictionary of
reference poses, obtained with the help of a k-medians clustering technique. Then, a soft assignment method is
applied to the gesture sequences to obtain a gesture representation. The assignment results are used as input in a
Hidden Markov Models (HMM) scheme for dynamic, real-time gesture recognition purposes. The proposed
approach achieves high recognition rates (more than 92% for certain categories of gestures), when tested and
evaluated on a corpus including 11 different actions. The high recognition rates obtained on two other datasets
(Microsoft Gesture dataset and UTKinect-Human Detection dataset) show the relevance of our method.

Keywords: Laban movement analysis, Gesture recognition, Body motion descriptors, Soft assignment, Hidden
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1 Introduction
Gestures are generally defined as motions of the body
that contain meaningful information [1]. Within this
framework, action analysis is a highly challenging issue
that involves both computer vision and machine learn-
ing methodologies. The generic objective is to semantic-
ally qualify body movements, postures, gestures, or
actions with the help of mid or high-level features built
upon low-level visual features.
The emergence of general public, affordable depth

cameras (e.g., Kinect) facilitating 3D body tracking can
explain the recent growth of interest for gesture analysis
[2–7]. In effect, gesture analysis and interpretation is
highly useful for numerous applications: e-health, video
games, artistic creation, video surveillance, immersive
and affective communication. However, the issue of high
level, semantic interpretation of gestures still remains a
challenge, which requires the elaboration and develop-
ment of effective gesture descriptors and recognition
algorithms. Only a few papers propose effective models
of gesture descriptors [8–11] and such models rarely
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In this paper, which extends our preliminary work pre-

sented in [12], we introduce a new approach for dynamic
gesture recognition, inspired from the Laban movement
analysis (LMA) model [13]. The main contributions pro-
posed are the following: (1) a new set of local descriptors
based on LMA; (2) a mid-level representation of such
features based on a soft assignment procedure that maps
the LMA descriptors onto a reduced set of reference
poses, automatically extracted from a learning gesture
data set (3) a HMM-based learning approach that ex-
ploits the soft assignment representation for dynamic,
real-time gesture recognition.
The rest of the paper is organized as follows. Section 2

presents a state of the art review of existing action
recognition methods. Section 3 introduces details the
methodology proposed in this paper. In Section 3.1, we
first detail the local LMA descriptors considered. Then,
in Section 3.2, we propose a dynamic gesture recognition
approach which exploits a set of LMA features that makes
it possible to build a dictionary of reference poses exploited
within a HMM recognition framework. Section 4 describes
first the evaluation dataset and protocol considered. Then,
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we present and discuss the gesture recognition results ob-
tained. Finally, Section 5 concludes the paper and opens
perspectives of future work.

2 Related work
In the last two decades, a tremendous research effort
has been dedicated to the field of gestures analysis.
Within this context, one of the main challenges
concerns the definition of relevant motion features for
gesture recognition. As in our case we tackle the issue of
gesture recognition from 3D acquired with a Kinect
camera, we will mainly focus on methods that are
dealing with 3D gestures, either acquired directly with
the help of 3D devices or estimated from 2D videos with
the help of 2D/3D pose estimation techniques.
A first family of approaches, described in the following

section, is based on silhouette/posture/pose extraction
and representation methodologies.

2.1 Posture/pose representations
In [14], 3D upper body pose is estimated in a multi-
hypothesis Bayesian inference framework following a
generative model-based approach. Body pose is used for
hands search and left/right hand assignment. Hand
poses are used in a SVM framework trained using HOG
features. The method is tested on the NATOPS aircraft
handling signals database. This dataset exploits the
official gesture vocabulary for the U.S. Navy aircraft
carrier environment, which defines a variety of body-
and-hand signals that that carrier flight deck personnel
use to communicate with the US Navy pilots. The FA
scores obtained are superior to 89% for the 4 gestures
considered.
In [15], Singh and Nevatia propose a combination of

Dynamic Bayesian Action Networks (DBAN) with inter-
mediate 2D body parts models for both pose estimation
and action recognition tasks. Composite actions are
decomposed into sequences of primitives based on the
variations between the 3D key poses of consecutive
frames. The 3D poses are finally mapped onto 2D parts
models. The method is tested on a hand gestures dataset
including about 500 gestures, with recognition accuracy
results around 85–90% for each action.
In the method introduced in [7], Li et al. use an Action

Graph to model the dynamics of body motions based on
salient postures. Such a model is described by a set of
salient postures ωm, the set of actions Al to be analyzed,
transition probabilities ai,j,l from one posture to another
for each action Al., transition probabilities of all actions
bi,j, and observations emission probabilities p(x/ωm) for
each salient posture ωm. These last distributions are
modeled as Gaussian probabilities, and for each body
motion frame, the observation consists of 3D points.
These points are computed with the help of 3
orthogonal Cartesian plane projections of a depth map
representing the 3D surface of the body pose; onto the 3
plane projections, contours are extracted, sampled, and
used to retrieve 3D points. The method is tested on
MSR-Action3D dataset [7] and almost all categories are
recovered with rates superior to 90%.
The introduced approaches show that silhouette or

posture shapes are relevant features for action recogni-
tion. In addition, they show that body posture or pose
characterization are pertinent mid-level representation
gestures structural aspects.
A second family of approaches, based on so-called

local patterns, describes the body motion in a more local
manner, through a body parts segmentation procedure.

2.2 Local patterns methods
In [3], Jiang et al. introduce a hierarchical model for
action recognition based on body joints trajectories
recorded by a Kinect. A first step consists of assigning
each gesture to a group according to the body parts
motions during action performance. Then, for each
motion-based group, a KNN classifier is trained. The
features considered here are the joints motion and
relative positions. A bag-of-words model is used for di-
mensional reduction and to each word of the codebook
is allocated a weight. At the test stage, the gesture is first
assigned to a motion-based group and the appropriate
KNN classifier is used to yield the classification label.
The method is tested on UTKinect-HumanDetection

dataset [6], with accuracy results close to 97%, and also
on MSRC-12 gesture dataset [5] with recognition rates
reaching 100% for certain gestures, even though confu-
sions remain present for certain actions (worst rates
close to 82 and 86%).
In [4], Hussein et al. propose a method for action rec-

ognition based on the covariance matrix for skeleton
joints locations over time. Covariance matrices are com-
puted over hierarchical sub-sequences inspired by the
idea of spatial pyramid matching. The number of layers
for sub-sequences hierarchy layers can be parameterized.
The action descriptors proposed are based on such
covariance matrices computed at different scales. They
are tested on MSR-Action3D [7], MSRC-12 [5] and
HDM05-MoCap [16] datasets.
The possibility offered by the tracking of body joints

provides new keys for mid-level features construction or
pose extraction. Still, for recognition purposes, an
appropriate local characterization of the body motions is
required, at each frame of a sequence.
Moreover, the greatest part of the body motion fea-

tures introduced suffer from a lack of expressive
characterization, and are often dedicated to visual
indices of motion. Thus, they usually fail to take into ac-
count the semantic aspects of motion (inter-subjectivity,
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expressivity, intentionality) and remain focused on the
structural descriptions.
The Laban Movement Analysis (LMA) [13], proposed by

choreograph and dancer Rudolf Laban, provides a consist-
ent representation of gestures expressivity (Section 3.1).
Laban showed that the analysis of expressivity is the key to
understand gestures intentional and communicative as-
pects. LMA has become a reference framework for
different types of approaches. Since our work strongly
relies on the LMA model, let us analyze how this represen-
tation is taken into account in the state of the art.

2.3 Expressivity and style
A first category of approaches consists of inspiring from
Laban concepts in order to build expressive motion de-
scriptors. Usually, the resulting mid-level features are
used to determine higher-level features, like emotions of
affective states, with the help of machine learning tech-
niques. In [17], Camurri et al. investigate the possibility
to use decision trees in order to classify motions of
dancers and musicians in a discrete set of four emotional
categories (joy, anger, fear, grief ) with the help of mid-
level features modeling the motion expressivity. The
authors compare the recognition results obtained to
those reported in [18] from spectators watching dancers
and characterizing emotions expression.
In [9], Glowinsky et al. propose a so-called minimal

motion description, based on head and hands trajector-
ies in 2D portrayal videos. The objective is to classify
gestures in a continuous emotional 2D space corre-
sponding to a valence-arousal representation [19]. After
having reduced features dimensionality to four clusters
and performed recognition, they show that the major
part of the emotion portrayals used can be associated
with one of the clusters. Finally, let us cite the work of
Bernhardt and Robinson [20], where energy profiles are
used for performing a motion-based segmentation. Each
segment is described by its trajectory. A k-means clus-
tering approach is used for deriving a set of primitive
trajectories. Such primitives are then classified by using
a standard SVM approach. Only four emotion categories
are here considered.
In spite of their considerations on expressivity, the

proposed methods are limited to some global energy
characterizations of the motion, and would require some
unification in a model able to capture the keys of the
gesture.
A different family of approaches aims at characterizing

gestures in terms of Laban qualities. Such methods
require the use of machine learning techniques to infer
expressive representations from low/mid-level features.
In [21], a Bayesian fusion approach is used that fuses
body motion features for identifying the shape move-
ment quality from dancer improvisations. In [22], four
neural networks are exploited. They are trained with
motion features notably based on curvature, torsion,
swivel and wrist angles, so as to characterize gestures
with four Laban Effort sub-qualities (cf. Section 3.1).
Laban’s model is also used in [23], where LMA features
are computed using a collection of a neural networks
with temporal variance aiming at creating a classifier
that is robust with regard to input boundaries.
The main inconvenient of such approaches is that they

require the help of Laban concepts experts, in order to
annotate the corpuses and come to a ground truth.
A third category of approaches aims at quantifying Laban

qualities. In such cases, the expressive characterization is
directly determined as a function of dynamic features, and
is compared to the annotation carried out by experts. In
[24], Nakata et al. propose a set of motion descriptors, each
one referring to a LMA component, and apply these de-
scriptors to dancing robots gestures annotated with the
help of four emotional categories. Factor analysis is used to
establish causality between Laban qualities and emotions.
In [25], Hachimura et al. implement similar descrip-

tors. The processed results are compared to specialists’
annotation, and the matching occurs only for certain
qualities. In [26], expressive features aiming at quantify-
ing Body, Effort and Shape LMA qualities (cf. Section
3.1) are defined locally (i.e., for each frame of a gesture),
in order to index various gestural contents with local
motion “keys”. Such motion keys are used for database
querying purposes. For a given motion clip, key motion
states are extracted, which represent its most salient
properties. Let us finally quote the work of Samadani
et al. [27] who inspired from [28] [24] and [25] to
propose different Laban features quantifications, and
apply their descriptors to pre-defined gestures involving
hands and head, designed by motion professionals and
annotated both in terms of LMA factors (on 5-point
Likert scales) and emotions (six categories). “Weight”
and “Time” LMA dimensions show high correlation co-
efficients between annotations and quantification, which
allows representing each emotion in the space generated
by these two qualitative dimensions.
Such works validate quantifications of Laban concepts

and show that a mid-level LMA-based representation
can be obtained starting from visual descriptors. The
main problem is that they have validated the use of
LMA on gestural corpuses that have been specifically
designed for expressivity analysis. Until then, the use of
LMA for characterizing generic contents, like actions or
spontaneous emotions, has not been proved. Still, in the
above-mentioned approaches, the features are generally
computed over the whole gesture, as global descriptors,
as we have done in our previous work [29], where we
have quantified several Laban qualities to directly exploit
the features extracted for gesture recognition in a
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machine learning framework, without explicitly deter-
mining the underlying Laban components. Statistical pa-
rameters (up to second order moments) were computed
over the entire numerical series to characterize the
whole gesture as a global vector.
In this paper, we consider a different approach which

attempts to obtaining a more local description, appropri-
ate for on-the-fly gesture recognition. Our challenge is
to design an expressive model of gesture aiming at char-
acterizing each frame of a gestural sequence. This re-
quires re-visiting and extending the previous LMA
representation, in order to set up a set of local descrip-
tors, appropriate for on-the fly recognition purposes,
The LMA descriptive model proposed is introduced in
the following section.
3 Methods
The proposed model of descriptors is detailed in the
following section.
3.1 Model of descriptors
Let us first describe the LMA framework retained.
3.1.1 LMA framework
Rudolf Laban was a Hungarian dancer, choreograph and
dance theoretician who developed a movement analysis
method called Laban Movement Analysis (LMA) [13].
The principle consists of describing movement in terms
of qualities relating to different characterizations of the
way this movement is performed, but independently on
its precise trajectory in space. The conceptual richness
of the gesture analysis model, originally designed for
dance teaching, permitted its extension to the study of
all types of movements. The LMA model includes five
major qualities that are Relationship, Body, Space, Effort,
and Shape [30].
The Relationship component refers to the relationships

between individuals and is particularly suited in the case
of group performances. Thus, its contribution to the
designing of an intermediary gesture model which aims
at characterizing various high-level contents does not
seem to be useful. The Body component deals with body
parts usage, coordination, and phrasing of the move-
ment. The Space component refers to the place, direc-
tion and path of the movement, and is based on the
concept of kinesphere including the body throughout its
movement. These three first qualities relate to the
structural characterization of the movement.
The Effort component depicts how the body concen-

trates its effort to perform the movement and deals with
expressivity and style. The Effort is further decomposed
into the following four elements:
� Space (not to be confused with Space quality), which
defines a continuum between direct (or straight)
movements and indirect (or flexible) movements,

� Time which separates movements between sudden
and sustained (or continuous) ones,

� Flow which describes movements as free or
constrained,

� Weight, to distinguish between heavy and light
movements.

The Shape description is decomposed into three sub-
components:

� Shape flow: describes the dynamic evolution of the
relationships between the different body parts,

� Directional movement: describes the direction of the
movement toward a particular point,

� Shaping: refers to body forming and how the body
changes its shape in a particular direction: rising/
sinking, retreating/advancing and enclosing/
spreading oppositions are respectively defined along
the directions perpendicular to the horizontal,
vertical and sagittal planes.

The Effort and Shape qualities refer to the qualitative
aspect of body motion.
Each gesture frame t is described by a vector of P

components:

v tð Þ ¼ v1 tð Þ; v2 tð Þ; v3 tð Þ;…; vp tð Þ� �
; ð1Þ

where each component vi(t) is dedicated to one Laban
quality or sub-quality.
Such a local characterization of body motions may sat-

isfy the context of real-time classification, where the data
are processed dynamically, on-the-fly before the end of
the entire gesture and without any pre-segmentation.
Let us now detail the local descriptors proposed.

3.1.2 Local descriptor specification
The proposed descriptors are based on 3D trajectories
associated with the body skeleton joints that can be
recorded with a depth sensor (i.e., Kinect camera) at a rate
of 30 frames per second. The Kinect sensor provides a
maximum number of 20 joints, corresponding to the
following body parts: Center of the Hip, Spine, Center of
the Shoulders, Head, Left Shoulder, Left Elbow, Left Wrist,
Left Hand, Right Shoulder, Right Elbow, Right Wrist, Right
Hand, Left Hip, Left Knee, Left Ankle, Left Foot, Right Hip,
Right Knee, Right Ankle, and Right Foot (Fig. 1).
Each body joint trajectory i is represented as a se-

quence of Pi;t ¼ xi;t ; ; yi;t ; ; zi;t
� �n oN−1

t¼0
coordinates in a

3D Cartesian system of coordinates (Oxyz) where N



Fig. 1 Body skeleton joints new positions after transforms application and body planes representation (a); illustration of forward tilt angle (b)
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denotes the number of frames of the sequence. As a pre-
processing, normalization step, several elementary
transforms are applied to the body at each frame of its
trajectory before the computation of descriptors. The
objective is to set each body joint i in a new position

Ptrans
i;t ¼ xtransi;t ; ytransi;t ; ztransi;t

� �
at frame t so that the (xOy),

(yOz) and (zOx) planes (Fig. 1), respectively, correspond
to sagittal, vertical, and horizontal body planes.
The aim of such transforms is to put the shoulders

and the hip center in a same plane parallel to (yOz)
plane and put both shoulders at the same height. Thus,
for each gesture and for each frame, we apply the follow-
ing transforms:

� First of all, we translate the body in order to set the
hip center at the origin of the landmark.

� Secondly, we apply a rotation around the y axis to
the body in order to set left and right shoulders in a
plane parallel to (yOz) plane.

� Then, we perform a rotation around the z axis to
the body in order to set shoulder and hip centers in
a plane parallel to (yOz) plane.

� A final rotation around the x axis consists of setting
left and right shoulders in a plane parallel to (zOx)
plane.

� Finally, we translate the body in order to put the hip
center at its initial position.

Once these elementary transforms applied at each
frame t, the feature vector v(t) is computed. Its various
components are introduced in the following.
The Space quality is described with the help of two
values.
The first one, defined as the x component of the head

position xtransHead;t , characterizes the head forward-

backward motion. The second value is the forward tilt
angle Φ(t) defined as the angle between the vertical dir-
ection y and the axis binding the center of the hip and
the head, expressed in radians (Fig. 1).
The Flow sub-component of the Effort quality is de-

scribed with the help of the third order derivative mod-
ules of the left and right hands trajectories, so-called
jerk.
For the Weight sub-component of Effort quality, we

consider the vertical components of the velocity and ac-
celeration sequences (i.e., y’.,t and y”.,t signals) associated
to 3 joints: the center of the hip, the left and the right
hand. These six new values describe the vertical motion
of the gesture.
The Shape flow sub-component of Shape is described

by an index characterizing the contraction of the body,
as defined in Eq. (2):

C tð Þ ¼ PHip Center;t−PLeft Hand;t

�� ��þ PHip Center;t−PRight Hand;t

�� ��� �
2

;

ð2Þ

and has been inspired by the contraction index sug-
gested in [18].
Shaping sub-quality of Shape is quantified by three

values corresponding to the amplitudes in the directions
perpendicular to vertical, horizontal and sagittal planes
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(Fig. 1), respectively, denoted by Ax
t , A

y
t , and Az

t and de-
fined by the following equations:

Ax
t ¼ maxi xti;tð Þrans

n o� �
−mini xti;tð Þrans

n o� �� �
;

ð3Þ

Ay
t ¼

�
maxi yti;tð Þrans

n o� �
−mini

��
yti;tð ÞransÞ

	


;

ð4Þ

Az
t ¼ max i zti;tð Þrans

� �n o
−mini zti;tð Þrans

n o� �� �
;

ð5Þ
where i indexes the skeleton joints.
Finally, the Body component is quantified with the

help of three features.
The first one is an index characterizing the spatial dis-

symmetry between the two hands and has been inspired
by the symmetry index proposed in [9]. This dissym-
metry index is defined as described by the following
equation:

Dys tð Þ ¼ dleft;center tð Þ
dleft;center tð Þ þ dright;center tð Þ ; ð6Þ

where dleft/right , center(t) denotes the distance between
the left/right hand and its projection onto the trunk
(e.g., axis binding the center of the hip and the center
of the shoulders). The Dys measure takes values
Fig. 2 Overview of the dynamic gesture analysis approach proposed
within the [0, 1] interval. For a perfectly symmetric
gesture, Dys equals 0.5.
The second and third values are respectively the

distance between left hand and left shoulder and the
distance between right hand and right shoulder. These
parameters are used as a characterization of Body quality
in [28]:

Dg
t ¼ PLeft Shoulder−PLeft Hand

�� ��; ð7Þ

Dd
t ¼ PRight Shoulder−PRight Hand

�� ��; ð8Þ

The above-described approach leads to a total number
of P = 17 features for describing a gesture at each frame t.
Let us now investigate how such features can be used

for dynamic gesture analysis.

3.2 Dynamic gesture analysis
The proposed dynamic gesture analysis method is
illustrated in Fig. 2, with both off-line (learning) and on-
line (classification) stages.
Our descriptors are used for a poses extraction stage

consisting of sub-representing each class of gestures on
key-words, which means that a gesture is considered as
a path through different key states (cf. Section 4.1). The
temporal aspects of the body motion remain implicitly
present in such keys, because it is present in the content
of our LMA descriptors (cf. 1st, 2nd and 3rd order de-
rivatives). Then, we use Hidden Markov Models (HMM)
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[31] in a soft assignment based approach (cf. Section
4.2) where each HMM observation consists of a projec-
tion on spatiotemporal words (e.g., the key-poses); thus
we supposed that these HMM will manage gesture
structuration and actions succession (e.g., transitions
between HMM states). In our case, a gesture is not
interpreted a succession of states, but as a continuous
projection of spatiotemporal reference keys.
A first step of our approach consists in determining a

set of reference, key poses for the whole set of gestures,
as described in the following section.

3.2.1 Reference pose extraction
On the off-line stage, the objective is to determine a
lexicon of distinctive reference poses that can conduct
to a simplified representation of the body gestures. We
suppose a learning database of gestures to be available,
categorized into a set of gesture classes (see Section 5.1
for a description of the data set considered in our work).
A set of reference poses is first determined for each

gesture category, independently on the other classes.
Let us consider the set of all gesture sequences in-

cluded in the G category:

SG1 ; S
G
2 ;…; SG∣G∣

� �
; ð9Þ

where |G| is the number of gestures in class G.
Each instantiation i is represented by a series of frame

descriptors:

SGi ¼ vG;i 1ð Þ; vG;i 2ð Þ;…; vG;i TG;i
� �

;
� ð10Þ

where TG , i denotes the number of frames of the ith

gesture sequence.
The key poses are computed over all sequences

SG1 ; S
G
2 ;…; SG∣G∣

� �
by using a k-medians clustering

algorithm [32] with random initialization. The k-
medians algorithm ensures that the reference poses
determined correspond to real, existing poses from the
training data set.
At each iteration, the relevance of the current clusters is

evaluated with the help of the validity measure (validity)
defined as the ratio between intra and inter class
dissimilarity:

validity ¼ intra
inter

; ð11Þ

where intra is the intra-class compactness measure:

intra ¼ 1
NG

X
k∈ 1;K½ �

X
x∈Ck

d x; μk
� �

2
� �

ð12Þ

and extra is the inter-cluster distance:
extra ¼ mink∈ 1;K−1½ �;l∈ kþ1;K½ � d μk ; μl
� �

2
� � ð13Þ

In the notations above, NG is total number of frames
in the gesture learning data set for the considered cat-
egory G, K is the number of clusters, Ck is k

th cluster, μk
its centroid and d(x1, x2) is the normalized Euclidean
distance [33] between vectors x1 and x2 in the LMA
descriptors space.
The k-medians algorithm aims at iteratively minimiz-

ing the validity measure and stops when its variation
between two successive iterations is below a given
threshold or when a maximum number of iterations is
achieved.
At the end of the clustering process, we obtain a

vector of poses PG
1 ;P

G
2 ;…; PG

K

� �
for each gesture class G.

Each PG
j in the dictionary consists of the skeleton pose

parameters and the associated LMA feature vector.
This per-gesture category reference pose calculation

strategy offers the advantage of representing each cat-
egory with a reduced number of distinctive key-poses.
However, it is likely to obtain similar key-poses for dif-
ferent categories. In order to eliminate such redundant
elements, a final inter-category key-pose merging
process is applied. The principle consists of iteratively
merging centroid key-poses whose distance is lower than
a pre-defined threshold ϱ. This makes it possible to
obtain a global reference pose dictionary

Pref
1 ;Pref

2 ;…;Pref
M

� �
, for the whole learning set. Here, M

denotes the final number of centroids retained. The em-
pirical choice of the threshold ϱ is analyzed and dis-
cussed in Sections 4.2 and 4.3.
The availability of a set of reference key-poses

makes it possible to obtain a reduced representation
of each gesture sequence, able to handle the variabil-
ity of gestures performed by different individuals. This
can be simply achieved by assigning each frame to its
closest prototype in the dictionary. However, such a
hard classification may suffer from significant vector
quantization errors, notably in the case of a reduced
number of prototypes. For this reason, we have
considered instead a more gradual representation,
based on a soft assignment approach.

3.2.2 Soft assignment
The soft assignment method [34] is used to locate a
feature vector among a set of prototypes.
For each feature vector v(t) = (v1(t) , … , vP(t)) at

frame t, we compute the distance dj(t) of v(t) to every

key pose Pref
j of global dictionary:

∀j∈ 1;…;Mf g; dj tð Þ ¼ d v tð Þ; Pref
j

� �
; ð14Þ



Table 1 Gesture categories, number of sequences per class and
symbolic labels considered

Gesture category Nseq L

Say “thank you” in ASL 53 A

Tie shoelaces 57 B

Draw a circle with the right arm 54 C

Rotate on oneself 49 D

Catch an object 48 E

Juggle 51 F

Throw an object in front 49 G

Cover one’s ears 53 H

Rub one’s eyes 44 I

Kneel 54 J

Stretch out 53 K
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where d (.,.) denotes a distance in the feature space. In
our case, we have considered simply a L2 distance
between feature vectors.
The soft assignment vector o(t) at frame t is defined as

the set of normalized distances:

o tð Þ ¼ d′
1 tð Þ; d′

2 tð Þ;…; d′
M tð Þ� �

; ð15Þ

where.

∀j∈ 1;…;Mf g; d′
j tð Þ ¼ dj tð ÞP

i∈ 1;…;Mf g di tð Þð Þ ; ð16Þ

The soft assignment vector o(t) describes the relative
position of the vector in the space drawn by the key
poses at frame t.
Fig. 3 Execution of kneel gesture by a student
The following section describes how the vector se-
quence o(t) can be used as observations within the
framework of a HMM (Hidden Markov Model) recogni-
tion approach.

3.2.3 Hidden Markov Models framework
In our approach, the gesture categories are used as
hidden states in a HMM formulation [31]. The o(t)
vectors resulting from the soft assignment stage (Eq. 19)
are used as frame observation sequences.
The HMM parameters to be estimated are:

� initial probabilities (πi , i∈ {states}),
� transitions probabilities from one state to another

(aij , (i, j)∈ {states}2),
� observation emissions probabilities given a state

(bj(o) , j∈ {states}).

The various model parameters are globally stored in a
vector Λ.
Emission probabilities are modeled as Gaussian distri-

butions whose parameters are the mean vector and
covariance matrix ((μj, Σj) , j ∈ {states}).
We consider a number of S gesture sequences in a

given learning set. Let us denote by O1; ;O2;…; ;OSð Þ
and S1; ;S2;…; ;SSð Þ the observations sequences and
the corresponding hidden states series, respectively.
We train the HMM using Baum-Welch algorithm [31]

which consists of maximizing the observation expectation:

Λopt ¼ arg maxΛ
X

s∈ 1;S½ �logP Osð jΛ
� �

Þ; ð17Þ



Fig. 4 Examples of key poses retained for the Catch an object category
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The decoding stage, i.e., determining the most prob-
able state sequence given an observation, is performed
with the help of Viterbi decoding procedure [31] which
maximizes the a posteriori probability:

Sopt ¼ arg maxS logP SjOoptð Þð Þ ð18Þ

Following the recommendations presented in [35],
we implemented our own HMM framework by using
logarithms of probabilities, in order to handle in a
numerically stable manner the extremely small prob-
abilities that appear for relatively long observation
sequences.
The HMM initial and transitions probabilities are

initialized as recommended in [36]. Concerning the
emission distributions parameters, they are computed
according to GMM (Gaussian Mixture Models)
formula [37]:
Fig. 5 Examples of key poses retained for the Kneel category
μj ¼
P

s∈ 1;S½ �
P

t∈ 1;Ts½ � Os tð Þ:I j; tð Þð ÞP
s∈ 1;S½ �

P
t∈ 1;Ts½ � I j; tð Þð Þ ; ð19Þ

Σj ¼
P

s∈ 1;S½ �
P

t∈ 1;Ts½ � Os tð Þ−μj
� ��

Os tð Þ−μj
� �T

:I j; tð Þ
� 


P
s∈ 1;S½ �

P
t∈ 1;Ts½ � I j; tð Þð Þ ;

ð20Þ

where I(j, t) is equal to 1 if the hidden state at time t is j,
zero otherwise.
In the following section, we present and analyze the

experimental results obtained.
4 Results and discussion
4.1 HTI 2014–2015 dataset
Among the most popular, publicly available 3D gesture
databases, let us cite MSR-Action3D [7], and MSRC-12



Table 2 Global dictionary size in function of threshold ϱ
Threshold ϱ Global dictionary size M

4.5 20

4.0 31

3.5 40
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dataset [5]. However, they include only individual ges-
tures and not sequences of multiple gestures.
The only available 3D corpus proposing successions of

individual actions in a single sequence is the UTKinect
Human Detection dataset [6]. In addition to its low
quality (e.g., 15 fps), the main drawback of this dataset is
that it provides identical successions of the same actions
(i.e., in the same order). In order to evaluate the ability
of our approach to dynamically characterize a gestural
content composed of several actions, we have created a
new dataset. The gestures were acquired with the help
of a Kinect camera, thus providing 3D skeleton joints
trajectory sequences.
To our knowledge, our corpus is currently the only

one to propose various successions of various actions
with a reliable quality (e.g., 30 fps, no occlusions). For
this reason, we plan to provide it to the research
community.
We asked 11 students from High-Tech Imaging (HTI)

major in Télécom SudParis to perform of a set of actions
following the instruction given in [5] relatively to the
elaboration of MSRC-12 dataset.
We have considered 11 categories of gestures, summa-

rized in Table 1. Figure 3 illustrates the execution of a
kneel gesture.
Fig. 6 Recognition rates per class for HTI 2014–2015 dataset
All the students were asked to execute pre-defined
sequences of six different gestures selected over the lexi-
con. This pre-definition provided us an implicit segmen-
tation of multi-gestures sequences into temporal spans
of a single action. Between each succession actions, the
individuals were supposed to return to a resting state for
an undefined period. This constant returning to an
artificial resting state has been employed for avoiding
the difficulty of gesture pre-segmentation, which is
usually required for actions sequences decoding.
All the students were asked to execute pre-defined

sequences of six different gestures selected over the lexicon.
This pre-definition provided us an implicit segmentation of
multi-gestures sequences into temporal spans of a single ac-
tion. Between each succession actions, the individuals were
supposed to return to a resting state for an undefined period.
Table 1 gives the number of segmented gestures per

category, with the number of resulting sequences (Nseq)
and symbolic labels assigned (L).
We have finally obtained 107 gestures sequences of

various durations (from 16 s to 1 min 7 s), including a
total number of 565 individual gestures. The total corpus
length is of 48 min 54 s. The individual gestures
durations vary from 1 to 15 s.

4.2 Representative gesture clustering
We followed the protocol described in Section 3.2.1 to
build class lexicons and gather the retained poses in a
global dictionary.
After the observation of the sequences and the variability

of class instantiations, we decided to keep the K = 10 most
representative poses for each class. Figures 4 and 5,



Table 5 Confusion matrix (HTI 2014–2015 dataset)

A B C D E F G H I J K

A 56..6 0 2.4 2.6 0.1 3.5 33.8 0 0.1 0.9 0

B 21.7 51.4 0.4 4.5 0.1 0.1 0.9 0 0.1 20.8 0

C 38.2 0 40.5 5.1 1.1 0.4 12.4 0 0 0.2 2.1

D 42..4 1.7 5.2 40.8 0.2 1 2.8 0.1 0.2 5.6 0

E 29..2 0.1 12.4 3.2 23.7 5 12 0.5 7.9 0.8 5.2

F 20.4 0.3 2.2 2.5 4.8 60.5 4.7 0 3.8 0.6 0.2

G 32.3 0.5 6.4 5.6 7.1 2.6 41.2 0 0.7 0.7 2.9

Table 3 Cumulative recognition rates for HTI 2014–2015 dataset

A B C D E F G H I J K Mean

RRcum(1) 75.5 82.5 44.4 57.1 25 96.1 63.3 94.3 27.3 85.2 92.5 67.6

RRcum(2) 94.4 94.8 96.3 100 52.1 98.1 83.7 98.1 70.5 96.3 100 89.5

RRcum(3) 94.4 98.3 100 100 64.6 100 91.9 98.1 100 100 100 95.2
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respectively, show different poses retained in the corpus for
the Catch an object and Kneel categories.
Concerning the choice of parameter K, which defines the

number of clusters considered in the k-medians algorithm
(cf. Section 3.2.1), let us underline that this issue is not
critical. Intuitively, the parameter K should be big enough to
ensure that all the representative key-poses can be well taken
into account. A too small value of K would lead to a risk of
missing relevant key-poses. The principle consists of setting
K to a value that can ensure a slight over-representation of
the key poses. The redundant poses will then be eliminated
in the fusion stage (cf. key-pose merging process described
in Section 3.2.1). However, a too big value of K would
penalize the algorithm in terms of computational burden. In
our experiments, taking into account the length (e.g., several
hundreds of frames) of the gestures considered in our
experiments a value of K = 10 proved to be sufficient.
We can observe that the reference poses obtained sam-

ple the 3D pose space in a salient manner, while drastically
reducing the variability of poses present in a given gesture.
The threshold ϱ (cf. Section 3.2.1) used for merging

the per-class dictionaries obtained was determined ex-
perimentally. Table 2 gives the obtained dictionary size
in function of ϱ.
In the results presented in the following section, we

have privileged a value of ϱ = 3.5, which corresponds to 40
clusters. This value corresponds to an average number of
3.6 reference poses per gesture category, which seems to
be a reasonable guess for the considered corpus. An ana-
lysis of the impact of the ϱ parameter on the recognition
performances will also be presented in Section 4.3.

4.3 Evaluation results
For the HMM learning procedure, we have applied a
fivefold cross-validation scheme, with a training/testing
ratio of 80/20% and five cross-validation steps. The
cross-validation has been achieved by splitting the data
into five blocks preserving the initial class distribution.
At the testing stage, each observation sequence is

decoded as a sequence of gesture labels corresponding
Table 4 Average recognition rates RR(1)

Threshold ϱ Average RR(1)

4.5 63.3

4.0 62.2

3.5 67.6
to the recognized category (Table 1). A distinct label is
assigned to each frame, according to the Baum-Welch
algorithm (cf. Section 3.2.3). In order to evaluate the rec-
ognition performances, for each gesture sequence Otest ,
we identify the 3 most represented classes ordered by
their relative frequency of apparition (with respect to the
number of frames of the given gesture). Let us denote
them by SOtest 1ð Þ;SOtest 2ð Þand SOtest 3ð Þ . Intuitively, they
correspond to the three most probable categories that
can be associated to the given sequence.
In order to globalize the information over the entire

test database and obtain an objective recognition score
for each gesture category G, we compute three recogni-
tion rates defined as the percentages of gestures where
the correct (with respect to the considered ground truth)
category has been identified at first, second and third
positions. They are, respectively, denoted by RR(1),
RR(2) and RR(3) and defined as follows.

RR ið Þ ¼
PNtest

s¼1 I
s
i Gð ÞPNtest

s¼1 I
s Gð Þ ; ∀i∈ 1; 2; 3f g;

ð21Þ

where:

Isi Gð Þ ¼ 1 if SOs ið Þ ¼ G and GroundTruth OSð Þ ¼ G

0 if not

�
;

ð22Þ
H 18.1 0.4 0.2 3.4 1.9 1.4 1.8 59.9 11.6 0.5 0.8

I 21.8 0.6 0.4 3.7 1.3 1.8 1.7 39.6 28.1 0.8 0.2

J 17.1 14.9 0.6 2.6 1.8 0.5 1.3 0 0 61.1 0.1

K 16.4 0.1 1.6 4.3 5 1.2 3.5 3.2 4.3 0.7 59.7

In italics: the best recognition scores for each row (category). The (i, j) entry in
this matrix represents the percentage of frames of a sequence in the i
category that have been recognized as frames from the j category



Fig. 7 Recognition rates for iconic gestures of MSRC-12 dataset
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Is Gð Þ ¼ 1 if GroundTruth OSð Þ ¼ G

0 if not

�
; ð23Þ

In the equation above, Ntest denotes the number of test
sequences in the data set and GroundTruth OSð Þ the
class to which the gesture sequence OS belongs to.
We also considered the cumulated scores, i.e. rates

where the correct category is recognized within the top
first, second and third positions, defined as:

∀i∈ 1; 2; 3f g;RRcum ¼
Xi

k¼1
RR ið Þ; ð24Þ

Figure 6 presents the recognition results obtained.
Globally, the mean recognition score in first position
Fig. 8 Recognition rates for metaphoric gestures of MSRC-12 dataset
RR(1), calculated over the entire gesture corpus is of
67.3%. When also considered the cumulative recognition
rates RRcum(2) and RRcum(3), which are summarized in
Table 3, we can observe the correct category is retrieved
in the first two (resp. three) candidates in 89.5% (resp.
95.2%) of cases. Such high recognition scores show the
pertinence of the proposed approach.
When analyzing the recognition rates on a per

category basis, we can observe that three gestures yield
RR(1) recognition rates greater than 92%: juggle (F),
cover one’s ears (H) and stretch out (K). Very good
performances are also obtained for the Tie shoelaces (B),
Kneel (J), gestures, which yield RR(1) recognition rates
superior to 82%. For the Say “thank you” in ASL (A),



Table 6 Cumulative recognition rates for iconic gestures of MSRC-12 dataset

Change weapon Duck Goggles Kick Shoot Throw Mean

RRcum(1) 88.9 93.3 88.9 91.1 89.1 80.4 88.6

RRcum(2) 95.6 100.0 95.6 97.8 95.7 100.0 97.4

RRcum(3) 100.0 100.0 100.0 97.8 97.8 100.0 99.3
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Rotate on oneself (D) and Throw an object in front (G)
gestures, the RR(1) scores slightly lower (75.5, 57.1, and
63.3%, respectively). The lowest RR(1) scores concern
the Draw a circle with the right arm (C), Catch an object
(E), and Rub one’s eyes (I) gestures. However, even in
these cases, the correct category is obtained in more
than 52.1% of cases in the top two candidates (RRcum(2))
and in 64.6% cases in the top three (RRcum(3)).
In order to evaluate the influence of the ϱ parameter,

we have also computed and compared the recognition
rates for values of ϱ of 3.5, 4.0, and 4.5. The average
RR(1) rates are summarized in Table 4.
Globally, the results are quite stable, with an increase

in recognition rates for ϱ = 3.5. This shows that dispos-
ing of a greater number of key-poses (40 for ϱ = 3.5 and
only 20 for ϱ = 4.5) can ameliorate the discriminative
power of the representation.
In order to further analyze the results, we have also

considered per-frame recognition rates. That makes it
possible to calculate the confusion matrix C presented
in Table 5. Here, the C(i, j) elements represent the per-
centage of times where a given frame from category i
has been classified as category j. Theses scores have been
computed over the entire set of frames of the whole
corpus.
A relatively strong confusion is made between say

thank you (A) and throw an object in front (G) gestures,
which can be caused by the proximity between the
involved body motions (notably the arm motion).
A strong confusion also occurs between rub one’s eyes

(I) and cover one’s ears (H), which can also be explained
by body motions similarities (only upper members are
involved, and their motions are close in both cases).
The confusion between draw a circle with the right

arm (C) and say thank you (A) is related to the fact that
only the right arm is involved in both cases.
Finally, the confusion between rotate on oneself (D)

and say thank you (A) may be explained by the pose
normalization process (Section 3.2), since only the
Table 7 Cumulative recognition rates for metaphoric gestures of MS

Beat both Bow Had enough

RRcum(1) 39.1 95.6 86.7

RRcum(2) 76.1 97.8 97.8

RRcum(3) 84.8 100.0 100.0
relative positions of articulations are taken into account
by our model.
Such limitations would need the inclusion in the de-

scriptive model of additional features, able to distinguish
in a finer manner between gestures that remain globally
similar.
However, the confusion matrix confirms the global

recognition results presented in Fig. 6 and shows that in
the majority of cases the correct categories are
determined.
We also tested our method on other available cor-

puses. We obtained several results for different values of
ϱ parameter, and we present here the best ones
obtained.
We first introduce the results obtained on Microsoft

Gesture dataset (MSRC-12 dataset, which we had used
in our previous work [29]). The data set includes six
categories of iconic gestures (which basically represent
actions/objects: duck (crouch or hide), shoot [with a
pistol], throw [an object], change weapon, kick and [put
on night vision] goggles, and 6 metaphoric ones (more
related to higher level, abstract concepts: start system
(start music/raise volume), push right (navigate to next
menu), wind it [the music] up, [take a] bow (to end
music session), had enough (protest the music) and beat
both (move up the tempo of the song).
In Figs. 7 and 8, the results, respectively, obtained on

iconic gestures subset and metaphoric gestures. Our ap-
proach yields recognition rates close to the ones ob-
tained on the same corpus [4, 38–40], excerpt for
certain metaphoric gestures: start system, wind it up,
and beat both (the worst score is reached for this last
category, with 39.1% recognition rate). In contrast with
our real-time recognition system, these approaches use
non-dynamic supervised machine learning algorithms
(such as SVM, Hidden Conditional Random Fields,
Random Decision Forests…) and require the use of
global descriptors (e.g., dealing with the entire gesture
duration).
RC-12 dataset

Push right Start system Wind it up Mean

95.7 68.9 65.0 75.2

100.0 93.3 90.0 92.5

100.0 100.0 95.0 96.6



Fig. 9 Recognition rates per gesture for UTKinect Human Detection dataset
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Tables 6 and 7 present the cumulated scores (Eq. 24)
for iconic and metaphoric gestures. Globally, the
mean recognition scores in first position RR(1), re-
spectively calculated over the iconic gestures and
metaphoric gestures subsets, are of 88.6 and 75.2%.
When also considered the cumulative recognition
rates RRcum(2) and RRcum(3), the correct category is
retrieved in the first two (resp. three) candidates in
97.4% (resp. 99.3%) of cases for iconic gestures, in
92.5% (resp. 96.6%) of cases for metaphoric
gestures.
We also tested our method on UTKinect-Human

Detection dataset which is described exploited in [6]
and puts at stake the following 10 gestures: carry,
clap hands, pick up, pull, push, sit down, stand up,
throw, walk, and wave hands. The results in Fig. 9
show that half of the gestures reach recognition rates
greater than 95%. There is only one category whose
score is less than 70%, which shows the relevance of
our approach.
Table 8 presents the cumulated scores for the whole

dataset. Globally, the correct category is retrieved in first
position RR(1), in the first two candidates, and in the
first three candidates, respectively, in 86.5, 97.5, and
99.5% of cases.
Table 8 Cumulative recognition rates for UTKinect Human Detectio

Carry Clap hands Pick up Pull Push Sit

RRcum(1) 100 95 95 100 55 70

RRcum(2) 100 100 100 100 100 90

RRcum(3) 100 100 100 100 100 95
Such results can be compared to the ones obtained in
[6] on the same corpus, where the authors yield 90.9%
mean recognition rate, and five categories of gestures
reach 96.5% at least. In [41], different approaches based
upon global representations of gestures are tested, and
yield mean recognition rates between 80.8 and 91.9%.
We have proved that the characterization of expressivity

is a key for gestures understanding. Still, the confusion be-
tween close gestures at recognition stage has showed that
the structural aspects of the motion are necessary to dis-
criminate actions whose body parts coordination and cor-
relation are similar. For this purpose, we need to fuse or
aggregate the information coming both from
intentionality, communication and style, and purely visual
aspects like motion structuration or more local indices.
The most important computational burden concerns

the HMM learning stage: 23 min 45 s for the entire
database on an Intel Xeon CPU E5–1620 0 3.60GHz
processor with 16.0 Go RAM. However, this is only an
off-line stage and thus with no impact on the real-time
recognition process. At the testing stage, the classifica-
tion (including LMA feature extraction, soft assignment
and HMM decision) is achieved at a rate of 3.2 ms per
frame, which is obviously fast enough for real-time
applications.
n dataset

down Stand up Throw Walk Wave hands Mean

85 85 80 100 86.5

95 95 95 100 97.5

100 100 100 100 99.5
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5 Conclusion and perspectives
In this paper, we introduced a gesture analysis approach,
based on a set of local descriptors dedicated to the
various entities defined in the LMA framework. Our
approach yielded high recognition rates on a dataset of
11 actions. At short time, our perspectives of future
work concern the evaluation of our approach on se-
quences of actions, or in different applications frame-
works, that can involve gaits, affective states or emotions
analysis. At a longer term, we plan to enrich the LMA
representation with additional features, able to take into
account relatively small details and thus to discriminate
better between globally similar, but different gestures.
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