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The interaction of users with search services has been recognized as an important mechanism for expressing and
handling user information needs. One traditional approach for supporting such interactive search relies on exploiting
relevance feedbacks (RF) in the searching process. For large-scale multimedia collections, however, the user efforts
required in RF search sessions is considerable. In this paper, we address this issue by proposing a novel semi-
supervised approach for implementing RF-based search services. In our approach, supervised learning is performed
taking advantage of relevance labels provided by users. Later, an unsupervised learning step is performed with the
objective of extracting useful information from the intrinsic dataset structure. Furthermore, our hybrid learning
approach considers feedbacks of different users, in collaborative image retrieval (CIR) scenarios. In these scenarios, the
relationships among the feedbacks provided by different users are exploited, further reducing the collective efforts.
Conducted experiments involving shape, color, and texture datasets demonstrate the effectiveness of the proposed
approach. Similar results are also observed in experiments considering multimodal image retrieval tasks.
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1 Introduction

Image acquisition and sharing facilities have fostered the
creation of huge image collections. This scenario has
demanded the development of effective systems to sup-
port the search for relevant images, given users’ infor-
mation needs. One of the most promising approach for
dealing with this challenge relies on the use of Content-
Based Image Retrieval (CBIR) systems. The objective of
CBIR systems is to provide relevant collection images by
taking into account their similarity to user-defined query
patterns (e.g., sketch, example image). In these systems,
similarity computation is based on features that are asso-
ciated with visual properties such as shape, texture, and
color [1, 2]. The main challenge here consists in mapping
low-level features to high-level concepts typically found
within images, a problem named as semantic gap.
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One suitable alternative to address this challenge con-
sists in involving the user in the query processing loop, a
procedure named as relevance feedback (RF). The objec-
tive is to refine the search systems based on relevance
judgements provided by users. Along iterations, users
assign labels to returned images (usually indicating if an
image is relevant or not) [3], and the search system tunes
itself in order to return more relevant images in the next
iteration. The idea is to take advantage of the user percep-
tion in order to return more relevant images that better
address her needs.

Typical RF approaches rely on the use of supervised
mechanisms for learning from training sets composed of
images labeled by users along iterations. At each itera-
tion, the used machine learning method is retrained in
order to define a novel ranked list containing poten-
tially more relevant images. One important issue in the
implementation of a RF approach concerns the number
of images labeled at each iteration [4]. In fact, label-
ing a large number of images is a time-consuming and
error-prone task. Therefore, RF approaches usually try
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to minimize the number of iterations (and therefore the
number of interactions) needed for providing relevant
results.

Another issue concerns the imbalance problem. Usually,
in a typical RF-based search scenario, only a few collection
images are labeled. That opens a new area of investigation
concerning the use of unsupervised approaches [5-7] that
somehow can take advantage of the large number of unla-
beled images available in a query session. Usually, these
approaches benefit from contextual information defined
in terms of information that can be extracted from the
relationships among images (e.g., their distances and com-
puted ranked lists).

In this paper, we propose a novel RF-approach based
on semi-supervised learning mechanisms. It is semi-
supervised in the sense that it learns from both labeled
and unlabeled data [8]. Basically, the method combines
labeled data available along RF iterations with contextual
information provided by the large number of available
unlabeled data. The use of these unlabeled data helps to
minimize the user efforts, as potentially less labels need to
be assigned to images along iterations.

In our semi-supervised method, we use the unsuper-
vised Pairwise Recommendation [9] re-ranking algorithm,
which has been demonstrated to yield effective results
in image retrieval tasks. This algorithm exploits the rela-
tionships among images encoded in ranked lists. The
relationships are modeled using unsupervised recommen-
dations among images that are likely to be relevant.
These unsupervised recommendations are later combined
with supervised recommendations defined in terms of RF
interactions.

This paper differs from our previous work [10] as it
presents a novel collaborative image retrieval approach,
based on the proposed semi-supervised learning algo-
rithm. In collaborative image retrieval tasks, the semi-
supervised learning algorithm benefits from feedbacks
of different users. This scenario considers the feedback
provided for different queries at the same time.

A large experimental evaluation was conducted con-
sidering several image descriptors and datasets, for both
relevance feedback and collaborative image retrieval sce-
narios. Experiments were conducted on three image
datasets, considering different visual descriptors (shape,
color, and texture descriptors). The proposed approach
was also evaluated on multimodal image retrieval tasks,
which combine visual and textual descriptors. We also
evaluated the proposed semi-supervised algorithm in
comparison with a recently proposed genetic program-
ming approach for relevance feedback. The experimen-
tal evaluation demonstrates that the proposed approach
achieves significant effectiveness improvements in several
image retrieval tasks by exploiting both supervised and
unsupervised learning mechanisms.

Page 2 of 15

The paper is organized as follows: Section 2 discusses
related work, while Section 3 describes the problem for-
mulation. In Section 4, we discuss the unsupervised Pair-
wise Recommendation [9] algorithm, while in Section 5
we present the proposed Semi-supervised pairwise rec-
ommendation for relevance feedback approach. Section 6
presents the Semi-supervised pairwise recommendation
for collaborative image retrieval. Section 7 presents the
experimental evaluation, and finally, Section 8 presents
our conclusions and possible future work.

2 Related work

While huge volumes of imagery are generated daily, the
task of finding the ones we want to see at a particu-
lar moment in time is becoming increasingly challenging.
Additionally to the growing number of image collections,
the semantic gap between low-level features and high-
level semantic concepts often represents great obstacles
for effective image retrieval. In this scenario, interactive
retrieval methods have emerged as a promising solution,
based on an interactive dialog between users and CBIR
systems [3].

Despite its relatively short history, relevance feedback
methods evolved consistently and it remains an active
research topic [3, 11-13]. Initially, relevance feedback was
developed along the path from heuristic-based techniques
to optimal learning algorithms, with early works inspired
by term-weighting and relevance feedback techniques for
document retrieval. The main intuition behind heuristic-
based methods, for instance, is to focus on the feature that
can best cluster the positive examples and also separate
the positive from the negative ones [11].

Different approaches and several machine learning
techniques were used for relevance feedback in image
retrieval tasks. In [14], relevance feedback was modeled
as a Bayesian classification problem. The system analyzes
the consistence among iterations: if the current feedback
is consistent with the previous ones, higher probabilities
are assigned to the images that are similar to the query
target. Thus, the images similar to the user’s interests are
emphasized step by step [14].

A fuzzy approach [15] was also used for modeling rel-
evance feedback tasks. A fuzzy set is defined, so that the
degree of membership of each image to this fuzzy set is
related to the user’s interest in that image [15]. The user’s
feedback, both positive and negative, are then used to
determine the degree of membership of each image to set
being analyzed.

Various approaches focus on combining different fea-
tures, using supervised approaches. In [16], a relevance
feedback framework was proposed using genetic pro-
gramming to find a function that combines non-linearly
similarity values computed by different descriptors. The
similarity functions defined for each available descriptor
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are then used to compute the overall similarity between
two images, and defining the retrieved results.

Another learning technique commonly used is Support
Vector Machine (SVM) [17]. Basically, the problem is
modeled as a binary classification problem, in which the
goal of the SVM-based methods is to find a hyperplane
that separates the relevant from the non-relevant images.
The labeled images are usually the most ambiguous ones,
using a principle called active learning [3]. For instance,
those images are often selected by their proximity to the
separation hyperplane.

Despite the success of supervised approaches, using
unlabeled data to improve the retrieval results and conse-
quently boost supervised learning has become a hot topic
in machine learning [18]. An analysis on the value of unla-
beled data is presented in [19]. The Manifold Ranking
algorithm [20] was proposed aiming at ranking the objects
with respect to the intrinsic data distribution. The unsu-
pervised approach is different from distance-based rank-
ing methods because it exploits the data distribution of
all the samples for ranking rather than only considering
the pairwise distances. This paradigm has been actively
exploited in image retrieval systems in the past few years
6,9, 21, 22].

Following this trend, the joint use of both labeled
and unlabeled data led to development of various semi-
supervised methods for relevance feedback. In [18], a
semi-supervised approach attempts to enhance the per-
formance of relevance feedback by exploiting unlabeled
images, integrating semi-supervised learning and active
learning. In each relevance feedback session, two simple
learners are trained from the labeled data. Each learner
then labels some unlabeled images in the database for the
other learner. After re-training with the additional labeled
data, the learners classify the images in the database again
and then their classifications are merged.

The hypergraph-based transductive learning algorithm
was also used [23] to learn beneficial information from
both labeled and unlabeled data for image ranking. Images
are taken as vertices in a weighted hypergraph and the
task of image search is formulated as the problem of
hypergraph ranking. The approach uses the similarity
matrix computed from various feature descriptors and a
probabilistic hypergraph, which assigns each vertex to a
hyperedge in a probabilistic way.

SVM-based approaches were also adapted to semi-
supervised learning in various ways. The performance of
SVM is usually limited by the number of training data.
Methods have been proposed for learning based on a ker-
nel function from a mixture of labeled and unlabeled data
[24], alleviating the problem of small-sized training data.
The kernel uses a batch mode active learning method to
identify the most informative and diverse examples via
a min-max framework. In another SVM approach, the
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information of unlabeled samples is integrated by intro-
ducing a Laplacian regularizer. The problem is formulated
into a general subspace learning task, using an auto-
matic approach for determining the dimensionality of the
embedded subspace for relevance feedback [25].

Metric learning and rank-based approaches also have
been exploited in relevance feedback tasks [3]. Based on
a semi-supervised metric learning, a step-wise algorithm
for boosting the retrieval performance of CBIR systems
by incorporating relevance feedback information is pro-
posed in [26]. In [27], a semi-supervised algorithm called
ranking with Local Regression and Global Alignment
(LRGA) is proposed. A Laplacian matrix for data rank-
ing is employed, using a local linear regression model to
predict the ranking scores of its neighboring points. A uni-
fied objective function is used to globally align the local
models from all the data points, assigning a ranking score
to each data point.

In order to further reduce the user efforts in the rel-
evance feedback sessions, some approaches have been
proposed for exploiting the feedback of various users in
conjunction. In recent years, there is an emerging inter-
est to analyze and exploit the historic data from differ-
ent user interactions for improving the effectiveness of
retrieval results considering multi-user collaborative envi-
ronments [28]. This paradigm, commonly referred to as
Collaborative Image Retrieval (CIR), has attracted a lot
of attention [29-31]. In [30], a semi-supervised distance
metric learning technique integrates both log data and
unlabeled data information, using a graph approach. An
approach for collaborative image retrieval using multi-
class relevance feedback and Particle Swarm Optimization
classifier is proposed in [31].

In this paper, we propose a novel RF-approach that com-
bines various recent trends on interactive image retrieval
systems, such as semi-supervised learning, ranked-based
methods, and collaborative image retrieval. The pro-
posed method is semi-supervised since it not only uses
the supervised relevance feedback information but also
exploits the unlabeled data. The method is inspired by the
recent Pairwise Recommendation [9] algorithm, which
considers the intrinsic dataset structure through a recom-
mendation simulation model. Additionally, the approach
presents other advantages, as the low computational cost
and the use of an unified recommendation model for rep-
resenting positive and negative feedback and collaborative
image retrieval.

3 Problem formulation

This section discusses the problem formulation, which is
divided into four main topics: (i) image retrieval: consider-
ing the retrieval process based only on image descriptors;
(ii) unsupervised learning: performing a post-processing
step after the initial retrieval; (iii) semi-supervised
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relevance feedback: combining the post-processing step
with information collected from user feedback interac-
tions and; (iii) collaborative image retrieval: considering
the feedback of various users.

3.1 Image retrieval

Let C={img, img,,- - - ,img,} be an image collection and
D be an image descriptor that defines a distance function
between two images img; and img; as p(img;, img;), or
simply o (i, ).

The distance p (i, /) among all images img;, img; € C can
be computed to obtain an N x N distance matrix A, such
that A; = p(G, ).

The distance function p can be used to compute a
ranked list 74 given a query image img,,.

The ranked list t;=(img,, img,, . .., img,, ) is defined as
a permutation of the subset C; C C, which contains the
most similar images to the query image img,, with ICs| =
ng. For a permutation 7,4, we interpret 7,(i) as the position
(or rank) of image img; in the ranked list 7,. In this sense,
if img; is ranked before img; in the ranked list of img,, that
is, 74(i) < (), then p(q, i) < p(q, ).

The same approach can be used for all images in the col-
lection, i.e., we take each image img; € C as a query image
imgq, in order to obtain a set R = {t1, 72, . . ., T} of ranked
lists for each image of the collection C.

3.2 Unsupervised learning

Our unsupervised learning approach relies on the use
of an iterative function f;, that does not depend on any
labeled training set. This iterative function takes an initial
matrix A® and a set of ranked lists R® (where ¢ denotes
the current iteration) as input and computes a novel dis-
tance matrix A“*D that is expected to be more effective.
The new distance matrix A“*D is then used to compute a
novel set of ranked lists, R “*). More formally,

A = f, (40, RD). (1)

Several techniques like clustering [32], diffusion process
[22, 33], graph models [34], and image re-ranking [9, 35]
have been employed in unsupervised learning in image
retrieval tasks. Most of these approaches share the objec-
tive of using contextual information encoded in the rela-
tionships among images. In this work, we use the Pairwise
Recommendation [9] algorithm, discussed in Section 4,
as the basis of our proposed semi-supervised approaches.
This algorithm is used as the method that implements
function f,,.

Alternatively, rank aggregation techniques have also
been used in unsupervised approaches. The objective
of these methods is to combine distance measures and
ranked lists computed by different modalities/descriptors.
In this case, the input of function f; is a set of distance
matrices {A1, Ay, ..., Ay}, where A; is defined by the
ith descriptor.
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3.3 Semi-supervised relevance feedback

Given a query image img,, the search process with rele-
vance feedback is comprised of four main steps [16]: (i)
presentation of a small number of retrieved images to
the user; (ii) user indication of relevant and non-relevant
images; (iii) learning the user needs by taking into account
provided feedback; and (iv) the definition of a novel set of
images to be presented in the next iteration.

Let Is® be a set of images displayed to the user at each
iteration ¢ and L be the number of images displayed, such
that [Is®| = L. Set Is® contains both images labeled as
relevant and non-relevant, i.e., Is® = Iz® | J I\g®, where
IRV = {imgg,, imgp,, ..., imgp }is the set that contains the
images labeled as relevant in a relevance feedback session,
and Ing'") = {imgng,, imgyg, s - .., imgyp, } is the set that
contains the images labeled as non-relevant.

The proposed semi-supervised relevance feedback
approach is also defined in terms of an iterative function
Jrr as following:

A — g (A(t);R(t):IR(t);INR(t)>- 2)

In our semi-supervised method, we use all information
available on both unlabeled and labeled data. Therefore,
function f,r has as input the information used by the unsu-
pervised methods (relationships among images encoded
in a distance matrix and the ranked lists), as well as labeled
data provided along the relevance feedback sessions.

3.4 Collaborative image retrieval

The recent collaborative image retrieval (CIR) paradigm is
generally defined in the literature [30] as the use of the
historical log data of user relevance feedback collected from
CBIR systems over a long period of time. These approaches
aim at avoiding the interaction overhead between systems
and users. Generally, the main focus has been on exploit-
ing information learned from previous user interactions
as new query images are being processed [36].

In this work, we extend this definition for considering
situations in which different users perform simultaneous
queries and provides relevance feedback, during a single
iteration. In fact, this extended definition aims at approx-
imating a common real-word scenario, specially for web
applications, where different users submit queries and
interact with the retrieval system at the same time.

In our proposed approach, the information collected
from interactions performed by different users is globally
exploited, i.e., users can benefit from each other’s interac-
tions. The objective is to exploit the relationship among
query images submitted by different users and propagate
the collected feedback information in the proposed semi-
supervised learning scheme. In summary, this strategy
affects the processing of multiple queries, improving
the effectiveness of provided results along iterations and
reducing the users’ efforts.
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Formally, let I = (imgq,IR(t),lNR(t)> be a tuple that

defines a user interaction, where img, is a query image and

I® and Ing® are the sets of relevant and non-relevant
images, respectively. Let S® = {I},15,...,1,} be a set of
users’ queries and interactions provided for an iteration ¢,
where u denotes the number of simultaneous queries at a
given iteration t. The proposed semi-supervised learning
for collaborative image retrieval is defined in terms of the
function f;;,, which considers the set of interactions S® in
addition to the information analyzed by the unsupervised
method. The function f;. is defined in Eq. 3:

A —p ( AD RO S(t)) ) 3)

The relevance feedback considers a single query inter-
action, while the collaborative retrieval scenario exploits
multiple interactions available in different queries sub-
mitted to the search system. The objective is to exploit
the information inter-queries in such a way that the total
collective effort is reduced.

4 Unsupervised pairwise recommendation

The Pairwise Recommendation [9] algorithm consists in
an unsupervised image re-ranking method proposed for
image retrieval tasks. The algorithm takes into account
the relationships among images and information encoded
in ranked lists with the objective of improving the effec-
tiveness of CBIR systems. The algorithm is inspired by
the concept of recommendation, originally proposed for
reducing the information overload by selecting automati-
cally items that match personal preferences.

In the case of the Pairwise Recommendation algorithm,
images placed at top positions of ranked lists recommend
other images to each other. The recommended images are
expected to be similar to each other. In the algorithm, a
recommendation indicates that the distance between two
images should be reduced. Furthermore, weights are used
to define how much distances should be decreased. These
weights are defined based on the position of images in the
ranked lists, and on the quality of ranked lists, which is
defined in terms of a cohesion measure.

Once recommendations are performed, novel ranked
lists RV are computed based on the new distance
matrix AY*tD, These steps are repeated over iterations
until convergence.!

4.1 Cohesion measure

A cohesion measure [9] is used for determining the
quality of ranked lists. Images with better ranked lists,
and therefore higher cohesion, have more authority
for making recommendations. This measure assess the
degree of agreement of ranked lists. If a ranked list is effec-
tive, i.e., has several similar images, then images at the top
positions should refer to each other at the top positions of
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their own ranked lists. Therefore, a perfect cohesion indi-
cates that all considered images refer to each other at the
first positions of their ranked lists [9].

4.2 Unsupervised recommendations

The unsupervised recommendation step relies on the
analysis of the top-k positions of ranked lists. Let 7; be the
ranked list computed for image img; and let img, and img
be images that are on the top-k positions of the ranked list
7;. In this scenario, the image img; recommends the img,
to img, and vice versa. The recommendation decreases
the distance between the images img, and img,, according
to a weight w,.

Algorithm 1 presents the method for performing rec-
ommendations considering a given ranked list 7;. The
weight w, is computed in line 7 as a product of three
factors: the cohesion c;, and the partial weights w, and
wy. While the cohesion c; provides an estimation of the
effectiveness of the ranked list 7;, the weights w, and
wy are computed based on the position of images in the
ranked lists. For images at the first positions of the ranked
list, a higher weight is assigned. The three variables are
computed in the interval [0,1].

Algorithm 1 Unsupervised recommendations based on
ranked lists [9].
Require: Matrix A, Ranked list 7;, Cohesion ¢;, and
Parameter L,

Ensure: Updated matrix A

1: Ty < kNN (1;)

2: for all img, € 7; do

3 wx < 1 — (t5(%)/k)

4;  for all img, € Ty do

5 Wy < 1 — (zi () /1K)
6: Wy <= Ci X Wy X Wy
7
8

A< 1—min(1,L, X wy)
Axy < min(AAyy, Ayx)

9: end for

10: end for

In Algorithm 1, line 8, a coefficient A is computed based
on the weight w;, of the recommendation and a constant
L.. The constant L, determines the convergence speed.
The higher the value of L, the faster the distances among
images will decrease. Note that the value of A is multiplied
by the current distance matrix A,y in order to updated it.

4.3 Rank aggregation

We also use the Pairwise Recommendation algorithm [9]
in rank aggregation tasks. Our objective is to combine
various descriptors so that retrieval results can be
improved. We use a multiplicative approach to combine
distance matrices defined by different descriptors. Later,
the final matrix created is used as input of the Pairwise
Recommendation algorithm. As this matrix combined
contextual information provided by multiple descriptors,
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the Pairwise Recommendation algorithm is expected to
yield higher effectiveness gains.

5 Semi-supervised pairwise recommendation for
relevance feedback
This section presents a novel semi-supervised pairwise
recommendation method for relevance feedback scenarios.
Since both the unsupervised learning as the relevance
feedback procedures are intrinsically iterative, we pro-
pose an algorithm based on semi-supervised iterations.
The objective of the proposed approach is to combine
the unsupervised recommendations based on ranked lists
with supervised recommendations based on user interac-
tions obtained from relevance feedback sessions.
Algorithm 2 outlines the main steps of the pro-
posed semi-supervised algorithm. Before each relevance
feedback session, an unsupervised step is performed.
The unsupervised recommendations (line 2) update the
ranked lists aiming at improving the results showed to the
user. In the following, the top-ranked images that were not
labeled yet are displayed and the user indicates the rele-
vant and non-relevant images. These two steps constitute
a relevance feedback session, defined respectively in lines
3—4 of the algorithm. The last step (line 5) defines a set of
supervised recommendations, which are performed based
on the images labeled by the user. Finally, re-ranking based
on these recommendations is performed.

Algorithm 2 Semi-supervised Pairwise Recommendation
algorithm.

Require: Distance matrix A and set of ranked lists R
Ensure: Processed distance matrix A®) and set of ranked
lists R
1: for each iteration ¢ do
2. Perform Unsupervised Recommendations
3. Display Images to the Users
4:  Collect Relevance Feedback
5. Perform Supervised Recommendations
6: end for

Figure 1 illustrates the general workflow of the pro-
posed semi-supervised algorithm. In other words, the
information collected by each relevance feedback session
is modeled as a set of recommendations that are later
used by the unsupervised algorithm. The recommenda-
tions obtained from user interactions are also modeled
as a distance updating among images, as discussed in the
next section.

5.1 Semi-supervised recommendations

The supervised recommendations are defined in the
same way as unsupervised recommendations: updat-
ing distances among images. In this scenario, the
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supervised recommendations are defined in terms of
variations of unsupervised recommendations, given by
Algorithm 1. However, while the unsupervised recom-
mendation exploits information from the ranked lists,
the supervised recommendations uses the user feedback
as input. Given a set of similar images Iz¥, labeled
as “relevant” by the user, the supervised recommenda-
tions consider two different approaches when compared
to the unsupervised recommendations:

e Set of Relevant Images: the unsupervised algorithm
considers the ranked lists ty; as the source of the
recommendations. For the supervised
recommendations, the set of relevant images Ig*)
labeled by the user at iteration t is used instead of ;.

® Recommendation Weight: on the unsupervised
setting, the recommendation weight w;, is defined by
three factors: wy, wy, and c;. The terms wy and w, are

computed based on the position of the images img,
and img,, involved in the recommendation

(respectively, tx;(x) and 74;(y)). The term ¢; is
computed according to the cohesion of the ranked list
Tx;. These factors aims at approximating the
confidence of the unsupervised recommendation. For
the supervised recommendations, on the other hand,
the confidence is maximum, since they are obtained
from the user feedback. Therefore, for representing
the maximum confidence, we consider both the
positions tz;(x) = 7x;(y) = 1 and the cohesion ¢; = 1.
These values lead to a single recommendation weight
w; for all relevant images involved in the relevance
feedback session.
Based on these differences, Algorithm 3 defines the pro-
posed supervised recommendation approach. In fact, all

Algorithm 3 Supervised recommendations based on
relevance feedback.
Require: Set of Relevant Images Iz®), Set of
Non-Relevant Images I, wr®, Parameter L,
Ensure: Updated matrix A
L wy < wy < 1—(1/k)
Wy < Wx X Wy
. { Positive Recommendation - Relevant Images}
: for all img, € Iz do
for all img,, € IRY do
A <« 1—min(1,L; X w;)
Ayy < min(AAyy, Ayy)
end for
: end for
. { Negative Recommendation - Non-Relevant Images}
: forall img, € Iz'Y do
for all img, € xg® do
A< 1+ max(1,L, X wy)
Ayy < max(AAyy, Ayx)
end for
. end for
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Fig. 1 Relevance feedback workflow based on the semi-supervised proposed framework

pairwise distances among labeled images (relevant and
non-relevant) are updated according to a single factor A.

Notice that the supervised approach also exploits infor-
mation provided by the set of non-relevant images,
defining a set of negative supervised recommendations
(line 11 of the Algorithm 3). The motivation consists in
increasing the distances among similar images (defined
by the set Iz®) and non-similar images (defined by the
set INR(t)).

The negative recommendations use the same recom-
mendation weight, which indicates maximum confidence
(txi (%), Tki(), and ¢; = 1). For negative recommendations,
the differences regarding unsupervised recommendations
are as follows:

e Set of Images: the negative recommendations replace
the set of images involved in the recommendation.
While the ranked lists ; is used, the negative
recommendations use Iz¥) and Iz, aiming at
increasing the distance among similar and
non-similar images.

e Negative Recommendation: for increasing (instead of
reducing) the distance among images, the A factor is
defined greater than 1 (as A = 1 + min(1, L, x wy))
and the min operation is replaced by a max operation.

6 Semi-supervised pairwise recommendation for
collaborative image retrieval

The collaborative image retrieval scenario aims at model-
ing a real-world situation in which various users submit
simultaneous queries to a retrieval system and provide
their relevance feedback. At each iteration, the relevance
feedback information provided for a set of queries is
collected and used by the semi-supervised approach.

For strict RF scenarios, the feedback information is pro-
cessed in isolation for each user and affects only the
results for that specific user. On the other hand, for collab-
orative image retrieval scenarios, the user feedback may
be used for improving the effectiveness of several queries
submitted by other users. In fact, the main principle of
the Pairwise Recommendation [9] algorithm is based on
exploiting the relationships among all images in a given
dataset. Therefore, instead of processing the recommen-
dations (both supervised and unsupervised) in isolation

for each user, they are processed considering the same dis-
tance matrix. As a result, the effectiveness improvements
obtained by an issued query are propagated to various
related queries, through the recommendations. There-
fore, the efforts needed for obtaining effectiveness gains
in the different query sessions are drastically reduced in
comparison with typical RF scenarios, as discussed in
Section 7.1.

The semi-supervised approach is modeled in the
same way for the strict RF scenarios. Both super-
vised and unsupervised recommendations are used as
defined in the previous section. However, the interac-
tion workflow is different for collaborative image retrieval
scenarios:

1. Unsupervised Recommendations: the unsupervised
Pairwise Recommendation [9] algorithm is
performed, updating the ranked lists for being
showed to the users;

2. Display of Images for Various Users: for each
simultaneous query, the top-ranked images that were
not labeled yet by any users are displayed;

3. Set of Relevance Feedback Interactions: each user
informs the relevant and non-relevant images from
the set of images displayed for her corresponding
query;

4. Supervised Recommendations: based on labels
provided by various users, a set of recommendations
are performed. The ranked lists are re-ranked based
on this recommendations;

Figure 2 illustrates the general workflow of the pro-
posed semi-supervised algorithm for collaborative image
retrieval scenarios.

7 Experimental evaluation

This section discusses a set of experiments conducted
for assessing the effectiveness of our method. We ana-
lyzed and compared the proposed method under several
aspects, considering different datasets and descrip-
tors. Section 7.1 discusses the experimental setup.
Sections 7.2, 7.3, and 7.4 present the experimental results
considering various shape, color, and texture descriptors,
respectively. Section 7.5 in turn presents the results for
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Fig. 2 Collaborative image retrieval workflow based on the semi-supervised proposed framework

multimodal image retrieval tasks. The main objective of
these sections consists in assessing the improvements
obtained by the proposed method along the relevance
feedback sessions, evaluating the increase of effectiveness
results. The goal of using various datasets and descriptors
is to demonstrate that the proposed method can achieve
significant gains regardless the considered description
scenario. Experiments aiming at comparing the obtained
results with related methods are presented in Section 7.6.
Finally, Section 7.7 analyzes the impact of the number of
users on the effectiveness of retrieval results.

7.1 Experimental setup

The conducted experiments aimed at evaluating the
effectiveness of the proposed method along the itera-
tions, considering relevance feedback and collaborative
image retrieval scenarios. Experiments considered that
20 images are shown to the user at each iteration, along
10 iterations. In the experiments, the presence of users
is simulated, such that all images belonging to the same
class of the query image are considered relevant. For
all experiments, we consider all collection images as
queries and report the average effectiveness results for the
whole dataset. The parameters settings used for the semi-
supervised pairwise recommendation evaluation are the
same used in [9].

In most of the performed experiments, we use two
measures to evaluate the effectiveness of the proposed
method: (i) precision vs. recall curves (P x R) before the
first iteration (¢ = 0) and after the last iteration (¢ = 10)
and; (ii) the precision of top 20 images retrieved (P@20)
vs. the number of iteration (P x ¢ curve). The P x R analysis
aims at evaluating the final improving effectiveness per-
formance provided by the proposed method after a given
number of iterations, while, the P x ¢ curves are used to
analyze how the evolution of the precision at top positions
of ranked lists along iterations.

For collaborative image retrieval scenarios, we consider
a random set of queries. The number of simultaneous
queries per iteration g; considered for each experiment
is proportional to the dataset. We considered the value

of g; as only 5 % of the size of the dataset. As dis-
cussed in the following sections, only this small subset is
enough for obtaining similar results to relevance feedback
considering all images as queries. In our experiments,
we consider that the feedback of different users are pro-
cessed in isolation at each iteration, and the improvements
inter-queries can be observed at the next iteration.

7.2 Shape-based experiments

For the shape retrieval experiments, we consider the
MPEG-7 collection [37], a well-known shape database
composed of 1400 shapes divided into 70 classes. We
use three shape descriptors: Segment Saliences (SS) [38],
Beam Angle Statistics (BAS) [39], and Inner Distance
Shape Context (IDSC) [40].

7.2.1 Relevance feedback results

Figure 3 presents the evolution of P@20 measure along
10 iterations for the three descriptors evaluated. We can
observe very significant precision gains: the precision of
the SS [38] descriptor, for example, goes from 36 % before
the first iteration to 76 % after the last iteration. Figure 4
illustrates the precision vs. recall curves for the three

Precision (at 20) per Iteration for Shape Descriptors on MPEG-7 Dataset
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Fig. 3 Relevance feedback: evolution of P@20 measure for each
iteration considering shape descriptors




Pedronette et al. EURASIP Journal on Image and Video Processing (2015) 2015:27

Page 9 of 15

Precision x Recall for Shape Descriptors on MPEG-7 Dataset
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Fig. 4 Relevance feedback: comparison of precision x recall curves
for shape descriptors before (t = 0) and after 10 iterations (t = 10)

Precision x Recall for Shape Descriptors on MPEG-7 Dataset

Precision
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Fig. 6 Collaborative image retrieval: comparison of precision x recall
for shape descriptors before and after 10 iterations

descriptors considering the initial (¢ = 0) and final iter-
ations (¢t = 10). As we can observe, the final curves are
substantially superior for all descriptors.

7.2.2 Collaborative image retrieval results

The retrieval performance of the proposed framework on
collaborative image retrieval based on shape descriptors is
showed in Figs. 5 and 6. The evolution of P@20 measure
along 10 iterations is illustrated in Fig. 5. We can observe
very significant precision gains, even considering a small
number of queries per iteration (¢q; = 70). The precision
of the SS [38] descriptor, for example, ranges from 36 %
before the first iteration to 66 % after the last iteration.
The precision vs. recall curves for the three descriptors
considered is illustrated in Fig. 6. The final curves (¢ =
10) are substantially superior in comparison with initial
curves (¢ = 0) for all descriptors.

7.3 Color-based experiments

We evaluate our method for three color descriptors:
Border/Interior Pixel Classification (BIC) [41], Auto Color
Correlograms (ACC) [42], and Global Color Histogram
(GCH) [43].

The dataset [44] used for color-based experiments
is composed of 280 images illustrating soccer games
collected in the Internet. The images are from 7 soccer
teams containing 40 images per class. The size of images
range from 198 x 148 to 537 x 672 pixels.

7.3.1 Relevance feedback results

Figure 7 illustrates how the P@20 measure evolves along
the 10 iterations for the three color descriptors (P x ¢
curve). We also consider the combination of ACC [42] +
BIC [41] descriptors using rank aggregation. We can
observe that the curve presents a remarkable ascendant

Precision (at 20) per Iteration for Shape Descriptors on MPEG-7 Dataset
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Fig. 5 Collaborative image retrieval: evolution of P@20 measure for
each iteration considering shape descriptors

Precision (at 20) per Iteration for Color Descriptors on Soccer Dataset
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Fig. 7 Relevance feedback: evolution of P@20 measure for each
iteration considering color descriptors
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slope, indicating an increase of precision even greater
than that obtained for shape descriptors. Figure 8 illus-
trates the precision vs. recall curves before and after
the use of the proposed method (after 10 iterations).
Again, the final curves are substantially superior for all
descriptors.

7.3.2 Collaborative image retrieval results

Figures 9 and 10 present the results of the proposed
approach for collaborative image retrieval tasks consid-
ering color descriptors. Figure 9 shows the P x t curves
considering 10 iterations for the three color descriptors.
The combination of ACC [42] + BIC [41] descriptors using
rank aggregation is also considered. Again, despite the
small number of the queries per iteration (g; = 14), we can
observe very significant precision gains. Figure 10 illus-
trates the P x R curves before and after the use of the
collaborative approaches. Notice that the final curves are
superior for all descriptors and slightly superior to the
traditional RF method, in this case.

7.4 Texture-based experiments

The texture experiments consider three well-known tex-
ture descriptors: Local Binary Patterns (LBP) [45], Color
Co-Occurrence Matrix (CCOM) [46], and Local Activity
Spectrum (LAS) [47]. We used the Brodatz dataset [48],
which is composed of 111 different textures. Each tex-
ture is divided into 16 blocks, such that 1776 images are
considered.

7.4.1 Relevance feedback results

Figure 11 presents the P x ¢ curves for the three descrip-
tors and for the combination of LAS [47] + CCOM
[46] descriptors. The results are consistent with shape
and color descriptors, indicating the robustness of the
proposed method for different visual properties. Figure 12

Page 10 of 15

Precision (at 20) per Iteration for Color Descriptors on Soccer Dataset
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Fig. 9 Collaborative image retrieval: evolution of P@20 measure for
each iteration considering color descriptors

illustrates the precision vs. recall curves considering the
initial (¢ = 0) and final iterations (¢ = 10). Again,
a remarkable improvement in terms of effectiveness is
observed for all descriptors.

7.4.2 Collaborative image retrieval results

The experiments for evaluating the collaborative
approach on texture descriptors used the number of
queries per iteration as gq; = 88. Figure 13 illustrates
the P@20 measure evolution along 10 iterations (P x ¢t
curve). Figure 14 illustrates the precision vs. recall curves
before and after the use of the proposed method (after
10 iterations). Considering both the P@20 measure and
the P x R curves, we can observe results similar to the
relevance feedback results, despite the small number of
queries and user interactions required.

Precision x Recall for Color Descriptors on Soccer Dataset

Precision
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0 02 0.4 0.6 08 1

Recall

Fig. 8 Relevance feedback: comparison of precision x recall curves
for color descriptors before (t = 0) and after 10 iterations (t = 10)
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Fig. 10 Collaborative image retrieval: comparison of precision x
recall for color descriptors before and after 10 iterations
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Precision (at 16) per Iteration for Texture Descriptors on Brodatz Dataset
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Fig. 11 Relevance feedback: evolution of P@20 for each iteration
considering texture descriptors
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Fig. 13 Collaborative image retrieval: evolution of P@20 for each

iteration considering texture descriptors

7.5 Multimodal retrieval

We also evaluated the proposed method considering
a multimodal retrieval scenario, considering visual and
textual descriptors. We used the UW dataset [49] created
at the University of Washington. The dataset consists of a
roughly categorized collection of 1109 images. The images
include vacation pictures from various locations. These
images are partly annotated using keywords. On the aver-
age, for each image the annotation contains 6 words. The
maximum number of words per image is 22 and the mini-
mum is 1. There are 18 categories, ranging from 22 images
to 255 images per category.

The experiments considered eleven descriptors:

e Visual Color Descriptors: Border/Interior Pixel
Classification (BIC) [41]; Global Color Histogram
(GCH) [43] (both already used in Section 7.3); and
the Joint Correlogram (JAC) [50].

e Visual Texture Descriptors: Homogeneous Texture
Descriptor (HTD) [51]; Quantized Compound
Change Histogram (QCCH) [52]; and Local Activity
Spectrum (LAS) [47] (the last also considered in
Section 7.4).

e Textual Descriptors: five well-known textual
similarity measures [53] were considered for textual
retrieval: the Cosine similarity measure (COS), Term
Frequency - Inverse Term Frequency (TF-IDF), and
the Dice coefficient (DICE), Jackard coefficient
(JACKARD), and Okapi BM25 (OKAPI).

7.5.1 Relevance feedback results

We evaluated the P@20 measure along the 10 iterations
for visual, textual, and multimodal retrieval. Figure 15
illustrates the P x t curves for the 6 visual descriptors
considered, while Fig. 16 illustrates the P x t curves for

Precision x Recall for Texture Descriptors on Brodatz Dataset
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Fig. 12 Relevance feedback: comparison of precision x recall curves
for texture descriptors before (t = 0) and after 10 iterations (t = 10)
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Fig. 14 Collaborative image retrieval: comparison of precision x

recall for texture descriptors before and after 10 iterations
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Precision (at 20) per Iteration for Visual Descriptors on UW Dataset
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Fig. 15 Relevance feedback: evolution of P@20 measure for each

iteration considering visual descriptors on the UW Dataset [49]
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Fig. 17 Relevance feedback: evolution of P@20 measure for each iteration
considering both textual and visual descriptors on UW dataset [49]

the textual descriptors. We can observe an increasing
precision score for descriptors of both modalities along
iterations. We can also observe that the precision gains are
still more significant for visual descriptors.

We also evaluated the use of the proposed method
for multimodal retrieval, considering two visual descrip-
tors and two textual descriptors. Figure 17 presents
the evolution of P@20 along iterations for visual (BIC
and JAC), textual (DICE and OKAPI), and combined
(BIC+JAC+DICE+OKAPI) descriptors. We can observe
that the multimodal combination achieves a very high
precision score.

7.5.2 Collaborative image retrieval results

The collaborative image retrieval approach was evaluated
using the same experimental setup of the relevance feed-
back. Figures 18 and 19 illustrates the P x t curves for the

visual and textual descriptors, respectively. We can also
notice an increasing precision score for all evaluated. We
used the number of queries per iteration as q; = 55.

The collaborative approach was also evaluated for mul-
timodal retrieval, considering two visual descriptors and
two textual descriptors. The results are illustrated in
Fig. 20, which presents the evolution of P@20 along itera-
tions for visual (BIC and JAC), textual (DICE and OKAPI),
and the combination of the four descriptors.

7.6 Comparison with other approaches

Finally, we also evaluated our method in comparison
with other multimodal relevance feedback approach.
We considered a recently proposed relevance feedback
approach based on Genetic Programming [53]. The
UW dataset [49] was used considering a multimodal

Precision (at 20) per Iteration for Textual Descriptors on UW Dataset

Precision

) S A A s

cos b
DICE —A—
JACKARD —S—
OKAPI —5—
TF-IDF —%—

0 2 4 6 8 10
Iterations

Fig. 16 Relevance feedback: evolution of P@20 measure for each
iteration considering textual descriptors on the UW Dataset [49]
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Fig. 18 Collaborative image retrieval: evolution of P@20 measure for

each iteration considering visual descriptors on the UW Dataset [49]
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Fig. 19 Collaborative image retrieval: evolution of P@20 measure for
each iteration considering textual descriptors on the UW Dataset [49]
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Fig. 21 Comparison with other relevance feedback approaches for
multimodal retrieval on UW dataset [49]

retrieval scenario, combining textual and visual descrip-
tors (BIC+JAC+DICE+OKAPI).

For effectiveness evaluation, we computed the evolu-
tion of recall along iterations (R x t curve) on the set
of images actually observed by the user (20 per itera-
tion). The goal is to analyze the percentage of relevant
images retrieved given a number of relevance feedback
iterations, which gives an approximation of the user effort
on discovering new relevant images. Since the objective
is to discover other relevant images, we increased the
neighborhood size parameter to k = 45 on the Pairwise
Recommendation method.

Figure 21 illustrates the R x t curve considering the
proposed semi-supervised pairwise recommendation for
relevance feedback and the Genetic Programming [53]
approach as baseline. We can observe that, despite the
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Fig. 20 Collaborative image retrieval: evolution of P@20 measure for
each iteration considering both textual and visual descriptors on UW
dataset [49]

high effectiveness results of the baseline, the proposed
method achieves comparable or better results for this task.
We also used paired statistical significance ¢ test to deter-
mine statistically significant differences in effectiveness.
Filled red circles on the graph indicate iterations where the
differences are statistically significant with a confidence
level over 95 %.

7.7 Impact of collaborative users on effectiveness

We also conducted an experiment for measuring the
impact of the number of users on the effectiveness of
retrieval results. The number of simultaneous queries
per iteration g; considered for each experiment is pro-
portional to the dataset. We varied g; between 2.5 and
10 %, computing the evaluation measures for each sce-
nario. The MPEG-7 [37] dataset was considered for the
experiment, due to existence of descriptors with lower
effectiveness scores (SS and BAS shape descriptors were
considered) allowing a better observation of the evolu-
tion of effectiveness according to the number of users.
Figure 22 illustrates the results for the SS [38] descriptor
while Fig. 23 considers the BAS [39] descriptor.

As we can observe for both descriptors, the more users
are considered, the more effective are the results (better
precision x recall curves). We can also observe that the
highest difference between curves is observed when we
compare the original descriptor (¢ = 0) with the approach
that considers the execution with 2.5 % of the dataset.
That demonstrates the robustness of our method when
dealing with a small number of users.

8 Conclusions

We have presented a novel semi-supervised learning algo-
rithm for relevance feedback and collaborative image
retrieval tasks. The proposed algorithm exploits both
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Fig. 22 Collaborative image retrieval: impact of number of
collaborative users on precision x recall curve, for the MPEG-7 [37]
and SS [38] descriptor

labeled and unlabeled data aiming at improving the effec-
tiveness of image retrieval tasks considering supervised
and unsupervised steps. While the labeled data is obtained
by user feedbacks, the unlabeled data is obtained from
information encoded in ranked lists.

Various experiments considering several descriptors on
four image collections demonstrated the effectiveness of
the proposed approach. Experimental results showed the
significant impact of the proposed semi-supervised algo-
rithm on the quality of retrieved results along iterations.
In diverse experiments, a drastically change of precision
x recall curve can be observed, illustrating the high effec-
tiveness gains. The proposed was also evaluated consider-
ing statistical tests in comparison with a recently proposed
genetic programming approach.

Precision
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Fig. 23 Collaborative image retrieval: impact of number of

collaborative users on precision x recall curve, for the MPEG-7 [37]
and BAS [39] descriptor
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Future work focuses mainly on performing evaluations
involving real users and the use of parallel programming
and heterogeneous computing for computing simultane-
ous queries in collaborative image retrieval scenarios. We
also plan to test the use of our collaborating retrieval
approach in real-world search scenarios involving the
access of multiple real users to publicly available image
collections.

The joint use of active learning approaches with rele-
vance feedback and collaborative image retrieval is also
a promising research area. We intend to investigate new
rank-based active learning methods for selecting the
images showed in first user interactions.

Endnote
'In this work, we do not use the clustering step
proposed in the Pairwise Recommendation algorithm [9].
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