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Abstract

Assistive technologies aim at improving personal mobility of individuals with disabilities, increasing their
independence and their access to social life. They include mechanical mobility aids that are increasingly employed
amongst the older people who rely on them. However, these devices might fail to prevent falls due to the
under-estimation of approaching hazards. Stairs and curbs are among these potential dangers present in urban
environments and living accommodations, which increase the risk of an accident. We present and evaluate a
low-complexity algorithm to detect descending stairs and curbs of any shape, specifically designed for low-power
real-time embedded platforms. Based on a passive stereo camera, as opposed to a 3D active sensor, we assessed the
detection accuracy, processing time and power consumption. Our goal being to decide on three possible situations
(safe, dangerous and potentially unsafe), we achieve to distinguish more than 94 % dangers from safe scenes within a
91 % overall recognition rate at very low resolution. This is accomplished in real-time with robustness to
indoor/outdoor lighting conditions. We show that our method can run for a day on a smartphone battery.

Keywords: Stairs detection, Stereo vision, Elderly care, Rehabilitation, Visual impairment, Low-power cameras, Smart
walkers

1 Introduction
In industrialized countries, the number of mobility
impaired people increases especially among the aged indi-
viduals. To deal with the growth of the population of
the over 65s, governments are asked to develop poli-
cies towards a range of accommodation in relation to
the amount of support the seniors require. Such policies
would indeed help postponing their move to a long-term
nursing care facility. It includes support to individuals
remaining at home, which starts with the access to assis-
tive technologies such as the rollator, a walker equipped
with wheels, widely spread among the elderly. These tools
can, however, lead to falls especially in urban zones and
buildings. They occur when the user misjudges the nature
or the extent of some obstacles in any kind of familiar or
unknown environments.
To answer these issues various prototypes of smart

assistive devices are developed. These “intelligent walkers”
shall meet a high level of requirements: (i) extended
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battery-life, (ii) ease of use, (iii) ability to operate in vari-
ous lighting conditions and scenes, and (iv) affordability.
Today, smart walkers are often motorized [1] and pro-
grammed to plan routes and to detect obstacles with
several active and passive state-of-the-art sensors. Such
aids are, however, complex and thus expensive even if pro-
duced in large quantities. As a result, most users may be
reluctant to use them. In practice, their use is limited to
indoor situations due to their heavy weight and their short
battery life.
Unlike the current trend, our objective is to develop a

low-cost, ultra-light computer vision-based device for rol-
lator users. It is meant to be an independent accessory
that can be easily fixed on any standard wheeled walker
and with a daylong autonomy. Our device will warn users
of potentially hazardous situations [2] and help locate
particular items [3]. It has to operate in miscellaneous
environments and under widely varying illumination con-
ditions (indoors and outdoors). The users initially targeted
are seniors that still live independently.
According to elderly care experts we interviewed,

descending curbs and stairs are part of the most common
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hazards. Thus, we aimed at developing a computer vision-
based algorithm that predicts the presence of various
stairs. Our goal is to find a low complexity algorithm that
works with the lowest acceptable image resolution, the lat-
ter impacting both the power consumption of the sensor
and of the processing. It is dedicated to a system that shall
have a long battery-life for both outdoor and indoor usage.
Figure 1 depicts examples of the usage of our algorithm.
In our previous work [4], we presented promising pre-

liminary results of the evaluation of our stairs detection
approach that employs depth information obtained from
a stereo vision algorithm based on SAD (sum of absolute
difference) methods that are known to be adapted to real-
time. In this article, as an extension of our previous work
[4], we focus on three types of experiments. Firstly, we
assess our previous outcomes by cross-validation experi-
ments including frontal and non-frontal stairs/curbs. Sec-
ondly, we experiment with a RGBD camera to determine
whether this type of sensors can compete with stereo cam-
eras in the context of our approach, i.e., in both indoor
and outdoor environment. Finally, we benchmark our
detector on embedded platforms to measure the execu-
tion time and the power consumption. These off-the-shelf
platforms allow us to get a low-cost prototype in a short
period of time.
This paper is organized as follows. Section 2 describes

the state-of-the-art in computer vision for stairs detec-
tion. The main stereo vision approaches, which allow 3D
information extraction, are recalled in Section 3 including
our choices to evaluate our approach. Section 4 explains

Fig. 1 Desired embedded system with expected output alarm
according to the input frame. The first row shows the case of a safe
situation for which no alarm is raised. Themiddle row depicts a
situation requiring a warning alarm while the bottom row represents
a dangerous scene raising the appropriate alarm

how we detect descending stairs from 3D sensors. The
experimental results, where we look for the lowest accept-
able resolution and compare with the RGBD cameras, are
detailed and discussed in Section 5 before concluding in
Section 6.

2 Related work
From studies on visual accessibility to space for low-vision
individuals [5] and the accidents encountered by mobil-
ity impaired people [6], constructors are urged to improve
stairs and curbs accessibility according to laws and con-
struction guidelines. But, there is still work to be done
to facilitate the mobility of individuals with disabilities.
In order to fill the gap, computer vision-based electronic
technologies can be of great help.
The modelling of staircases has been a research topic

in order to predict their presence in a broad range of
applied research fields. Staircases concern robotics for the
development of unmanned ground vehicles (UGV) and
of (humanoid) bipedal robots. The domain of gerontol-
ogy and low-sighted is also a motivation for developing
devices, such as electronic travel aids (ETA), capable of
detecting and warning dangerous situations where cur-
rent aids might fail.
Among the literature, regardless the field of applica-

tion, stairs detection research can be categorized into two
main groups according to the data collected: (i) 2D or
(ii) semi-dense to dense range data. The first category
gathers works employing monocular cameras. The input
data becomes a projection of the captured 3D scene. The
captured images are pre-processed to benefit from the
man-made structured attributes that stairs have and thus
extract straight lines as predominant features. Humanoids
equipped with a single camera and aiming at climbing
stairs belong to this group [7] as well as tracked robots
[8, 9]. Single view-based stairs detectors, however,
encounter the issue of false positives raised by repetitive
patterns such as zebra crossings [10].
In the second category we find the research based on

range data, whether semi-dense from stereo cameras [11]
or dense from RGBD cameras or lasers. A recent stereo
vision based detector of ascending stairs [12] consists in a
stereo camera and an inertial measurement unit fixed on
a helmet. By taking advantage of the 3D geometric infor-
mation, the authors modelled the stairs by extracting the
surface orientations and the 3D edges. The model was
evaluated by the measurement of the geometric dimen-
sions of the steps (height, width and depth) on a single
outdoor staircase.
As far as dense range data is concerned, [13] describes

straight-line model-based methods, RGBD cameras being
exploited only to extract distance information. Since these
sensors can also provide with dense 3D point clouds, pla-
nar model-based approaches were also developed [14].
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On the other hand, others implemented a piecewise pla-
nar algorithm [11] with the Point Grey stereo camera1.
The authors of [15] presented a descending stair detec-
tor by range images captured with time-of-flight cameras.
The approach, based on extracting step jumps below the
ground level from height profiles, assessed a good recog-
nition performance within 0.8 to 2 m.While the detection
of staircases and climbing stairs/sidewalks is subject to
research, rare are the studies on detecting descending
stairs in the field of electronic travel aids. To our knowl-
edge, authors of [11] are the only ones who proposed tack-
ling the detection of the descending stairs using passive
computer vision for mobility aids applications.
All the research works described above are dedicated

to be ported on embedded systems both for autonomous
robots andmobility aid devices. But, none of them actually
gave the performance of their approach in terms of recog-
nition rate and a few estimated the execution time of their
algorithm. Among the ones who went through the exer-
cise of measuring the computation time, the best result is
reported in [16]: a stereo frame was processed in 30 ms on
aMIPS R5000 at 400MHz. To our knowledge, this proces-
sor is specified to dissipate 10 W at 200 MHz [17], which
would run for less than 7 h with a professional portable
laptop charger2 in a best case scenario. Similarly, algo-
rithms that run on recent standard laptops with a RGBD
camera might not operate for more than half a day, the
sensor alone consuming at best 2.5 W and a smartphone
battery storing less than 12 Wh.
Developing a device for mobility aids raises several

issues: (i) the environment where the device must oper-
ate is broad, both in familiar and unknown places; (ii) it
requires robustness to any lighting conditions and scenes
(indoor and outdoor); (iii) The size and light-weight
requirements imply embedded and real-time capabilities;
(iv) last and not least, the battery life shall meet an auton-
omy of a day. Finally, any detector shall avoid false alarms
otherwise its users will turn away from the device that
raises irrelevant alarms and worse, misses relevant ones.
While assessing our approach as a classification problem,
our work addresses these four challenges with an algo-
rithm that is generic since not geometric model-based,
robust to any illumination, fast and low-power.

3 Background
3.1 Stereo matching
The stereo matching approaches can be categorized into
two groups: sparse or dense [18]. The first approach is
also known as feature-based matching and results in a
sparse output. The correspondence process is applied to
features such as corners, edges or key points [19]. In
order to compare the different key points, we shall mea-
sure their similarity. This similarity can either result from
comparing the surroundings via patches or attributes

commonly called descriptors [20]. Each descriptor of the
left image points is compared to the list of descriptors
of the right image points and matched to the most sim-
ilar one. Feature descriptors tend to be robust against
orientation and intensity variation while key points are
robust to perspective changes. Thus, this method can
be applied to real-time applications that require a very
sparse depth map [3], for example in image registration
applications.
The second stereo correspondence approach relies on

comparing patches of images in order to minimize a cost
function. This cost function can be local or global. In
the case of local methods, the aim is to minimize the
difference between the patches located on the epipolar
lines in order to finally get the disparity for every pixel of
the reference image. But, stereo matching algorithms can
be time, memory and power consuming. Konolige pro-
posed one based on sum of absolute difference (SAD) and
implemented it on FPGA to run real-time [21]. From the
matched points, we can extract a disparity map. The dis-
parity, d, is the difference between the x-coordinates of
the detected point in both pictures, i.e. xL − xR, xL and
xR being the x-coordinates of the 3D point projected on
the left and right imagers. Provided the correct matching,
the depth map is built from the disparity map using image
geometry triangulation [22]. Assuming the pin-hole cam-
era model and the cameras having the same focal length
f, separated by a baseline T, the distance of a detected
point is

Z = f × T
d

, (1)

where Z and T are expressed in meters and f and d in
pixels.

3.2 Stereo cameras
Stereo correspondence is a challenging field of research
in term of software and hardware implementation [18]. It
has to respond to the high demand of real-time execu-
tion and frame rates in many domains like machine vision
and navigation. Passive stereo vision also suffers from
matching failure on low-textured regions and repetitive
patterns [23]. Projecting a texture on the scene drastically
improves the stereo matching. Projector-based systems
became serious competitors to passive stereo cameras.
However, the main drawback of such IR-projector-based
sensors is their inability to work outdoors and their power
consumption. Authors of [24] also showed the degrada-
tion of the 3D reconstruction at different times of the
day. The stronger the illuminance, the poorer the qual-
ity of the resulting 3D map. Thus, passive stereo cameras
keep on being employed for outdoor applications related
to navigation [25] whereas active ones are leading the
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indoor application usage. Examples of commercially avail-
able active stereo cameras are the Microsoft Kinect3 and
the Asus Xtion4.

3.3 Hardware and depth map acquisition requirements
According to [6] and [26], level changes are considered
hazardous to mobility impaired people when sidewalks
are 4 cm high on flat terrain and more than 3 cm high
on a slope. As far as stairs are concerned, the step height
is often between 15 and 18 cm. The latter constrains the
acquisition system to have a corresponding depth reso-
lution that can be deduced from Eq. (1). In other words,
a disparity difference of a pixel must translate a height
difference smaller than a step height.
From Table 1, the Bumblebee2 could capture steps as

high as curbs with the assumption that the camera is
laying parallel to the ground. The surfaces shall, however,
be well textured to extract the optimal depth map.
To compute the depth map with a stereo camera, we

apply Konolige’s algorithm that consists in minimizing the
difference between a patch from the left image and a patch
from the right image located on the epipolar line (which
corresponds to the horizontal axis in the case a horizon-
tal stereo system). The comparison is made by computing
the sum of absolute difference (SAD). The resulting values
that are associated to a high matching score are kept [27].
We chose this stereo matching for two reasons. Firstly,
SAD-basedmethods are themost appropriate to real-time
implementation due to its low complexity (only summa-
tions and absolute values calculations) [18]. Secondly, as
opposed to the Bumblebee library that is proprietary, we
can easily port Konolige’s implementation on our embed-
ded platforms.

4 Approach
We are interested in falls related to the loss of balance
caused by abrupt changes of the ground elevation in
order to predict the dangerousness according to three
classes (danger, warning and safe as defined below) when
approaching such scenes. The ground topology gives the
information of elevation variation. It can be measured
from a depth map. From an acquisition of the scene with

Table 1 Bumblebee2 depth resolution in mm as a function of
camera resolution and Z in mm, the distance to the camera. The
stereo camera has a focal length of 6.3 mm, a pixel size of 7.6e-3
mm, and a baseline of 120 mm

Z 512×384 320×240 160×120 102×76

760 5.94 9.49 18.99 29.79

780 6.25 10.00 20.00 31.38

800 6.58 10.52 21.04 33.01

820 6.91 11.05 22.11 34.68

tilted sensors towards the ground, the resulting captures
will locate far stairs at the top of the depth map and close
stairs at the bottom part, each pixel representing the dis-
tance to the camera. We want to keep this configuration
while rectifying the depth value of each pixel so that a pixel
value represents the height between the camera’s horizon-
tal plane and the ground (cf. Fig. 2). A dangerous situation
is detected when the measured floor elevation close to
the rollator is below the ground level. Given the acquisi-
tion of a semi-dense 3D map from a system as depicted
in Fig. 3(a), each point (x, y) of the ground depth map can
be expressed as follows. Let (X,Y ,Z) be a 3D point in the
world space and R the rotation matrix around the X-axis.
To get the corresponding pixel coordinates of (X,Y ,Z)

in the raw ground depth map, a point in 3D space is
subject to a rotation around the X-axis:

R

⎛
⎝

X
Y
Z

⎞
⎠ , (2)

with

R =
⎛
⎝

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

⎞
⎠ , (3)

followed by a projection according the 3 x 3 camera
projection matrix P:

P =
⎛
⎝

f 0 0
0 f 0
0 0 1

⎞
⎠ , (4)

where f is the focal length of the cameras, expressed
in pixels. The resulting coordinates in the ground depth
image are

(a) (b) (c)

Fig. 2 Rectification of the depth values: The scenes in (a) represent
the left captures of the stereo camera. The Konolige’s algorithm
allows the extraction of the raw depth map (b) where each pixel
value is the raw distance between its corresponding 3D point and the
sensor plane. Each pixel value of (b) is rectified according to the angle
of the vision system on the rollator with respect to the floor. For a flat
ground as depicted in the first row, the final depth map (c) is uniform
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(a) (b)

Fig. 3 (a) A rollator is facing a descending stair. {x, y} is the 2D
coordinate system of the imager. {Y , X , Z} is the real world system
coordinate. The stereo camera is tilted so that the beginning of the
stairs, at (Y0, Z0), and the first step, at (Y1, Z1), give angles of θ and θ ′ .
(b) The first step is imaged by the camera as a trapezoid defined by its
bases B0, B1 and its height H0

x = f
X

Ysinθ + Zcosθ
, (5)

y = f
Y cosθ − Zsinθ

Ysinθ + Zcosθ
. (6)

Note that we used capital letters for world coordinates
and lower case for image coordinates. These equations
allow defining the limits to detect the first stair step. Let
the floor be located on plane Z = Z0 and let the first step
start at (Y ,Z) = (Y0,Z0) and end at (Y ,Z) = (Y1,Z1) in
the original coordinate system. For the first step to be visi-
ble early enough, the camera must be tilted. To determine
the minimal required angle, we assume that the stairs, of
width L, are facing the stereo camera. The first step is then
imaged by the camera as a trapezoid defined by its bases
B0,B1 and its height H0:

B0 = f
L

Y0sinθ + Z0cosθ
, (7)

B1 = f
L

Y1sinθ + Z1cosθ
(8)

H0 = f (Y1Z0 − Z1Y0)
(Y0sinθ + Z0cosθ) (Y1sinθ + Z1cosθ)

. (9)

The trapezoid’s area of the projected step on the depth
map is defined by

A = (B0 + B1)H0
2

, (10)

where the area A is constrained by its sign, i.e. by

A > 0 ⇐⇒
(
Y1
Z1

− Y0
Z0

)
> 0, (11)

which corresponds to tilting the camera by an angle allow-
ing the first step to be in the lower part of the image
according to

θ < θ ′. (12)

According to the stairs dimension standards [28] and
from Eqs. 7 to 12, one can configure the vision system’s
angle, θ , knowing Y0 and Z0. With a vision system tilted
with an angle of 52 degrees, the camera captures a flat
floor located between 62 and 169 cm in front of the rolla-
tor. The dangerous scenes will be located between 62 and
100 cm, while scenes that shall be warned will be located
between 100 and 169 cm.
This above theory can be generalize to the case of

approaching stairs from the side as long as the camera
parameters (focal length and sensor’s dimension) permit.
Equations 5 and 6 become

x = f
X cosϕ − Y sinϕ

(X sinϕ + Y cosϕ) sinθ + Z cosθ
, (13)

y = f
(X sinϕ + Y cosϕ) cosθ − Z sinθ

(X sinϕ + Y cosϕ) sinθ + Z cosθ
, (14)

where ϕ is the rotation angle around the Z-axis.
The minimal width advised for stairs is 70 cm. With the

optic characteristics of the BumbleBee2, if such stairs are
located at the warning distance and captured from aside
still on the rollator’s path, they will still be detected but
as a danger. If the stairs are in the danger distance, an
angle above to (±)70° will lead the stairs to be out of the
camera’s field of view.
The captures result in the image like depicted in the

bottom row of Fig. 2.
The area A also defines the minimal proportion of pix-

els located at a deeper level than the ground, since it
represents the projection of the first descending step.
This proportion of pixels is then compared to a thresh-
old TR. Specifically, the stair presence is predicted when
the ratio of pixels located under the ground is greater than
TR.
To classify each capture into one of the three classes, the

decisionmaking strategy follows the flowchart depicted in
Fig. 4. In other words, our three-bin classifier works as fol-
lows: the ground depth map is extracted from the stereo
pictures and divided into the upper and lower sub-images

Fig. 4 Flowchart of our approach to detect descending stairs. TRu , TRl ,
TGu and TGl are the thresholds on the pixel ratio and on the ground
for the upper and lower sub-images, respectively
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of same size. For each sub-image we compute the his-
togram over valid depth values. The ratio of pixels located
below a ground level TGi(i = {u, l}) is then compared
to a threshold TRi . If this ratio is greater than TRi then
the sub-image is classified as a stair (positive). The algo-
rithm is detailed in Algorithm 1. The final decision is
made from the binary classification of the two sub-images
(cf. Algorithm 2): (i) the fronting scene is safe if both
sub-images are negative; (ii) it is a warning if the upper
sub-image is positive and the lower one is negative; (iii) it
is a danger if the lower sub-image is positive, no matter
what the prediction is for the upper sub-image.
The evaluation requires a rectified ground depth map

as input, the depth being defined as the distance from
the camera to the ground. A 3D active camera directly
gives the raw depth information on which we compute
the ground level at each pixel according to the rotation
around the X-axis. On the other hand, a passive stereo
camera captures a pair of raw images. In order to pro-
ceed to the stereo matching that produces the disparity
map followed by the depthmap (raw then rectified depth),
the raw images have to be undistorted and rectified. This
calibration process is of uttermost importance [29]. The
Bumblebee2 being already calibrated, we recorded the
rectified pairs of images.

Algorithm 1 Binary prediction algorithm.Dp is the upper
or lower part of the full depth map extracted from the
stereo pictures. Each pixel value, if valid, is the distance
between the camera and the corresponding point of the
ground. x and y are the coordinates of pixelD(x, y).TG and
TR are, respectively, the threshold of the ground (in dis-
tance unit) and the threshold on the ratio of valid pixels
with values greater than TG
Require: The partial depth map Dp[ x] [ y] (x from 1 toW,

y from 1 to H), the ground threshold TG and the ratio
threshold TR.

Ensure: the binary prediction.
1: constants:
2: W ← width of partial depth mapDp
3: H ← height of partial depth mapDp
4: N ← number of bins of histograms
5: procedure SUBPREDICT(Dp[H] [W ] ,TG,TR)
6: Compute N-bin histogram H with the valid depth

values of Dp
7: Compute the N-bin cumulative histogram C from H
8: R ← C[TG]

C[N] , compute the ratio of valid pixels
greater than TG

9: if R > TR then return true
10: else return false
11: end procedure

Algorithm 2 Three-class prediction algorithm. D is the
full depth map extracted from the stereo pictures. It is
divided into two sub-depthmaps. Each pixel value, if valid,
is the distance between the camera and the correspond-
ing point of the ground. TGi and TRi are, respectively, the
threshold of the ground (in distance unit) and the thresh-
old on the ratio of valid pixels with values greater than TGi
for each binary classifier
Require: The full depth map D[ x] [ y] (x from 1 toWF ,

y from 1 to HF ).
Ensure: the 3-bin prediction.
1: constants:
2: WF ← width of full depth mapD
3: HF ← height of full depth mapD
4: TGu ← ground threshold for upper sub-image
5: TRu ← ratio threshold for upper sub-image
6: TGl ← ground threshold for lower sub-image
7: TRl ← ratio threshold for lower sub-image
8: procedure PREDICT(D[HF ] [WF ])
9: HU ← HF/2

10: HL ← HF − HU
11: upperPredict ← subPredict(D[HU ][WF ] ,TGu ,TRu)
12: lowerPredict ← subPredict(D[HL] [WF ] ,TGl ,TRl )
13: if lowerPredict = true then return danger
14: else if upperPredict = true then return warning
15: else return safe
16: end procedure

Finally, we look for TGu ,TGl ,TRu and TRl that minimize
false positives and false negatives, i.e., that they max-
imize the accuracy on a training set of the data col-
lected and labelled “Danger”, “Warning”, or “Safe”. TGu and
TGl could directly be set to Y0 = 78 cm. We, however,
chose to estimate them by training while we expect these
thresholds to be similar to Y0. For each experiment pre-
sented below, the optimal values of the four thresholds
are thus determined for each binary classifier before the
evaluation on a test set. The generalisation performance is
evaluated by cross-validation.

5 Experiments and results
The goal of the experiments is fourfold: (i) validate our
previous preliminary results about the performance with
the resolution with extension to curbs, (ii) measure the
processing time and (iii) the power consumption, and (iv)
assess the feasibility to port our algorithm on a light-
weight embedded platform. This section is structured as
follows.We first describe the data collected and the exper-
imental protocol in Section 5.1. A resolution study carried
out on the stereo frames is analysed in Section 5.2. A
comparison of the performance of the approach according
to the sensor employed is detailed in Section 5.3. Before
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discussing the overall outcomes, we present a benchmark-
ing of our algorithm on embedded platforms, specifically
with regard to the resolution.

5.1 Collected data
The approach, being dedicated to assistive devices, its
performance has to be evaluated under any varying illu-
mination and on a wide range of stairs. The evalua-
tion was performed off-line on frames captured with the
Asus Xtion and the Bumblebee2 (Fig. 5) according to
the requirements detailed in sections above, the cameras
being located at 78 cm height with the tilted angle of 35°.
The images were captured at 512 × 384 and 640 × 480
pixel resolution, respectively, with the stereo camera and
the RGBD sensor.
The assessment of our approach was carried out using

thirteen scenes of descending stairs and curbs described
in Table 2. Among a total of 8939 stereo frames the
database includes 56 % of stairs or curbs captures, 52 %
of them being non-frontal. Within 6469 RGBD images,
there is 75 % of unsafe situations. Figure 6 is a sample of
our database. The experiments were run in a customized
cross-validation framework inside each group to evaluate

Fig. 5 Our experimental setup mounted with the Bumblebee2 stereo
camera

the performance of our method under specific conditions.
In a group of k scenes, k − 1 scenes were employed for
training, each scene being left out once for testing. At
the end we calculate the average performance for each
group.
The performance on the test sets was assessed from the

analysis of the true positive rate TPR (also called recall),
the false positive rate FPR, the missed rate FNR (false neg-
ative rate), the true negative rate TNR, the accuracy ACC
(also called recognition rate) and the precision PPV (also
called positive predictive value). The recall is the ratio of
true stairs correctly predicted. The false positive rate is
the ratio of safe cases predicted as stairs. The missed rate
is the ratio of true stairs predicted as safe situations. The
accuracy is the ratio of good predictions out of all the
samples. The true negative rate is the ratio of safe cases
correctly predicted among all predictions of safe cases.
Finally, the precision is the ratio of correctly predicted
stairs out of stairs prediction.
From the cross-validation within each of the five groups

of scenes, the optimal values for the ground thresholds
were proved to correspond to the distance between the
floor and the first step of the stairs for the lower sub-image
classifier. The upper sub-image classifier required an opti-
mised thresholding at deeper distances since the top of the
image does not belong to the first step but to deeper ones.
The thresholds on pixel proportions were low at high reso-
lutions and increasing with the decreasing resolution. The
following performance results were obtained on the test
sets according to these criteria.

5.2 Resolution study
Each main stage of the algorithm, i.e., the stereo match-
ing and the histograms computation, is a succession of
loops across the pixels, which inherently has an impact
on the processing time and the power consumption: the
larger the number of pixels, the longer the processing.
We thus aim at determining the lowest resolution that
still gives good performance. From the collected stereo
images, we generated lower resolution images with a
pixel area relation-based algorithm to assess the impact
of the camera resolution. Eleven resolutions were exper-
imented, from 512 × 384 pixels to 51 × 38 pixels. The
SAD window size and the disparity range required by the
stereo matching algorithm were adapted to the resolution.
Figure 7 shows the resulting depth map according to the
resolution.
Figures 8, 9, and 10 depict the performance on three of

the five groups, respectively, outdoor stairs, indoor stairs
and curbs. With a varying resolution, the performance is
evaluated from five measures (accuracy, precision, recall,
FPR and FNR) (sub-figures (a), (b), and (c)) and the
recognition rate among each class (sub-figure (d)). The
error bars represent the standard error of the mean.
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Table 2 Collected data. The thirteen scenes are described along with their illumination

Description
Illuminance

G1 G2 G3 G4 G5
(lux)

Outdoor stairs in a city center 9920 • • •
Outdoor stairs in a train station 9870 • • •
Outdoor painted stairs 716 • • •
Outdoor backyard stairs 657 • • •
Outdoor stairs under a canopy cover 1655 • • •
Indoor stairs in a house 37.8 • • •
Indoor single stair in a house 21.5 • • •
Indoor linoleum stairs 62.8 • • •
Indoor scene close to a glass door 57.3 • • •
Curb in a city centre 2000 • •
Curb ramp in a city centre 4680 • •
Outdoor tram platform 8460 • •
Second Curb scene in a village 6240 • •
Each group represents (G1) all the stairs, (G2) all the indoor stairs, (G3) all the outdoor stairs, (G4) all the curbs and (G5) all the scenes including both stairs and curbs. The bullet
(•) indicates to which group the scene was included

The accuracy in distinguishing dangerous situations
from the others is fairly stable from the medium to high
resolution variation within the three groups presented in
Figs. 8, 9, and 10. A common trend is noticeable in all
the groups of stairs scenes (sub-figures 8, 9 (a) and (b)):
the overall performance degrades at very low resolution.
The results on the groups of stairs present an improve-
ment of the performance when expected warnings cases
are ignored ((sub-figures 8, 9 (b))) unlike in curbs scenes.
It highlights the ambiguity in annotating some warning
cases. When the stairs start to appear in the upper part of
the full frame, the detector predicts this scene as safe. The
same behaviour happens when the stairs start to appear

Fig. 6 Samples of the scenes. The images were captured with both
the Asus Xtion and the Bumblebee2: outdoor stairs (first row), indoor
stairs (middle row), and curb scenes (bottom row)

in the upper part of lower sub-image. These cases can
either be considered as a danger or still a warning. If we
compare indoor stairs scenes to outdoor stairs situations,
the impact of the texture (higher in outdoor places) leads
to a better quality in the depth map. It results in a larger
false positive rate in indoor places.
While looking at the recognition rate for each individual

class in Figs. 8, 9, and 10 (c), all danger prediction rates are
stable frommedium to high resolution, except for outdoor
stairs at the highest resolution (Fig. 8 (c)). In outdoor stairs
at high resolution, some dangers can still be classified
as warnings when the stairs start to appear in the lower
sub-image. All warning prediction rates decrease with
increasing resolution. The quality of the depthmap affects
the classification of warnings that tend to be predicted
as dangers or safe. However, the safe prediction rate in
indoor scenes gets higher with increasing resolution while
it tends to decrease in outdoor scenes (Figs. 8, 10 (c)). This
behaviour indicates the influence of the illumination and
the texture. The outdoor reflection glare has a negative
impact on the depthmap extraction. The texture of indoor
scenes is improved with increasing resolution. In any of
the three groups, the classification between critical scenes
and harmless places presents a very low false positive rate
despite a slight increase at the lowest resolution.
While dangerous scenes were mainly correctly pre-

dicted (cf. Fig. 11), a few of themwere always misclassified
as safe at any resolution. These cases presented similari-
ties, namely the presence of the stairs on the left hand side
of the images or a highly sparse depth map due to either a
lack of texture or motion blur (Fig. 12).
The experiments validate our preliminary results

regarding the ambiguity raised by annotating warning
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(a) (b) (c) (d) (e) (f)
Fig. 7 Resulting depth map according to the resolution for a dangerous outdoor stair scene correctly predicted. From upper left to bottom right, (a)
the left 512 × 384 image captured by the Bumblebee2 followed by the depth maps at respectively (b) 512 × 384, (c) 465 × 348, (d) 320 × 240, (e)
160 × 120 and (f) 51 × 38 pixels

cases: these situations can be tagged as warning or safe by
two different experts. As a consequence, they are easily
predicted as safe by the detector. These samples present
descending stairs that are appearing at the very top of
the frame. In practice they can be considered as a safe
situation since they are far enough from the user. Never-
theless, in this problem, safe situations are clearly distinct
from dangerous ones andmost importantly dangerous sit-
uations are distinguished from the other cases with an
accuracy greater than 85 % at low resolution (102 × 76).
For the following sections, the warning cases will not be
taken into account unless mentioned otherwise. For the
following sections, we will focus on classifying problems
of dangerous situations versus the others and dangerous
situations versus safe.
Our previous study assessed that the scenes illumi-

nance affects the quality of the resulting depth maps [4].
While RGBD cameras are unable to work under bright
sunlight [24], passive stereo cameras’ performance dras-
tically drops under low or bright illumination unless
the sensors have a high dynamic range. Our approach
works on depth maps which are not completely dense.
This density depends on illumination and on the cam-
era resolution. Under normal illumination conditions for
walker users and a sufficient camera resolution, the depth

map density shall prevent the risk of missing relevant
alarms.
At last, the stereo matching algorithm reduces the width

of the exploitable depth map. Due to the disparity range
given to the matching algorithm as a parameter, there is
a vertical margin of invalid pixels that contains no data
on the left hand side of the disparity map. The annota-
tion did not take into account that the depth information
is only available on a cropped part of the images. Thus,
scenes with dangerous situations on the left-hand side are
predicted as safe.

5.3 RGBD camera versus stereo camera
3D active cameras are expected to excel only in indoor
places. To assess this specification, we compared results
obtained with similar obstacles both indoor and outdoor.
Unlike curbs, stairs belong to the category that is encoun-
tered both inside buildings as well as in open-air places.
As a consequence, curbs were not included in the
comparison.
To oppose the RGBD camera to stereo, we present

the best and the worst results obtained with the stereo
camera according to the precision. The precision indeed
defines the ratio of positives correctly predicted among all
the expected positives. As in our study positives are the

(a) (b) (c)
Fig. 8 Performance on outdoor stairs with the stereo camera as a function of resolution . (a) and (b) presents the performance as binary classifiers.
(c) presents the correct prediction of each of the three classes
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(a) (b) (c)
Fig. 9 Performance on indoor stairs with the stereo camera as a function of resolution. (a) and (b) presents the performance as binary classifiers.
(c) presents the correct prediction of each of the three classes

dangers, the better they are correctly predicted, the better
the detector is in terms of user requirements.
Our approach needs enough pixels with valid depth

estimation in order to produce a correct prediction. The
3D active camera, meant to produce dense depth map,
reaches its goal in indoor places (Fig. 13). When operating
outdoor, the density of the disparity map decreases with
the illumination intensity. Only areas in the shadow allow
the projector to be visible by the camera for valid depth
estimation.
The depth maps of the outdoor stairs are depicted in

Fig. 14. The ones of bright places explain why the ground
thresholds obtained at cross-validation do not correspond
to the expected value (between the ground and the first
step). Still, while the pattern of camera’s projector can
be visible, in cloudy conditions for instance, the result-
ing sparse depth map is exploitable and allows good
predictions.
Our approach relies on the binary classifiers that pre-

dict the presence or the absence of stairs in the upper
and the lower sub-images of each frame. A frame is a

danger when the stairs are present in the lower sub-
image. The evaluation of this binary classifier assesses
the binary problem of classifying dangerous situations
versus the others. The Figs. 15 and 16 illustrates this
study.
In indoor scenes, the Asus Xtion allows our approach

to perfectly differentiate secure scenes from dangers. The
dropping performance of the RGBD camera in outdoor
places is also assessed in Fig. 16 where the recall is capped
at 64 %. In outdoor stairs scenes, the RGBD camera allows
to distinguish the two classes with a good accuracy Fig. 16
bottom row). However, the rate of missed alarms5 remains
greater than the one obtained with the stereo camera
(Fig. 16 first row).
The missed alarms (the detector predicting a danger as

safe) come from the depth map having no valid depth val-
ues, these scenes being encountered bright illumination
with no shadow for the pattern projector to compete with
the sun light (scene “Outdoor stairs in city centre”). This
specific scene had 78 % of its dangerous cases predicted
as safe. The others scenes being captured under cloudy

(a) (b) (c)
Fig. 10 Performance on curbs with the stereo camera as a function of resolution. (a) and (b) presents the performance as binary classifiers.
(c) presents the correct prediction of each of the three classes



Cloix et al. EURASIP Journal on Image and Video Processing  (2016) 2016:33 Page 11 of 15

(a) (b) (c) (d) (e)
Fig. 11 Captures of dangerous oblique stairs correctly predicted at, respectively, (b) 512 × 384, (c) 320 × 240, (d) 160 × 120 and (e) 51 × 38 pixels.
The first row presents an indoor scene and the second row is a outdoor scene

conditions in autumn, the projector allowed the sensor to
produce useful depth maps.
In both outdoor and indoor scenes the ROC and

precision-recall curves are improved when the expected
warning cases are not taken into account (Figs. 15, 16 (b)).
It underlines the ambiguity coming from the misclassified
warning cases.

5.4 Porting on embedded platforms
The detector is aimed at running on a light device clipped
on a mobility aid. So, our final objective is to prove
the feasibility of integrating our algorithm on an embed-
ded device. We want to assess the execution time and
the power consumption for a real-time processing and a
battery-life of at least 8 h. For a user walking at 1.4 m/s
the appropriate frame rate would be at least of 5 captures
per second. It corresponds to a processing time of 200 ms
per frame. Concerning the batteries, typical smartphone
batteries have a capacity of 3200 mAh and weight 45 g

while portable laptop chargers can reach 21,000 mAh but
weight 600 g.
We ported our algorithm into a light C-code and ran it

on three platforms: (i) a standard Windows laptop (Intel
Core Duo at 2.4 GHz), (ii) on embedded Linux board
(ARM Cortex-A8 at 800 MHz, the algorithm loaded on a
4 GB microSD flash memory) and (iii) on a customized
board equipped with an ARM Cortex-M4 (180 MHz, the
algorithm loaded on an external RAM). The results of the
benchmarking are gathered in Fig. 17.
We obtained that a stereo frame required 13 s (±0.99)

to be processed on our Cortex-M4 platform at full reso-
lution, 4 s (±0.6) at 320 × 240 and 227 ms at 102 × 76.
On the Cortex-A8 board, with a customized light ver-
sion of Linux, we reached 1.88 s at full resolution, 556 ms
at 320 × 240 and 32 ms at 102 × 76. Both platforms
made the whole process run respectively 100 and 10 times
slower than on a standard Windows laptop. The main
demanding part is the disparity computation, up to 86 %

(a) (b) (c) (d) (e)
Fig. 12Missed alarms: Captures of dangerous indoor stairs predicted as safe at, respectively, (b) 512 × 384, (c) 320 × 240, (d) 160 × 120, and
(e) 51 × 38 pixels
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Fig. 13 Indoor stair capture from the Asus Xtion and the
corresponding depth map

of the time being dedicated to this task (cf. Fig. 17). In
terms of power consumption, the Cortex-M4-based plat-
form needed 300 mW while the Cortex-A8 board drained
up to 400 mA at 4.5 V, i.e. 1.8 W.

5.5 Discussion
Our goal was to evaluate the performance of our algo-
rithm from computer vision-based depth maps and to
assess its usability on an embedded platform, i.e., its pro-
cessing time and its power consumption for a battery-life
of at least a day. With a low-resolution stereo camera, our
detector shall avoidmixing up safe situations with dangers
and vice versa, to get the best recognition rate (accuracy)
and to minimize the false positives and false negatives.
Despite the ambiguity of the annotation of warning

cases, safe situations are clearly distinct from dangerous
ones even at low resolution. With no surprise, the perfor-
mance is affected by the resolution. The higher the reso-
lution, the better the classification performance, but the
higher the processing time. With regard to safe and dan-
gerous situations considered as a two-way classification
problem, the recognition rate is not less than 91.14 %
(±2.5) in open-air areas and 83.56 % (±2.27) indoors on
51 × 38 pixel stereo frames. The performance indoor
are worse than outdoor due to the lack of texture and
motion blur that affect the stereo matching. Under indoor

Fig. 14 Outdoor stair captures from the Asus Xtion and the
corresponding depth map

(a) (b)

Fig. 15 Indoor stairs detection performance: receiver operating
curves (top row), precision-recall curves (middle row) and accuracy
versus the threshold (bottom row). Binary classification of dangerous
situations versus the others (a) and of dangers versus safe scenes (b)
in four indoor places. The blue and green curves represent the best
and worst performance of the Bumblebee2 obtained at, respectively,
512 × 384 and 51 × 38 resolution. The red curve is the evaluation of
the RGDB camera. One of the four scenes has no dangerous cases,
which explains the precision and recall with the RGBD camera

and cloudy outdoor lighting conditions, the Bumblebee2
(512 × 384) and the Asus Xtion (640 × 480) return
depth maps of similar quality in terms of sparsity. A 3D
active camera has a non-negligible advantage when the
indoor lighting drops because of the infrared illumination
it projects.
The detection accuracy relies heavily on depth data. The

presence of a small hole will not disrupt the detector as
long as it is not deeper than TGi and the pixel propor-
tion remains under the thresholds TRi. If the hole is larger
and deeper than TGi then the detector will raise an alarm,
which is not inconsistent with fall prevention in terms
of project requirements. In the same way, if there is an
obstacle on the stairs and it is completely located deeper
than TGi, the detector will respond as expected. However,
any obstacle located above the ground will hide the stairs
according to the obstacle dimensions. But, in terms of user
interaction, the presence of an obstacle can prevent the
risk of falls.
Regarding the execution time, our actual algorithm was

embedded as a stripped down pure C99 implementation
without any optimisation for the target boards. Using the
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(a) (b)

Fig. 16 Outdoor stairs detection performance: receiver operating
curves (top row), precision-recall curves (second row) and accuracy
versus the threshold (bottom row). Binary classification of dangerous
situations versus the others (a) and of dangers versus safe scenes (b)
in five outdoor places. The blue and green curves represent the best
and worst performance of the Bumblebee2 obtained at, respectively,
512 × 384 and 51 × 38 resolution. The red curve is the evaluation of
the RGDB camera

smallest acceptable resolution (102 × 76) the algorithm
runs approximately at the desired speed (5 fps) on the
smallest processor (Cortex-M4). Nevertheless, there is a
large room for speed improvement in order to use higher
resolution and thus achieve more accurate results. The
reasons of the slow processing are both related to the
hardware and the software: (i) hardware-wise, the algo-
rithm and the input data were stored on an external
memory, because of a lack of space in internal proces-
sor memory; (ii) software-wise the disparity computation
is the bottleneck in the overall processing time. There
are several ways to improve runtime. Transferring one
byte of data from an external RAM to the processor
takes several clock cycles compared to one clock cycle for
any data located in the processor internal RAM. Luck-
ily, embedded platforms are equipped with digital signal
processors (DSPs), external flash memory, external and
internal RAM and direct memory access features (DMA).
DSPs are dedicated to process routines that are highly
regular—which is the case of disparity computation—
while DMA is a process that can transfer data from
external to internal RAM. Both DMA and DSP run in
parallel to the processor. The computation of disparity
is a process that requires only few lines of the image to
be present in memory at a given time. Thus, the DMA
can be used to transfer these few lines from external to
internal memory, while the processor computes the dis-
parity on the few lines transferred previously. By doing
so, we get an acceleration factor approximately equal to
the number of clock cycles needed to access external
memory, which in most cases ranges from 4 to 10. Dis-
parity computation can be transferred on the DSPs to
further reduce its processing time by at least a factor of
two.

(a) (b)
Fig. 17 Processing time: (a) processing time of the complete algorithm with regard to the hardware. (b) processing time proportion dedicated to
compute the disparity map
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After all the above optimisation stages, we expect the
processing time to go down to less than 200 ms and 28 ms
on respectively the Cortex-M4 board and the Gumstix6
platform for an input resolution of (320 × 240). From
our experience on projects for industrial clients, an opti-
misation using the DMA, some programming techniques
and data organization in the different memories, with-
out even using the DSP, resulted in a speed increased by
a factor of 40 compared the non-optimised C99 imple-
mentation on the same platform with a similarly regular
algorithm. In our case, it would lead to processing times
of 100 and 14 ms, respectively. In our previous work,
we estimated the power consumption according to the
specifications given by the manufacturer of the Cortex-
M4. The estimation did not take into account the power
required by peripheral components of a standalone board.
We went through the exercise of measuring the actual
power required by our Cortex-M4-based platform to run
our algorithm and obtained 589.5 mW. Once the pro-
cessor is integrated on a functional board among other
pieces of hardware, the power consumption is multiplied
by 10 compared to processor specifications. We were first
surprised, but it turns out that this is a realistic figure.
At last, let us estimate the autonomy of our detector by
referring to off-the-shelf batteries dedicated to embedded
systems. Today smartphone batteries are light (45 g) and
can provide with 3200 mAh at 3.7 V, which represents
11840mWh.With low power cameras, consuming 30mW
each (83 times less than the Microsoft Kinect), our algo-
rithm could run for 24 h on the Cortex-M4-based board
compared to 6.3 h on the Cortex-A8-based Gumstix.
Another hardware improvement to have in mind is the

choice of the sensor. High dynamic range (HDR) cameras
perform in representing a greater range of illumination
than standard sensors, resulting to successfully capturing
scenes under very bright direct sunlight. These sensors
can be employed to overcome the possible saturation
from a bright illumination that makes the stereo match-
ing fail. Finally, DSPs can also be engaged to run a motion
blur removal algorithm before computing the disparity in
order to improve the SAD stereo matching.

6 Conclusions
Through this research work, we proposed a universal
descending stairs detection algorithm based on passive
stereo-vision that is robust to a wide range of conditions
of use, either indoor or outdoor. Its reliability covers any
types of stairs since our approach does not rely on the
constraint of man-made geometric structures but on the
ground elevation. In addition, the same approach is used
to detect curbs. One of the requirements was to propose
a low-power system. But, low-power processors tend to
be slow thus we needed to reduce the processing time
of our algorithm. The image resolution being one of the

main parameters affecting the execution time and thus the
power consumption, we studied the system performance
as a function of the resolution. Our study showed that
the detection stayed reliable at very low resolution, dis-
tinguishing dangerously approaching stairs or curbs from
safe scenes on 102×76 pixel captures with at least 94.94 %
accuracy. The latter resolutionmakes our detector already
portable on an off-the-shelf embedded system running at
30 fps for 6.3 h with a 45 g smartphone battery. Once the
algorithm optimised for a Cortex-M4-based board, we can
expect with confidence that it will run for 24 h on a ultra-
light device. As future steps, we aim at achieving better
performance in terms of recognition rate with HDR stereo
sensors.

Endnotes
1 http://www.ptgrey.com//bumblebee2-firewire-stereo-

vision-camera-systems
2 https://www.powertraveller.com/en/shop/portable-

chargers/professional/powergorilla/
3 http://www.xbox.com/en-US/xbox-one/accessories/

kinect-for-xbox-one
4 http://www.asus.com/3D-Sensor/Xtion_PRO/
5The rate of missed alarms is deduced from the recall

i.e. FNR = 1 - TPR
6 https://store.gumstix.com/index.php/overo-

waterstorm-com.html.
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