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Abstract

In this paper, a new algorithm is proposed based on coupled dictionary learning with mapping function for the
problem of single-image super-resolution. Dictionaries are designed for a set of clustered data. Data is classified into
directional clusters by correlation criterion. The training data is structured into nine clusters based on correlation
between the data patches and already developed directional templates. The invariance of the sparse representations
is assumed for the task of super-resolution. For each cluster, a pair of high-resolution and low-resolution dictionaries
are designed along with their mapping functions. This coupled dictionary learning with a mapping function helps in
strengthening the invariance of sparse representation coefficients for different resolution levels. During the
reconstruction phase, for a given low-resolution patch a set of directional clustered dictionaries are used, and the
cluster is selected which gives the least sparse representation error. Then, a pair of dictionaries with mapping
functions of that cluster are used for the high-resolution patch approximation. The proposed algorithm is compared
with earlier work including the currently top-ranked super-resolution algorithm. By the proposed mechanism, the
recovery of directional fine features becomes prominent.

Keywords: Coupled dictionary learning, Compact directional dictionaries, Sparse representations

1 Introduction
Super-resolution (SR) is the goal in image data presenta-
tion which is already an active area of research for some
years due to the interest in high-resolution (HR) images
in many applications. Of course, HR images can easily
be generated by using a high-definition (HD) camera. For
some applications, it is still not yet practical to install such
a camera (e.g., due to limitations of the capacity of the
data channel), or simply not cost-efficient in a particular
context of computer vision, medical imaging, or satellite
imaging.
Recently proposed image representation approaches use

sometimes sparse representation models for storage or
transmission reasons. According to the so-called Sparse-
land model [1], a set of signals called the dictionary
is created for linearly representing the signals of inter-
est. These dictionaries are designed by selecting image
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patches from a natural set of images and iteratively min-
imizing the representation error. Sparsity is used as the
regularizing technique (for achieving SR image represen-
tations) by enforcing the concept that low-resolution (LR)
projections are preserved in linear relations of their HR
counterparts [2].
Earlier dictionary learning algorithms for super-

resolution were focused on learning the separate HR
and LR dictionaries for super-resolution. In [3], authors
propose a joint dictionary learning mechanism for
learning HR and LR dictionaries in a joint feature space,
thus enforcing the similarity between HR and LR sparse
coefficients. At the image reconstruction, stage authors
proposed the invariance of sparse coefficients for HR and
LR patches. In [4], authors propose a multi-scale dictio-
nary learning approach where wavelets were used for
analysis of the LR images and dictionaries were learned at
different resolution levels. By doing so, authors designed
compact dictionaries at different resolution levels achiev-
ing reduced computational cost. In [5], authors propose
multi-scale dictionary learning by introducing local
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and non-local priors for the task of single-image super-
resolution. These priors are used to recover SR images
by suppressing artifacts and estimating the required
HR image pixels. However, in the recent work, authors
propose the use of classification of training data based
on scale invariant features and learn the class-dependent
dictionaries instead of a single universal one or on
multi-scales.
Related work includes Dong et al. [6] where authors

proposed to divide the training data by k-means algo-
rithm and clustered data into different sets and then
applied the dictionary learning to get the compact dictio-
naries. In [7], Feng et al. use k-subspace clustering and
divided the data into different subspaces and then dic-
tionaries were learned from those subspaces in a shared
bases manner. More recently, Yu et al. [8] consider the
design of structural dictionaries. In [8], authors consid-
ered the orthogonal bases for the dictionary atoms and
designed structured dictionaries from those orthogonal
bases. Yang et al. [9] propose the use of multiple patches
based clustered dictionaries instead of a single universal
one. In this mechanism, the authors studied the geomet-
ric properties of the image patches. Patches were clustered
into different clusters depending on their geometric prop-
erty. Dictionaries were obtained from training the image
patches from these clusters. In [10], authors designed nine
LR directional dictionaries for solving the single-image SR
problem. Here, the LR dictionaries were learned by the K-
SVD algorithm [1] and HR dictionaries were obtained by
solving a pseudo-inverse problem. An important thing to
note here is that despite clustering the data into the direc-
tional templates, in the dictionary learning process there
is no coupling between the HR and LR sparse represen-
tation coefficients. Because the SISR problem depends on
the invariance of the sparse coefficients. The idea of single
dictionary learning with no coupling between the sparse
coefficients has already been superseded by [11, 12].
In [12], the authors proposed a coupled dictionary

learning mechanism for training of HR and LR dictionar-
ies. In this setup, an alternate mechanism is applied to the
sparse coefficients of HR and LR patches; for each itera-
tion, one sparse coefficient is chosen either the HR or LR
and it is used to update both the HR and LR dictionar-
ies. In doing so, authors achieved a slight improvement in
forcing the sparse coefficients of HR and LR to be the same
and thus produced results on par with the state-of-the-art
algorithm published in [11].
In this paper, for the task of SISR, the basic idea of Yang

et al.’s [11], the approach is assumed that the HR and LR
have the same sparse coefficients. Instead of using a sin-
gle pair of dictionaries as done in [11] and [12], multiple
directional dictionaries are proposed as done in [10]. The
training data is divided into eight directional clusters and
a non-directional one. The training data is clustered by

correlating the training patches with already developed
directional templates. These templates have directional
structure. It is shown that these are helpful in creating
compact and directional dictionaries.
Now for each cluster, a pair of directional and compact

dictionaries are designed along with their mapping func-
tions. In the image recovery stage, each patch at hand
is recovered with each cluster dictionary by calculating
the sparse representations and using the already designed
HR dictionary and mapping functions. Then, based on
the sparse representation error, a proper dictionary pair is
selected along with a mapping matrix. Sparse coefficients
are calculated for the LR patch using the selected LR dic-
tionary and mapping matrix. Then, HR patches are recon-
structed by using the sparse representation along with the
corresponding HR dictionary and mapping matrix. This
clustering mechanism, along with the mapping function
paradigm, allows us to super-resolve patches with high-
frequency components. Experiment results show that the
proposed algorithm is on par with the existing state-of-
the-art algorithms and shows improvement in recovering
images with directional fine features.
The rest of the paper is structured as follows. Section 2

presents the super-resolution via sparse representations.
Section 3 describes the proposed algorithm. Section 4
reports simulations. Section 5 concludes. Section 5.1 gives
future recommendations.

2 Image super-resolution
Achieving SISR is a type of problem that is ill-posed.
Researchers tried to regularize the solution process.
Recently, authors proposed a very effective method called
sparsity, for regularization. Sparsity has a very nice prop-
erty of scale invariance (to some extent) due to resolution
blur [11]. Using sparsity as a regularizer, one can find
HR from LR images using the scale invariance of sparse
coefficients.
Let xH be the HR signal vector extracted from an HR

image in the form of the 2−D patch, then vectorized into
column form. Let DH be the corresponding HR dictio-
nary whose columns represent atoms. We can represent
this signal vector xH by using the sparse representations
as xH ≈ DHαH , where αH is a sparse coefficient matrix
for the HR signal vector with only very few non-zero
elements.
Let xL be the corresponding LR signal vector extracted

in the same manner after performing blurring and down-
sampling operation on the HR images. The sparse repre-
sentation of this vector LR signal can be given as xL ≈
DLαL, where DL represents the dictionary for the LR
signal vector and αL represents the sparse coefficient
matrix for the LR signal vector.
The LR signal vectors are generated by blurring and

down-sampling the HR images. Let ψ be this blurring and
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down-sampling operator applied on HR images to gener-
ate the LR signal vectors. Using this operator we can relate
the HR and LR signal vectors. This operation is expressed
in Eq. 1. This concept also extends to the sparse repre-
sentation of HR and LR signal vectors. Considering the
invariance of the sparse coefficients due to resolution blur,
we can also relate the HR and LR dictionaries by the same
operator. This operation is expressed in Eq. 2.

xL ≈ ψxH , (1)

DL ≈ ψDH . (2)

See [11]. It follows that

xL ≈ ψxH ≈ ψDHαH ≈ DLαL. (3)

From Eq. 3, it is concluded that αH ≈ αL.
This is the background of a key idea for solving the

problem of SISR by sparse representations. If xL,DL,
and DH are given, then one can calculate αL by using
some vector selection algorithm either by greedy meth-
ods or relaxation methods. Finally, the HR patches can be
estimated by

xH ≈ DHαL. (4)

3 The proposedmethod
This proposal addresses dictionary learning and image
reconstruction by multiple dictionary learning and selec-
tive sparse coding, and it is outlined in the algorithms
presented in Figs. 1 and 2. During the dictionary learn-
ing process, a set of directionally structured dictionar-
ies is learned along with a non-directional one. These
learned dictionaries along with their inherent mapping
functions are used for the reconstruction of the desired
images.

Fig. 1 Proposed dictionary learning algorithm

Fig. 2 Proposed image reconstruction

3.1 The proposed dictionary learning algorithm
In the training phase, patches are extracted from a num-
ber of natural images. These images are taken from the
set provided by Yang et al. [11]. These sets of natural
images are very rich in high-frequency content and are
suitable for the training of dictionaries. To obtain the
training set first, the LR counterparts of the HR images
are obtained by down-sampling and blurring. These LR
images are then interpolated by bicubic interpolation
to match the dimensions of the HR images for conve-
nience and called those images the mid-resolution (MR)
images. Patches are extracted from HR and MR images
from the same spatial locations and classified into nine
clusters. The patch templates for clustering are designed
with the eight different directional orientations to cover
the two-dimensional image space and are given as y =
{0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦}. Each clus-
ter template created has a specific direction with all pos-
sible shifts. These directional orientations given in y were
selected after performing various tests and experiments
for the optimum performance. The current directional
spacing between the templates is 22.5◦. If this value was
increased, the number of clusters will be less and so
will be the performance of the algorithm. On the con-
trary, if this value was less the number of clusters will
increase thereby increasing the computation cost at the
image recovery stage. Some of the directional templates
are shown in Fig. 3 along with their shifted versions. For
all the eight directions, we have considered all possible
shifts.
The patches are extracted and clustered into these direc-

tional template clusters by a correlation between a given
patch and the template. Decisions are made based on
suitable thresholds chosen from the empirical set based
on a histogram of correlation. After evaluating results
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Fig. 3 Samples of some directional templates showing 0◦ , 90◦ , and 45◦ orientations

on different patch sizes and number of samples of train-
ing data, the threshold value 0.69 was selected for the
optimum performance of the algorithm. Next, a coupled
dictionary learning problem is formulated and solved to
obtain the clustered dictionary pairs and their mapping
functions.
LetWy

H andWy
L be the HR and LR training data, respec-

tively. The following energy function is proposed and
minimized (approximately); by solving, the corresponding
compact directional dictionaries along with the needed
mapping function are obtained [13].

min{Dy
H ,D

y
L, f (·)}Edata(Dy

H ,W
y
H) + Edata(D

y
L,W

y
L)

+ γEmap(f (α
y
H),αy

L) + λEreg(α
y
H ,α

y
L, f (·),Dy

H ,D
y
L),

(5)

where Edata(·, ·) is the data fidelity term, Emap(·, ·) is the
mapping fidelity, and Ereg is the regularizer. The coupling
between the sparse coefficients of HR and LR data over
dictionaries is related by the mapping function f (·). The
HR and LR dictionaries are optimized concurrently with
the mapping function.
The problem in Eq. 5 can be converted into a ridge

regression and dictionary learning problem considering
the mapping to be a linear function as:

min{Dy
H ,D

y
L, f (·)}‖Wy

H − Dy
Hα

y
H‖2F + ‖Wy

L − Dy
Lα

y
L‖2F

+ γ‖αy
L−Myα

y
H‖2F+λ

y
H‖αy

H‖1+λ
y
L‖αy

L‖1+λ
y
m‖My‖2F

s.t. ‖Dy
H ,i‖l2 ≤ 1 ∧ ‖Dy

L,i‖l2 ≤ 1 , for all i,
(6)

where γ , λyH , λ
y
m, and λ

y
L represent the regularization

terms for the optimum performance, andDy
H ,i andD

y
L,i are

the atoms of Dy
H and Dy

L, respectively.
The problem formulated by Eq. (6) can be solved by

optimizing one parameter at a time while considering
the others as being constant. As the mapping function
(matrix)My is linear, bi-directional transforms are learned
from α

y
H to α

y
L and vice versa.

After initializing matrix M and dictionary D, one can
find the sparse coefficients α by applying:

min{αy
H}‖Wy

H − Dy
Hα

y
H‖2F + γ ‖αy

L − My
Hα

y
H‖2F + λ

y
H‖αy

H‖1
min{αy

L}‖Wy
L − Dy

Lα
y
L‖2F + γ ‖αy

H − My
Lα

y
L‖2F + λ

y
L‖αy

L‖1.
(7)

The problem in Eq. 7 can easily be solved by apply-
ing l1norm minimization algorithm such as least-angle
regression (LARS) [14].
Now for the dictionary update stage using the current

sparse coefficients, the following problem is solved as:
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min{Dy
H ,D

y
L}‖Wy

H − Dy
Hα

y
H‖2F + ‖Wy

L − Dy
Lα

y
L‖2F

s.t. for all i, ‖Dy
H ,i‖l2 ≤ 1 ∧ ‖Dy

L,i‖l2 ≤ 1. (8)

Now the problem in Eq. 8 is called quadratically con-
strained quadratic program (QCQP). It can be easily
solved as done in [11]. Finally by keeping the dictionary
and the sparse coefficients fixed, the matrix M can be
updated as:

min{My}‖αy
L − Myα

y
H‖2F + (λ

y
m/γ )‖My‖2F . (9)

The problem in Eq. 9 is called the ridge regression
problem and can be solved as:

My = α
y
L(α

y
H)T (α

y
H(α

y
H)T + (λ

y
m/γ ) · I)−1, (10)

where I represents the identity matrix. By this strategy,
a set of directional dictionaries is developed along with
their mapping function (matrix). The proposed training
algorithm is summarized in Algorithm 1.
Figure 4 shows the convergence curves of the proposed

algorithm. Heremean squared error is calculated fromHR
to LR and then LR to HR sparse representations of the
training patch pairs after updating the HR and LR map-
ping matrices in each iteration. The mapping functions
are initialized as the identity matrices and our proposed
algorithm converges stably.

3.2 The proposed image reconstruction algorithm
During the reconstruction stage, a set of test images is
selected from different datasets [15, 16], and also, some
benchmark images are selected for testing proposed algo-
rithm. Figure 5 shows the images used in the testing phase.

Care has been taken in selecting the images. It was made
sure to take the images different from the training set. At
the image recovery stage, a given LR image is first up-
converted into the MR level by bicubic interpolation. This
is done for matching the size of the HR and the (now
transformed) LR image. Patches and features are extracted
from this up-converted image by applying a full overlap
selection scheme. This is followed by a selective sparse
coding step. It needs to be identified which dictionary
pair along with its mapping function gives the least sparse
representation error.
This corresponds to a model selection scenario. We

need to find which dictionary pair among the nine clusters
will give the least sparse representation error and hence
the best HR patch recovery. This is done by recovering
HR patch from LR patch at hand using each directional
dictionary pair and its mapping function. For patch-based
sparse recovery, first the sparse coefficients of the LR
patch are calculated by [14] using the LR patch and LR
dictionary. Then HR dictionary is used along with map-
ping functions to recover the HR patch assuming the
invariance property of the sparse coefficients. The dic-
tionary and mapping pair which gives the least sparse
representation error is chosen for the HR patch estima-
tion. Here a very basic approach is presented to show
the need and effect of directional clustering. By using
all dictionaries for HR, patch recovery serves as a per-
fect model selection (PMS) which can be used as a ref-
erence while designing different cluster selection mod-
els. In this case, the results show peak signal to noise
ratio (PSNR) improvements of 1 dB over the baseline
algorithms.

Fig. 4 Convergence curves of the proposed algorithm
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Fig. 5 Images used in testing phase. From left to right and top to bottom correspond to AnnieYukiTim, Barbara, BooksCIMAT, Butterfly, Fence,
ForbiddenCity, HowMany, Kodak-05, Kodak-08,Michoacan,MissionBay, NuRegions, Peppers, Rocio, Starfish, Yan

Finally, those approximated HR vector patches are
reshaped into two-dimensional form. As we know, patches
were extracted with full-overlap, and the overlap-add
method of [11] is employed at the end to get the approx-
imate HR image. The reconstruction process is summa-
rized in Algorithm 2.

4 Results and discussion
The proposed algorithm is compared with the algorithm
of Yang et al. [11], algorithm of Xu et al. [12], and Bicubic
technique (Bic.).
Tables 1 and 2 list the PSNR, structural similarity index

measurement (SSIM) [17], Sharpness and contrast [18]
measures for the compared algorithms on different scale
parameters. Table 1 shows the results for scale parameter
2. Table 2 shows the results for scale parameters 3 and 4.
The proposed algorithm uses a patch size of 6×6 with 216
dictionary atoms for each directional cluster. The base-
line algorithm of Yang et al. [11] and the algorithm of Xu
et al. [12] use a patch size of 6 × 6 with 216 dictionary
atoms in the spatial domain. The algorithms being com-
pared are of different nature and care has been taken to
use the values that give optimum performance of the algo-
rithms, being compared. Full overlapping is employed for
all the algorithm to achieve the best performance. A sin-
gle data set of training images used by [11] is selected
here for patch extraction and around 10,000 patches were
extracted for each cluster for the proposed algorithm and
around 100,000 patches were extracted for the spatial
domain algorithm of Yang et al. [11] and Xu et al. [12].
The simulation was carried out by setting all other param-
eters same. Images for all algorithms are super-resolved
by different scale parameters. For the implementation of
the Bicubic techniqueMatlab’s (imresize) function is used.
The baseline algorithm of Yang et al. [11] uses a single uni-
versal dictionary for the task of SISR as well as [12] does.
The proposed algorithm uses nine compact dictionaries
covering eight different orientations of the image feature
space.

4.1 Quantitative experimentation
LR images are reconstructed by the three algorithms and
bicubic technique to their original sizes. The PSNR and
SSIM as given in [11] and [17] are used along with sharp-
ness and contrast measures used by Liu et al. [18] for the
quantitative performance evaluation.
The PSNR measure for a reconstructed image is calcu-

lated as follows:

MPSNR(x, x̂) = 10 log10
2552

EMSE(x, x̂)
, (11)

where x is the original HR image having size of M × N , x̂
is the estimation, and EMSE(x, x̂) is the mean square error
(MSE) given for x and x̂ as follows:

EMSE(x, x̂) = 1
MN

M∑

i=1

N∑

j=1
(xij − x̂ij)2. (12)

The SSIM [17] is used as a perceptual quality met-
ric, which is more compatible with human image quality
perception than the PSNR measure. The sharpness and
contrast measures, as introduced by Liu et al. [18], are at
first calculated as s(i, j) and c(i, j), respectively, for each
pixel position (i, j) and then averaged for the whole image.
Regarding s(i, j) and c(i, j), consider an image I and

A(i, j) as being the 8-adjacent pixels “around” (i, j) (not
including (i, j)); then

s(i, j) = ‖I(i, j) − μA(i,j)‖1 (13)

where s(i, j) is the sharpness value of image I at (i, j), and
μA(i,j) the mean value of I at pixel locations in A(i, j). For
the contrast, let

c(i, j) = 1
MN

M∑

x=1

N∑

y=1
‖I(i, j) − I(x, y)‖1, (14)

where c(i, j) is the contrast value of image I at (i, j).
The sharpness and contrast values are for comparing

the contrast and sharpness values of reconstructed images
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Table 1 PSNR (top left), sharpness (top right), SSIM (bottom left) and contrast (bottom right), scale factor 2 comparison of the bicubic
(Bic.) technique, algorithm of Yang et al.’s [11], algorithm of Xu et al.’s [12] and proposed algorithm

Images Bic. [11] [12] Proposed(PMS) Proposed

AnnieYukiTim 31.42 0.5709 32.79 0.3824 32.76 0.3848 33.83 0.3659 32.86 0.3789

0.9064 0.3280 0.9375 0.1879 0.9376 0.1865 0.9338 0.2038 0.9221 0.1961

Barbara 25.34 0.7400 25.34 0.5531 25.81 0.5555 26.46 0.5439 25.91 0.5438

0.7929 0.5890 0.8356 0.4199 0.8330 0.4207 0.8563 0.4274 0.8360 0.4249

BooksCIMAT 24.89 0.6176 26.02 0.3940 27.17 0.4075 26.62 0.3916 26.21 0.3987

0.8271 0.4075 0.8826 0.2047 0.9039 0.2176 0.8941 0.2272 0.8829 0.2151

Butterfly 27.45 0.4541 30.07 0.2174 29.85 0.2182 31.77 0.1961 30.53 0.1965

0.8984 0.1633 0.9445 0.0145 0.9430 0.0101 0.9508 0.0569 0.9460 0.0356

Fence 25.04 0.6432 26.32 0.4563 27.85 0.4693 27.31 0.4414 26.36 0.4483

0.7448 0.5281 0.8158 0.3271 0.8496 0.3395 0.8332 0.3379 0.8210 0.3289

ForbiddenCity 24.06 0.7143 24.66 0.5559 25.90 0.5718 25.58 0.5465 24.75 0.5569

0.6767 0.5759 0.7549 0.3974 0.7925 0.4078 0.7930 0.4062 0.7899 0.4062

HowMany 27.98 0.5739 29.19 0.3735 29.16 0.3750 30.04 0.3586 29.17 0.3599

0.8686 0.3038 0.9126 0.1571 0.9120 0.1545 0.9000 0.1708 0.8843 0.1637

Kodak-05 23.97 0.7055 24.78 0.5372 25.89 0.5483 25.60 0.5256 25.56 0.5256

0.7235 0.5015 0.7898 0.3365 0.8239 0.3444 0.8154 0.3510 0.8101 0.3449

Kodak-08 22.12 0.7182 22.81 0.5638 23.48 0.5723 23.83 0.5461 22.90 0.5539

0.6995 0.5183 0.7672 0.3569 0.7950 0.3592 0.8027 0.3633 0.7570 0.3602

Michoacan 22.19 0.6614 23.85 0.4851 24.96 0.4992 24.76 0.4702 24.32 0.4729

0.7877 0.4506 0.8388 0.2879 0.8627 0.2979 0.8508 0.3000 0.8346 0.2943

MissionBay 26.67 0.6174 27.90 0.4294 27.86 0.4295 29.27 0.4003 28.89 0.4092

0.8459 0.3475 0.8883 0.1928 0.8868 0.1899 0.9040 0.2129 0.9010 0.2047

NuRegions 19.81 0.5326 21.30 0.3413 22.09 0.3536 22.14 0.3255 21.35 0.3266

0.8469 0.2749 0.9047 0.0780 0.9182 0.0875 0.9207 0.0898 0.9046 0.0848

Peppers 29.95 0.5459 31.22 0.3545 31.94 0.3781 31.91 0.3253 31.56 0.3261

0.9045 0.2395 0.9422 0.1113 0.9583 0.1270 0.9608 0.1382 0.9596 0.1248

Rocio 36.63 0.4019 39.19 0.1816 39.01 0.1821 40.38 0.1516 38.98 0.1674

0.9612 0.1640 0.9778 0.0515 0.9773 0.0455 0.9745 0.0660 0.9799 0.0530

Starfish 30.22 0.5101 32.12 0.2880 32.04 0.2895 33.09 0.2765 32.89 0.2846

0.8923 0.2779 0.9358 0.1239 0.9354 0.1208 0.9365 0.1380 0.9332 0.1331

Yan 26.96 0.6346 28.01 0.4579 27.94 0.4590 29.16 0.4346 28.15 0.4411

0.8276 0.3878 0.8743 0.2268 0.8729 0.2227 0.8795 0.2447 0.8898 0.2357

Average 26.54 0.6026 27.85 0.4107 28.36 0.4184 28.86 0.3937 28.15 0.3994

0.8253 0.3786 0.8752 0.2171 0.8876 0.2207 0.8879 0.2334 0.8783 0.2254

The data in boldface signifies highest value in comparison

with those of the original images. The table shows abso-
lute errors (i.e., the absolute difference in contrast or
sharpness from the original value, divided by the origi-
nal value). Smaller values indicate less deviation from true
contrast and sharpness.
Tables 1 and 2 indicate that images reconstructed by

the proposed algorithm have less deviation in terms of
sharpness from the original value. This corresponds to the

observation that the proposed algorithm is well able to
recover high-frequency components better than the other
algorithms. Also, there is slightly more deviation from
the original contrast value when compared with the other
algorithms.
Tables 1 and 2 lists the comparison results for the pro-

posed algorithm with the spatial domain state-of-the-art
algorithm of [11] and bicubic technique. The proposed
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Table 2 PSNR (top left), sharpness (bottom left), SSIM (top right), and contrast (bottom right), for each image first row (scale factor 3)
and second row (scale factor 4) comparison of the bicubic (Bic.) technique, algorithm of Yang et al.’s [11], algorithm of Xu et al.’s [12],
and the proposed algorithm

Images Bic. [11] [12] Proposed (PMS)

AnnieYukiTim 26.04 0.7870 30.66 0.8957 30.64 0.8950 31.3 0.8990

0.6800 0.3932 0.5118 0.2493 0.5118 0.2463 0.4868 0.2533

26.94 0.7600 27.62 0.8174 27.62 0.8169 28.10 0.8211

0.8059 0.5246 0.6938 0.3900 0.6935 0.3891 0.6719 0.3904

Barbara 24.52 0.7111 25.24 0.7490 24.60 0.7254 25.62 0.7727

0.8606 0.6644 0.7807 0.5842 0.7791 0.5820 0.7629 0.5834

23.60 0.6570 23.82 0.6744 23.82 0.6743 24.15 0.7018

0.9102 0.7360 0.8631 0.6765 0.8628 0.6756 0.8429 0.6732

BooksCIMAT 22.20 0.6360 24.72 0.8102 24.69 0.8087 24.77 0.8210

0.7883 0.5292 0.6059 0.3423 0.6078 0.3417 0.5867 0.3353

21.62 0.5863 22.94 0.7007 22.94 0.7007 23.30 0.7104

0.8585 0.5998 0.7459 0.4505 0.7462 0.4502 0.7310 0.4517

Butterfly 20.99 0.7329 25.89 0.8627 25.83 0.8600 26.65 0.8652

0.6085 0.2283 0.4148 0.0736 0.4119 0.0679 0.3824 0.0876

22.14 0.6990 23.00 0.7564 23.00 0.7550 23.75 0.7655

0.7362 0.3279 0.5921 0.1543 0.5874 0.1520 0.5567 0.1616

Fence 22.20 0.5741 22.70 0.6494 22.69 0.6488 23.84 0.6894

0.8202 0.6847 0.6854 0.5192 0.6793 0.5234 0.6740 0.5378

21.49 0.4885 21.87 0.5547 21.89 0.5545 22.13 0.5692

0.9082 0.7965 0.8420 0.7037 0.8425 0.7033 0.8243 0.7014

ForbiddenCity 22.38 0.4415 24.02 0.6123 24.06 0.6140 24.20 0.6294

0.8500 0.7079 0.7470 0.5722 0.7482 0.5717 0.7185 0.5572

22.06 0.3498 22.73 0.4615 22.74 0.4625 23.23 0.4976

0.9151 0.7982 0.8411 0.6791 0.8426 0.6794 0.8204 0.6733

HowMany 23.56 0.6774 27.15 0.8396 27.12 0.8384 27.71 0.8432

0.6947 0.3788 0.5326 0.2429 0.5338 0.2413 0.5068 0.2460

22.96 0.6048 24.85 0.7303 24.85 0.7295 25.30 0.7995

0.7996 0.4872 0.6855 0.3499 0.6842 0.3493 0.6611 0.3505

Kodak-05 23.05 0.6121 24.28 0.7147 24.25 0.7136 24.81 0.7381

0.8003 0.5698 0.6708 0.4227 0.6716 0.4212 0.6503 0.4251

20.80 0.4341 22.60 0.5945 22.58 0.5936 23.95 0.6320

0.8862 0.6848 0.8120 0.5702 0.8114 0.5691 0.7886 0.5623

Kodak-08 20.72 0.5695 21.84 0.6723 21.84 0.6724 22.50 0.7070

0.8180 0.5988 0.7058 0.4691 0.7065 0.4673 0.6818 0.4688

18.70 0.3914 20.61 0.5493 20.60 0.5497 21.71 0.6603

0.8971 0.7025 0.8349 0.6098 0.8357 0.6080 0.8072 0.6035

Michoacan 21.22 0.6522 22.64 0.7446 22.61 0.7429 23.23 0.7605

0.7766 0.5345 0.6365 0.3887 0.6357 0.3870 0.6112 0.3900

18.76 0.4721 20.84 0.6253 20.81 0.6235 21.10 0.6758

0.8715 0.6503 0.7878 0.5359 0.7886 0.5346 0.7630 0.5290

MissionBay 24.13 0.7399 25.52 0.8019 25.50 0.8021 26.35 0.8167

0.7566 0.4472 0.6129 0.3053 0.6139 0.3056 0.5816 0.3122
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Table 2 PSNR (top left), sharpness (bottom left), SSIM (top right), and contrast (bottom right), for each image first row (scale factor 3)
and second row (scale factor 4) comparison of the bicubic (Bic.) technique, algorithm of Yang et al.’s [11], algorithm of Xu et al.’s [12],
and the proposed algorithm (Continued)

21.77 0.6162 24.05 0.7309 24.06 0.7305 24.93 0.8129

0.8149 0.5062 0.6985 0.3702 0.6980 0.3704 0.6697 0.3707

NuRegions 15.08 0.5079 18.22 0.7765 18.24 0.7765 18.84 0.7840

0.7198 0.4805 0.5369 0.2410 0.5419 0.2402 0.5176 0.2395

13.39 0.2408 15.70 0.5647 15.72 0.5657 16.21 0.6836

0.8503 0.6714 0.7069 0.4420 0.7091 0.4416 0.6907 0.4369

Peppers 24.00 0.7678 28.58 0.9013 28.52 0.8993 28.99 0.9810

0.6997 0.3360 0.5512 0.2168 0.5502 0.2153 0.5100 0.2160

25.34 0.7786 26.63 0.8377 26.56 0.8355 27.30 0.9130

0.7447 0.3731 0.6059 0.2406 0.6061 0.2382 0.5710 0.2425

Rocio 30.27 0.8704 33.77 0.9376 33.70 0.9327 34.42 0.9390

0.5753 0.2492 0.3732 0.1271 0.3739 0.1237 0.3374 0.1335

29.27 0.8407 31.22 0.8926 31.22 0.8917 32.77 0.9010

0.6694 0.3241 0.5114 0.1975 0.5110 0.1964 0.4725 0.1991

Starfish 24.38 0.7056 28.67 0.8643 28.61 0.8625 29.24 0.8720

0.6675 0.3748 0.4815 0.2229 0.4835 0.2220 0.4580 0.2238

25.18 0.6960 25.79 0.7595 25.78 0.7584 26.34 0.8020

0.7960 0.5033 0.6746 0.3647 0.6734 0.3634 0.6517 0.3616

Yan 24.27 0.6847 26.42 0.8061 26.41 0.8057 27.30 0.8121

0.7470 0.4719 0.5922 0.3134 0.5933 0.3123 0.5640 0.3188

22.74 0.6047 24.12 0.6907 24.14 0.6910 25.71 0.7019

0.8496 0.5864 0.7534 0.4532 0.7527 0.4529 0.7246 0.4526

Average 23.06 0.6669 25.65 0.7899 25.58 0.7874 26.24 0.8081

0.7414 0.4781 0.5900 0.3307 0.5902 0.3293 0.5644 0.3330

22.30 0.5763 23.65 0.6838 23.65 0.6833 24.37 0.7280

0.8321 0.5795 0.7281 0.4493 0.7278 0.4483 0.7030 0.4475

The data in boldface signifies highest value in comparison

algorithm produces better results when compared with
Yang et al.’s [11], due to the directional clustered dictio-
nary learning. The proposed algorithm gives an average
PSNR raise of 1.01, 0.59, and 0.72 dB for scale parame-
ters 2, 3, and 4 over the state of the algorithm of Yang
et al. [11] with SSIM improvement of 0.0127, 0.0182, and
0.0442 for scale parameters 2, 3, and 4 when tested on
[15, 16] data sets and some other benchmark images. The
improvements over the coupled K-SVD algorithm of Xu
et al. [12] is 0.5, 0.66, and 0.72 dB in terms of PSNR for
scale parameters 2, 3, and 4. The improvements in SSIM
values are 0.0002, 0.0207, and 0.0447 for scale parameters
2, 3, and 4. The improvements over the bicubic technique
over this set of test images is 2.32, 3.18, and 2.07 dB in
terms of PSNR for scale parameters 2, 3, and 4 and 0.0623,
0.1412, and 0.1017 in terms of SSIM for scale parameters
2, 3, and 4, respectively. This justifies the fact that direc-
tional clustered dictionaries better recover some of the
high-frequency components of the LR image.

From Table 1, one can see that the average PSNR and
SSIM results of the proposed algorithm are less than the
algorithm of [12] for scale parameter 2. This is due to
the fact that the algorithm by [12] uses a coupled K-
SVD approach for the dictionary update stage, also after
recovering the HR patches a geometric mean algorithm is
implemented to get the HR image estimate which serves
as an additional post processing. However, the proposed
(PMS) clearly outperforms the compared algorithms for
all scale parameters.
Table 3 shows the comparison of the noisy natural

images in terms of PSNR and SSIM for scale up factor 2.
From Table 3, one can clearly observe that the proposed
algorithm gives an average PSNR raise of 2.56 dB over the
bicubic technique, 1.01 dB over the algorithm of [11], and
1.04 dB over the algorithm of [12]. In terms of SSIM the
proposed algorithm gives an average raise of 0.0750 over
the bicubic technique, 0.0189 over the algorithm of [11],
and 0.0190 over the algorithm of [12].
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Table 3 PSNR (top) and SSIM (bottom), comparison of the
bicubic (Bic.) technique, algorithm of Yang et al.’s [11], algorithm
of Xu et al.’s [12], and the proposed algorithm

Images Bic. [11] [12] Proposed

Baboon 24.66 25.28 25.30 26.05

0.6359 0.7594 0.7602 0.7746

Boat 32.35 33.71 33.66 35.03

0.8989 0.9292 0.9291 0.9375

Bridge 26.49 27.46 27.46 28.36

0.7922 0.8445 0.8446 0.8725

Cameraman 26.32 27.63 27.61 28.73

0.8629 0.8918 0.8912 0.9132

Coala 33.40 36.26 36.26 37.83

0.8958 0.9513 0.9513 0.9697

Coastguard 29.13 30.47 30.47 31.61

0.7725 0.8495 0.8501 0.8731

Comic 26.05 28.33 28.28 28.78

0.8419 0.9105 0.9092 0.9255

Elaine 31.04 31.31 31.32 31.83

0.6531 0.7123 0.7131 0.7214

Face 34.74 36.53 36.53 36.90

0.8041 0.9095 0.9097 0.9432

Fingerprint 31.92 34.43 34.43 35.14

0.9513 0.9729 0.9730 0.9765

Flowers 30.41 32.19 32.10 33.47

0.8828 0.9270 0.9264 0.9496

Foreman 35.35 37.39 37.20 38.76

0.8928 0.9594 0.9586 0.9686

House 32.76 34.25 34.13 35.72

0.8928 0.9099 0.9092 0.9279

Lena 34.71 36.21 36.18 37.14

0.8507 0.9259 0.9260 0.9737

Man 29.25 30.38 30.33 31.40

0.8314 0.8782 0.8779 0.8905

Parrot 26.91 28.57 28.63 29.75

0.8931 0.9185 0.9186 0.9340

Average 30.34 31.90 31.87 32.91

0.8345 0.8906 0.8905 0.9095

The data in boldface signifies highest value in comparison

It is noted here that the computational cost of the pro-
posed algorithm increases nine times as compared to
the algorithms of [11] and [12]. It is well known that
the most expensive stage in the dictionary learning pro-
cess is the sparse representation stage which is a vector
selection process. Using each directional dictionary along
with mapping to recover the HR patch increases the

computational cost given that the proposed algorithm is
using the same number of dictionary atoms and patch
size. However, in some applications, one can compromise
the number of computations given that the improvement
margin in quality is considerable.
We also tested other dictionary model selection

approaches which can reduce the computational cost. One
approach that we used during the testing phase of the
proposed algorithm for cluster selection was only the cor-
relation of the LR patch at hand with each directional
cluster and then using that dictionary pair for HR patch
reconstruction. Using this very simple approach on aver-
age using the same test images and scale parameter 2, the
PSNR improvements were 0.3 dB over the algorithm of
[11] and SSIM improvement of 0.0031. These results are
given in Table 1 last column. In this case, the computa-
tional cost is same as the baseline algorithms with only
additional correlation computation. In this scenario, the
only extra cost is the correlation computation for cluster
decision when comparing with the baseline algorithms. In
the same way, one can use different probabilistic models
for deciding which cluster to use during the reconstruc-
tion phase given that the clustering is carried out by
correlation with designed templates. One can also exploit
hidden Markov trees (HMT) between the HR and LR
training data and develop suitable models.

4.2 Qualitative experimentation
Here, the zoomed versions of the reconstructed images
for scale parameter 3 are shown for the comparison.
Figure 6 shows the zoomed original image and the recon-
structed images by the algorithms used for comparison.
Images are zoomed to further clarify the comparisons.
Looking into Fig. 6, one can see that the reconstruc-
tion by bicubic technique shows a significant amount
of blur; however, the reconstructed images by the algo-
rithm of Yang et al. [11] are slightly clearer than the
bicubic technique. Looking at the zoomed Barbara and
Kodak-05 image, it is clear that the reconstruction by the
proposed algorithm is much sharper around the edges
and more clear in terms of sharpness best viewed on
HD device. The proposed algorithm is able to recover
the sharper patches more efficiently than the baseline
algorithm.

5 Conclusions
The directional clustering with coupled dictionary learn-
ing is proposed for the problem of SISR. Nine pairs of
directional dictionaries are designed. The proposed algo-
rithm uses a patch size of 6× 6 with 216 dictionary atoms
to ensure the much needed computational cost. The pro-
posed algorithm outperforms the spatial domain baseline
algorithm of Yang et al. [11]. The proposed algorithm per-
forms quite well when compared with the algorithm of
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Fig. 6 Visual comparison of Barbara, Kodak-05 , Starfish, Yan, from left to right correspond to: original, bicubic, [11, 12], and proposed method

Xu et al. [12] due to clustering and coupled dictionary
learning with mapping functions.
From the results, it can be seen that the proposed idea

of clustering-based coupled dictionary learning and map-
ping functions can produce better results when compared
with the state-of-the-art algorithms.
For scale parameter 2 compared to the bicubic interpo-

lation, the proposed algorithm gives 2.32 dB improvement
as tested over the set of benchmark images. The proposed
algorithm provides a 1.01 dB improvement over the base-
line algorithm of Yang et al. [11], and 0.5 dB improvement
over the algorithm of Xu et al. [12] as tested over the
image data sets [15, 16]. Visual results also verify those
quantitative results.

5.1 Future recommendations
Considering the possibilities of the extension of this work,
it is suggested that in the process of designing dictionar-
ies, one can employ the model selection from LR to HR by
learning hidden Markov models [19]. Moreover, to gener-
ate the LR images, the blur filter is assumed as the bicubic
filter. This work can be extended to include and compare
the accurate camera blur models as in [20].
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