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Abstract

The occurrence of antinuclear antibodies (ANAs) in patient serum has significant relation to some specific
autoimmune diseases. Indirect immunofluorescence (IIF) on human epithelial type 2 (HEp-2) cells is the recommended
methodology for detecting ANAs in clinic practice. However, the currently practiced manual detection system suffers
from serious problems due to subjective evaluation. In this paper, we present an automated system for HEp-2 cells
classification. We adopt a bag-of-words (BoW) framework which has shown impressive performance in image
classification tasks because it can obtain discriminative and effective image representation. However, the information
loss is inevitable in the coding process. Therefore, we propose a linear local distance coding (LLDC) method to capture
more discriminative information. Our LLDC method transforms original local feature to more discriminative local
distance vector by searching for local nearest few neighbors of the local feature in the class-specific manifolds. The
obtained local distance vector is further encoded and pooled together to get salient image representation. The LLDC
method is combined with the traditional coding methods to achieve higher classification accuracy. Incorporated with
a linear support vector machine classifier, our proposed method demonstrated its effectiveness on two public
datasets, namely, the International Conference on Pattern Recognition (ICPR) 2012 dataset and the International
Conference on Image Processing (ICIP) 2013 training dataset. Experimental results show that the LLDC framework can
achieve superior performance to the state-of-the-art coding methods for staining pattern classification of HEp-2 cells.
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Introduction

Indirect immunofluorescence (IIF) image analysis has
become a hot research topic in recent years. The IIF
on human epithelial type 2 (HEp-2) cells is the hallmark
protocol for detecting antinuclear antibodies (ANAs) in
patient serum, which are in connection with the occur-
rence of autoimmune diseases such as rheumatoid arthri-
tis, systemic lupus erythematosus, and multiple sclerosis
[1]. If the ANAs are contained in patient serum, they
bond to the nuclei of the HEp-2 cells, forming a molecu-
lar complex. Unbound antibodies will be washed off and a
fluorescein-conjugated anti-human immunoglobulin will
be retained. Washing after the second incubation will
remove any unbound secondary immunoglobulin. The
ANAs are finally revealed as fluorescent cells under the
fluorescence microscope. The fluorescence intensity and

*Correspondence: asflin@ntu.edu.sg

1School of Computer Engineering, Nanyang Technological University, 50
Nanyang Ave,, 639798, Singapore, Singapore

Full list of author information is available at the end of the article

@ Springer

the positive staining patterns for each slide image are
identified by highly qualified and skillful physicians.

Due to the effectiveness and high quality of IIF image
analysis, we have witnessed a growing demand for diag-
nostic tests for systemic autoimmune diseases using IIF
strategy. However, it is evaluation subjective, labor inten-
sive, and time consuming [2]. Hence, computer-aided
diagnostic (CAD) systems aiming to determine the pres-
ence of ANAs in the IIF images, offers a solution to
overcome all the above limitations and lead to more reli-
able test results. The typical flow consists of six main
techniques, namely, automated preparation of slides with
robotic devices [3], image acquisition [4,5], image seg-
mentation [6], mitotic cell recognition [7], fluorescence
intensity classification [8], and staining pattern recogni-
tion [2,9]. While all aspects of the CAD systems contribute
to the automation of IIF procedure in one way or another,
staining pattern classification is the most challenging task
in the research community. Classifying images into mean-
ingful categories is a challenging and important task [10].
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Moreover, compared with the visual signal in the general
object classification, HEp-2 cells do not contain abundant
structural information. In addition, the features between
various HEp-2 cells are much more similar than those
between different objects or natural scene images. There-
fore, in this study, we investigate into the feature extrac-
tion and machine learning methods for automatic staining
pattern classification of HEp-2 cells.

The most frequent staining patterns of HEp-2 cells in
clinical practice are as follows [11]:

e (Centromere: characterized by 40 to 60 discrete
speckles distributed throughout the interphase nuclei
and characteristically found in the condensed nuclear
chromatin during mitosis as a bar of closely
associated speckles;

® Nucleolar: characterized by large coarse speckles
within the nucleoli of interphase cells, with less than
six speckles per cell;

® Homogeneous: characterized by a uniform diffuse
fluorescence of the entire interphase nuclei and
fluorescence of the chromatin of mitotic cells;

e Fine speckled: characterized by a fine granular
nuclear staining of interphase cell nuclei in a uniform
distribution;

o (Coarse speckled: characterized by dense,
intermediate-sized particles in interphase nuclei
together with large speckles;

e Cytoplasmic: characterized by staining of the
cytoplasm exclusive of the nucleus.

In addition, two staining patterns less frequent occur-
ring in practical clinic are also considered in this paper:
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e Nuclear membrane: a smooth homogeneous ring-like
fluorescence of the nuclear membrane in interphase
cells;

e Golgi: staining of a polar organelle adjacent to and
partly surrounding the nucleus, composed of
irregular large granules.

Examples of specimen images with the most frequent
staining patterns are shown in Figure 1.

The most popular image classification framework con-
sists of two major modules: bag-of-words (BoW) and
spatial pyramid matching (SPM). In the framework, an
image representation is generated via the following steps.
Firstly, local descriptors are extracted from the image.
Then, a pre-defined codebook is applied to encode the
local descriptors into codes accordingly. Next, the image is
divided into increasingly finer subregions. Multiple codes
from each subregion are pooled together. Finally, the final
image representation is generated by concatenating the
histograms from all subregions together.

The framework of SPM based on BoW has been success-
fully applied to image classification [12,13], and in recent
years, it has been improved for HEp-2 cell classification
[14,15]. It seems to be suitable for the HEp-2 cell classi-
fication task. Within the framework, how to encode each
local feature has significant impact on the final classifica-
tion performance. The traditional and the simplest coding
method is vector quantization (VQ) [16], which assigns
a local feature to the closest visual word in the code-
book, introducing unrecoverable discriminative informa-
tion loss. The soft assignment (SA) coding method [17-19]
is proposed to reduce information loss by assigning a
local feature to different visual words according to its
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Figure 1 Typical HEp-2 cells with different staining patterns.
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memberships to multiple visual words. Apart from infor-
mation loss, traditional SPM based on VQ has to use a
classifier with nonlinear Mercer kernels, resulting in addi-
tional computational complexity and reducing scalability
for real application. To alleviate these limitations, sparse-
coding-based SPM (ScSPM) [12], local coordinate coding
(LCC) [20], and locality-constrained linear coding (LLC)
[13] aim at obtaining a nonlinear feature representation
which works better with linear classifiers.

All the improved methods represent images more
accurately and achieve impressive image classification
performance. However, information loss in feature quan-
tization is still inevitable and affects the performance for
good image classification performance. To avoid informa-
tion loss caused by coding, naive Bayes nearest neighbor
(NBNN) method [21] is proposed by retaining all of the
feature descriptors. It shows competitive classification
performance with coding-based methods as it alleviates
information loss and keeps the discrimination of input
features. However, NBNN is sensitive to noisy features
and easy to be dominated by outlier features. To simulta-
neously inherit the advantage of the BoW framework and
the NBNN method, linear distance coding (LDC) method
[22] has been proposed recently to utilize the discrimina-
tive information lost by the traditional coding methods.
It transforms each local feature into a distance vector via
calculating neighbors in every class-specific manifold.

In this paper, we propose a novel linear local distance
coding (LLDC) method to increase the accuracy of stain-
ing patterns classification. The LLDC method adopts fea-
ture extraction-coding-pooling framework based on local
distance vector which is a modification of the distance
vector. Local distance vector is generated by using only
the local neighbors in a merged feature dataset instead
of calculating neighbors in every class-specific feature
dataset. Therefore, it can ignore disturbance from iso-
lated classes. Using image-to-class distance makes it more
class-specific as desired for classification. Meanwhile, dis-
tance vector in LDC method is obtained by using a linear
coding scheme which aggravates the information loss.
Local distance vector is only based on Euclidean distance
and avoids coding process in distance vector transforma-
tion, therefore it is more discriminative. In addition, it is
proved that image representations via coding distance pat-
terns are complementary to the ones from the original
coding methods [22]. Therefore, we directly concatenate
the image representations based on local distance vector
and local features to achieve superior performance.

In summary, the main contributions of this study are
as threefold: (i) we propose a novel local distance vec-
tor based on the image-to-class distance. It is more class
specific than original local feature. Unlike distance vector,
it eliminates the need to calculate the distance for each
class, therefore it can speed up the calculation and achieve
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better classification performance by ignoring the distur-
bance from the distant classes. (ii) We propose a LLDC
method based on the transformed local distance vector.
It takes the advantages of BoW framework and NBNN
method. It reduces the information loss caused by tra-
ditional coding methods while capturing salient features.
(iii) The image representations produced by the LLDC
method are complementary to the ones from the origi-
nal coding methods. Their combination can yield superior
performance compared with only using single represen-
tation. Experiments on two public HEp-2 cells datasets
consistently show that the image representation produced
by the LLDC framework achieves better performance
compared with state-of-the-art coding methods.

The rest of the paper is organized as follows. ‘Related
work’ section introduces some related publications on
HEp-2 cells classification. ‘Distance vector’ section pro-
poses the linear local distance coding framework. Experi-
mental results are reported in the ‘Experiments and anal-
yses’ section. Finally, ‘Conclusions’ section concludes this
work.

Related work

To overcome the limitations in manual inspection, feature
extraction and machine learning methods have recently
been used in automatic staining pattern classification of
HEp-2 cells. In the literature, Perner et al. [23] use auto-
matic thresholding via Otsu’s algorithm to segment the
individual cells, followed by extracting a set of textural fea-
tures and use decision tree classifier. Soda et al. [24] utilize
a multiple expert system based on a set of specific features
related to statistical and spectral components to assign
the pattern of single cell. Cordelli and Soda [25] experi-
mentally compare four different methods for converting a
color image into a gray scale one, which are weighted con-
version, green channel, intensity channel, and Helmholtz-
Kohlrausch (HK) conversion. By considering a heteroge-
neous set of features, e.g., statistical descriptors, spectral
measures, and morphological descriptors, AdaBoost clas-
sifier based on intensity channel achieves the best average
performance. To extract features of the slide images with-
out segmentation, our group verifies the effectiveness of
scale invariant feature transform (SIFT) for represent-
ing HEp-2 slide images [26]. Wiliem et al. [27] propose
a dual-region codebook-based descriptor combined with
the nearest convex hull classifier.

Aforementioned works are based on private datasets
and/or different experimental protocols. While each of
them addresses one or two aspects in technical advance-
ment, it is difficult in reproduction of their procedures and
comparative study in their performance.

Due to the great impact of staining pattern classifi-
cation of HEp-2 cells on clinical practice, to make the
comparisons among different approaches available, the
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first edition of the HEp-2 Cells Classification Contest
hosted by the International Conference on Pattern Recog-
nition (ICPR) 2012 with a publicly available HEp-2 cell
database (ICPR 2012 dataset) was released. Applying the
same database and experimental protocol, different sys-
tems can be compared and evaluated based on the bench-
mark. Nosaka et al. [28] utilize an extension of local
binary pattern (LBP) descriptor, named co-occurrence
of adjacent local binary patterns (CoALBP), to extract
textural features. Using linear support vector machine
(SVM), their method won the first prize in HEp-2 cell
classification contest with around 69% of classification
accuracy. Xiangfei et al. [11] extract statistical intensity
features. After a normalization step, a global texton dic-
tionary is built via K-means clustering which is used
to encode images’ features into frequency histograms.
They utilize the kNN classifier with x2 distance. Li et
al. [29] extract LBP, Gabor, discrete cosine transform
(DCT), and some global appearance-based statistical fea-
tures for image representation. Then, a combination of
SVMs using a modified AdaBoost.M1 is used in order to
improve classification performance. Liu and Wang [11]
adopt a deep learning scheme to automatically learn the
discriminative features from dense image patches. Follow-
ing a BoW pipeline, a linear SVM is learned based on the
BoW representations. Ghosh and Chaudhary [30] test the
performance of various features like BoW representation
based on speeded-up robust features (SURF), region-of-
interest (ROI)-based feature, texture-based feature, and
normalized histogram of orientated gradients (HOG) fea-
tures. Experimental results show that the combination of
HOG, texture-, and ROI-based features using SVM clas-
sifier achieves the best classification performance. All the
participated methods are reported in [11] for reference.

Inspired by the first edition of the contest for HEp-
2 cells classification, increasing researches aroused for
improving the performance of HEp-2 cells classification.
Based on the same dataset (ICPR 2012 dataset) and exper-
imental protocols, researchers can evaluate their work in
a more convincing way. For example, Di Cataldo et al.
[31] propose a classification approach based on subclass
discriminant analysis (SDA) using the integration of mor-
phological, global, and local texture features. It obtains an
accuracy of 72.2%. Liu and Wang [32] utilize the linear
projections of the image pixels as the descriptors and pro-
pose a multi-projection-multi-codebook strategy to gen-
erate multiple pooled vectors for the image. The pooled
vectors are concatenated to get the final image represen-
tation. It can achieve an overall classification accuracy of
66.6%.

Methodology
In this section, we present the details of the proposed
coding method called the LLDC method based on local
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distance vector. Our proposed method maintains superior
discriminative capability and effectiveness of the tradi-
tional coding-based methods. It provides better gener-
alization capability by using the distance between local
feature and certain class to estimate image membership.
Meanwhile, it preserves more discriminative information
by avoiding coding process while obtaining image-to-class
distance. Furthermore, the LLDC method avoids poor
estimates from isolated classes by eliminating the need
to calculate distance vector for each class. Hence, the
LLDC method can achieve superior image classification
performance compared with the other coding schemes.

Distance vector

The essential idea of LDC method [22] is to calculate
the distance vector which is an alternative discrimina-
tive pattern of local feature in the class-specific manifold
coordinate system.

Let X = {x1,X2,...,xn} € RP*N be a set of D-
dimensional local features extracted from an image. It is
assumed that the local features of each class are sampled
from a class-specific manifold M° = [m{, m$,...,m¢ ],
which is determined by clustering local features of the
training images from the corresponding class ¢. Then,
the distance vector which denotes the distance between a
local feature x; and class c is computed by:

d(xiy0) =[x —x¢|7 (1)

where x{ denotes the mapped point of x; in class c. It can
be computed as a linear combination of its neighboring
features in the manifold M¢. The LDC method calculates
x{ as follow:

miqn ||xi — My H?z , (2)

st. uf=0, if mfgNf

17u¢ = 1,vi

where uf = [ufl, Ulys. s ufm] is the linear coefficient of

x; on the manifold M¢ and Mk denotes the set of k nearest
neighbors of x; on M¢. Then, the distance vector can be
redefined as:

2 2
di =d(xiy0) = [xi = x{[, = | = Muf[,,. @)
Each local feature of an image is transformed to its dis-
tance vector d; = [dil,diz, o ,dic], where C is the class
number.

By generating image representation based on distance
vector, the LDC method captures discriminative informa-
tion and avoids the case where the discriminative features
are dominated by outlier or noisy features. Therefore,
using the linear SVM, the LDC method shows impres-
sive image classification performance. However, distance
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vector is obtained by utilizing the approximate fast solu-
tion of the LLC coding method which inherently induces
information loss. Meanwhile, distance vector treats every
class equally because it is produced through calculating
the distance from local feature to each class. Such oper-
ation easily brings in the uncorrelated information of
classes which are far from query local feature, and con-
sequently arouses unnecessary interference. Therefore,
distance vector can be improved further to perform better
in image classification tasks.

Local distance vector

It is verified that using the distance between local fea-
ture and classes (i.e., image-to-class distance) can provide
better generation capability. We propose a novel dis-
tance pattern, called local distance vector, to define the
distance from local feature to a specific class. Local dis-
tance vector eliminates the need to search for the nearest
few neighbors in every class-specific manifold to gen-
erate distance vectors. Instead, it merges all the class-
specific manifolds together to form a single dataset, i.e.,
M = [MI,MZ,...,MC] = {m;}/_,, where m; is called
‘anchor points’ [33] and # is the total number of points.
To obtain the class-specific distance, we search for k
nearest neighbors of a local feature x; in M, denoted as
NN (xj, k) = {p1,P2,--.,Px} € M. Each neighbor p; has
a label Class {p;} identifying it belongs to which class. We
define the distance from x; to those classes found in the k
nearest neighbors as follow:

A

dlc = min{plelass(pj):c} | x; — Pj ”%2 . (4)

The difference between distance vector and local dis-
tance vector is shown in Figure 2. Our proposed local
distance vector is less influenced by isolated classes
since it only calculates distance vector for some classes
which are close to the query feature. On the con-
trary, distance vector has to calculate the distance
between the local feature and each class; it is inevitable
to bring in some irrelative information from distant
classes.

For those classes that are not found in the k nearest
neighbors, we use the distance to the k + 1 nearest neigh-
bors of x; to estimate the class-specific distance. And the
local distance vector of the local feature x; is denoted as
&i = [Zill,gilz, ... ,Ellc . The local distance vectors of an

image is described in Algorithm 1.

Unlike the original local features, local distance vec-
tor is more class specific as desired for classification.
Such class-specific distance captures the underlying man-
ifold structure of the local features [22]. Meanwhile, it
is obtained by using its nearest few neighbors avoid-
ing coding process and ignoring some irrelative classes

Page 50f 13

Algorithm 1 Local distance vector

Input:
Local features {xfi 1} of a input image /;
the merged dataset M.

Output: .
Local distance vectors d;,i = 1,2,...,N.

fori < 1;i<N;i<i+1do
{P1P2 - Prs1) < NN (x; k + 1)
if category c is found in the k nearest neighbors of x;
then
df = min{p;lClass(p;):c} I xi —pj ”(222
else if category c is not found in the k nearest neigh-

bors then
d< = x; — prs1 I
end if
Obtain d; = [;ill, cAilZ, e ,cAllC] for the local descriptor
X;.
end

far from the local feature. Thus, it gains stronger dis-
criminative capability and more robustness to noise and
outlier features. Local distance vector obtains another
advantage inherited from distance pattern, that is, all
local distance vectors within the same class are more
similar in the distance feature space due to the class-
specific characteristic. Therefore, it can cooperate better
with following pooling procedure. Furthermore, the cal-
culation of local distance vector is significantly faster
than that of distance vector because it is produced by
searching for nearest neighbors within a merged reference
dataset.

Linear local distance coding framework

Our proposed LLDC method utilizes local distance vec-
tor to generate discriminative and effective image fea-
tures, then adopts coding-pooling framework to obtain
robust image representation. To verify the effectiveness
and generalization of the proposed local distance trans-
formation, we apply two different linear coding method
respectively, i.e., locality-constrained LLC [13] and local
soft-assignment coding method (LSC) [19], to encode
local distance vectors due to their high efficiency and
prominent performance.

Let X = {x1,Xp,...,Xy} € RPN be a set of D-
dimensional local features extracted from an image. Given
a codebook learned beforehand with M entities, i.e., B =
{b1,by,...,by} € RP*M the codes of an image Y =
{y1,y2, ... ’YN} € RMXN can be generated by using var-
ious coding schemes. The LLC method transforms each
input feature into a linear combination of the basis in
a given codebook utilizing the locality constraint. The
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Distance vector

Local distance vector

Figure 2 Distance vector vs. local distance vector. x; is a query local feature. Distance vector searches the mapping point x; which is determined by
the nearest few neighbors in each manifold M¢. Local distance vector retrieves only the local neighborhood in M = [M',M?,. .., /\//C]A

resulting LLC codes of an image can be calculated via
following criteria:

N
rrlYinZ Hxi — Byi“?g +ArlleQy; ||%2» (5)
i=1

s.t. lTy,' =1,Vi

where © is element-wise multiplication, e; € RM is the
locality adaptor that measures the similarity between the
input descriptor x; and codebook entities bj, and it is
defined as:

Il x; —bjlle,
ej=exp|—————— ),

where o is used to adjust weight-decay speed for locality
adaptor.

With respect to the LSC method, it assigns a local fea-
ture to the k nearest visual words of the codebook as
follows:

(6)

exp (—,351 (x,;b;))

where El(xi, b)) is the local version of d(x;, b;) which is the
original distance between x; and b;, and Ni(x;) defines the
k nearest neighbors of x; in codebook.

Within the proposed LLDC framework, the local dis-
tance vectors are transformed from local features, then
the local distance vector and the original local feature are
separately encoded and pooled to generated two image
representations. It is verified that the image representa-
tions produced by the coding methods based on distance
patterns are complementary to the ones from the original
coding methods [22]. Consequently, we directly concate-
nate them to extract more discriminative and descriptive
image representation.

An overview of the LLDC framework is shown in
Figure 3 including following steps:

(1) The local features, X = {xi}ﬁ‘i 1» are extracted from

every image;
n - N
(2) The local distance vectors, d = {di}

=
transformed from local features one-by-one

, are

Vi = M ex ( Bd (x;, b ))’ @) following Algorithm 1;
=1 €XP i (3) Local distance vectors are encoded by using LSC or
b (xi,by) = d(x;,b) , if byeNi(x) LLC coding scheme based on a pre-trained codebook
i» Pl 0 , otherwise. B= {bi}?il;
fLocal Linear 2
eature :> codin :> Max-pooling
extraction 9
@ Concatenated Linear SVM
LLDC
Locavledcltsot?nce $ Linear ;/'\ Max-pooling
transformation coding
Figure 3 Overview of the LLDC framework.
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(4) Max-pooling strategy is performed on the codes
within each spatial subregion Z* as follow:

Vf, = max (Yk|Yk € Ie) ) (8)

where max is performed element wisely for the

involved vectors in each subregion and

¢ =1,2,..., L is the numbering of subregions;
(5) The image representation based on local distance

vector can be generated by concentrating all the

pooled features from every subregion, i.e.,

e 1.4,2. YL Lo
Vy = [V&’ Va, S VA ] And the representation is
normalized by:

Vo=Vl 1V e )

(6) The original local features are also aggregated under
the coding-pooling framework through steps 3 to 5
to get the image representation V; and

(7) The final image representation obtained by
combining aforementioned two image
representations V; and V is fed into a linear SVM
classifier to classify the staining patterns of HEp-2
cells.

Experiments and analyses

In this section, we verify the effectiveness and improve-
ment of our proposed LLDC framework for HEp-2 cells
classification.

Dataset

In order to evaluate the performance of the proposed
LLDC method, we use two HEp-2 cells datasets: the ICPR
2012 HEp-2 cell classification contest dataset (ICPR 2012
dataset) and International Conference on Image Process-
ing (ICIP) 2013 Competition on cells classification by fluo-
rescent image analysis training dataset (ICIP 2013 training
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dataset). Some examples of the datasets are shown in
Figure 4.

The ICPR 2012 dataset consists of 1,455 HEp-2 cells
segmented from 28 slide images which are acquired by
means of a fluorescence microscope (40-fold magnifica-
tion) coupled with a 50-W mercury vapor lamp and a dig-
ital camera utilizing a CCD with square pixel of 6.45 pum.
The images have a resolution of 1, 388 x 1,038 pixels and
color depth of 24 bits. Each image can be categorized
into one of six staining patterns, namely centromere (ce),
coarse speckled (cs), cytoplasmic (cy), fine speckled (fs),
homogeneous (ho), and nucleolar (nu). Also, fluorescent
intensity, i.e., positive or intermediate, is assigned to each
image. The cells in the images are manually segmented
and annotated by specialists. According to the experimen-
tal protocol of the ICPR 2012 contest, the ICPR 2012
dataset is divided into a training set with 721 cells from
half of the slide images and a test set with 734 cells from
rest of the slide images. The composition of the dataset is
reported in Table 1.

The HEp-2 cell images of ICIP 2013 dataset is obtained
by using a monochrome high dynamic range cooled
microscopy camera which is fitted on a microscope with a
plan-apochromat 20x /0.8 objective lens and an LED illu-
mination source. So far, only the training dataset is avail-
able. The ICIP 2013 training dataset contains 13,596 cells
which are categorized into six classes: homogeneous (ho),
speckled (sp), nucleolar (nu), centromere (ce), nuclear
membrane (nm), and golgi (go). The dataset includes two
patterns less frequent occurring in the practical clinic,
which are nuclear membrane pattern and golgi pattern.
Thus, it offers a more realistic evaluation on the auto-
matic classification algorithms. We partition the ICIP
2013 training dataset into a training set consisting of 6,842
cells from 42 slide images and a test set consisting of
6,754 cells from 41 slide images. See Table 2 for detailed
information about the dataset.

Coarse Cytoplasmic Fine
speckled P speckled

ICPR2012 Dataset

Centromere

Homogeneous Nucleolar Centromere

Figure 4 Samples of ICPR 2012 dataset and ICIP 2013 training dataset. With different staining patterns of HEp-2 cells.

Nuclear

Nucleolar Membran

Golgi Speckled

Homogeneous

ICIP2013 Training Dataset
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Table 1 Composition of the ICPR 2012 dataset

Type Training set Test set Total
Centromere 208 149 357
Homogeneous 150 180 330
Nucleolar 102 139 241
Coarse Speckled 109 101 210
Fine Speckled 94 114 208
Cytoplasmic 58 51 109
Total 721 734 1,455

Each table item represents the number of cells.

Experimental settings

We firstly extract dense SIFT features as the local feature.
SIFT features are invariant to scaling and rotation and par-
tially invariant to illumination change, viewpoint change,
and noise. These properties are advantageous in HEp-2
cells classification as cell images are unaligned and have
high within-class variabilities. In our experiments, SIFT
features are extracted at single scale from densely located
patches of gray-level images. The patches are centered at
every 6 pixels and with a fixed size of 18 x 18 pixels.

To obtain local distance vectors, the number of anchor
points {m{} for each class manifold M¢ are fixed to 1,024,
then the size of the merged M for our proposed local
distance vectors transformation is 6,144 x 128. For the
original SIFT features and the corresponding local dis-
tance vectors, all the codebooks in coding process contain
1,024 visual words learned from training samples by using
k-means clustering method. One of the most important
parameters for our proposed LLDC method is ki py that
defines the neighborhood of a local feature in local dis-
tance vector transformation. In the following coding pro-
cess, the number of neighbors in the LLC method (i.e.,
kirc) is another parameter which can influence the clas-
sification performance. We also utilize the LSC method
to encode the local distance vector, therefore the impact
of neighbor size (i.e., kpsc) will be discussed while the
smoothing factor g is fixed as 10. We study the influence

Table 2 Composition of the ICIP 2013 training dataset

Type Training set Test set Total
Centromere 1,279 1,462 2,741
Homogeneous 1,347 1,147 2,494
Nucleolar 1,273 1,325 2,598
Speckled 1,391 1,440 2,831
Nuclear Membrane 1,190 1,018 2,208
Golgi 362 362 724
Total 6,842 6,754 13,596

Each table item represents the number of cells.
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Table 3 Classification performance on the ICPR 2012
dataset

Cell level Cell level Image level
Algorithm Classification Recall (%) Classification
accuracy (%) accuracy (%)
LSC-(sift+Idv)? /1.7 72.9 85.7
LSC-(sift+dv)P 67.7 69.2 786
LSC-Idv© 674 68.9 786
LSC-siftd 664 68.1 786
LLC-(sift+Idv)® 70.9 71.6 786
LLC(sift+dv)f 69.3 706 786
LLC-Idv9 69.1 709 786
LLC-sift" 689 70.1 786

The italicized items represent the best performance.

3The LLDC method based on the concatenated representations from LSC-sift
and LSC-Idv.

bThe LDC method based on the concatenated representations from LSC-sift and
LSC-dv.

“The LSC method based on local distance vector.

4The LSC method based on SIFT features.

€The LLDC method based on the concatenated representations from LLC-sift
and LLC-Idv.

fThe LDC method based on the concatenated representations from LLC-sift and
LLC-dv.

9The LLC method based on local distance vector.

"The LLC method based on SIFT features.

of these parameters for HEp-2 cells classification in the
‘Discussion’ section.

After coding process, SPM is used through partition-
ing each image into three increasingly finer subregions,
ie, 1 x 1,2 x 2,and 4 x 4. We apply max-pooling strat-
egy to pool the codes for each spatial subregion. The
obtained features within all the subregions are concate-
nated, then the final image representation is fed into a lin-
ear SVM classifier in the training and testing phases using
the LIBLINEAR package [34], thanks to its efficiency in
implementation. The linear SVM is trained based on the
training set by tenfold cross-validation strategy and tested
using the test set.

The experimental results are reported at the cell level
and the image level, respectively. At the cell level, let

Table 4 The cell-level classification confusion matrix of
LSC-(sift+ldv) using the ICPR 2012 dataset

ce (%) cs (%) cy (%) fs (%) ho (%) nu (%)
ce 84.2 34 06 0.0 13 10.5
cs 6.9 72.3 38 121 49 0.0
cy 0.0 0.0 100.0 0.0 0.0 0.0
fs 22.8 1.7 26 39.1 329 09
ho 6.7 4.5 0.0 1.1 76.0 1.7
nu 20.1 0.0 56 0.7 79 65.7

Each italicized item represents the classification accuracy for each staining
pattern.
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Table 5 The image-level classification confusion matrix of
LSC-(sift+ldv) method using the ICPR 2012 dataset
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Table 7 The cell-level classification confusion matrix of
LLC-(sift+Idv) using the ICIP 2013 training dataset

ce (%) cs (%) cy (%) fs (%) ho (%) nu (%) ho (%) sp (%) nu (%) ce (%) nm (%) go (%)
ce 100.0 0.0 0.0 0.0 0.0 0.0 ho 84.6 114 22 0.0 1.6 0.2
cs 0.0 66.7 0.0 333 0.0 0.0 sp 838 73.9 7.8 84 08 03
cy 0.0 0.0 100.0 0.0 0.0 0.0 nu 14 5.1 80.5 6.6 3.2 32
fs 0.0 0.0 0.0 50.0 50.0 0.0 ce 1.7 159 24 79.9 0.1 0.0
ho 0.0 0.0 0.0 0.0 100.0 0.0 nm 3.7 4.5 0.6 0.5 87.0 3.7
nu 0.0 0.0 0.0 0.0 0.0 100.0 go 7.7 14 356 0.3 39 511

Each italicized item represents the classification accuracy for each staining
pattern.

tpi, tn;, fp; and fun; respectively denote the true positives,
true negatives, false positives, and false negatives for an
individual staining pattern class c;. In our experiments, we
use the performance measures accuracy and recall at the
cell level which are formulated as:

tpi
_ , 10
accuracy Z tpi + tn; + fp; + fn; (10)
tpi
recall = M, ()
C

where C is the number of cell classes.

At the image level, the prediction for staining pattern
of each image is decided by the most frequently assigned
pattern of the cells within that image. In our experi-
ments, we use the number of correctly classified images
divided by the number of all the images as the image-level
classification accuracy.

Experimental results on the ICPR 2012 dataset

We first test performance of the proposed LLDC method
on the ICPR 2012 dataset following the experimental pro-
tocol of the HEp-2 cells classification contest by dividing
the cell images into a training set and a test set. The subdi-
vision is performed while maintaining approximately the

Table 6 Classification performance on the ICIP 2013
training dataset

Cell level Cell level Image level
Algorithm Classification Recall (%) Classification
accuracy (%) accuracy (%)
LSC-(sift+Idv) 77.6 74.5 90.2
LSC-(sift+dv) 74.7 72.5 87.8
LSC-ldv 74.6 72.8 87.8
LSC-sift 732 719 87.8
LLC-(sift+ldv) 79.1 76.2 90.2
LLC-(sift+dv) 759 74.1 87.8
LSC-ldv 76.1 74.2 87.8
LLC-sift 758 733 87.8

The italicized items represent the best performance.

Each italicized item represents the classification accuracy for each staining
pattern.

same image pattern distribution over the two sets [11]. To
assess the performance of our method, we compare four
different image representations: the original SIFT-based
BoW image representation (LLC/LSC-sift), the distance-
vector-based image representation (LLC/LSC-(sift+dv)),
our proposed image representation using local distance
vector (LLC/LSC-ldv) and the proposed concatenated
image representation (LLC/LSC-(sift+ldv)). Table 3 gives
the comparison results of the cell-level and image-level
classification performances. It can be observed that the
proposed LLDC method outperforms all the other meth-
ods. It is worth noting that the LLDC method outper-
forms CoALBP [28] which is the winner of the contest
with 70.4% of the cell-level classification accuracy and
68.4% of recall. Furthermore, the performance obtained
by LLC/LSC-(sift+ldv) is better than that obtained by
LLC/LSC-sift and LLC/LSC-Idv. In particular, the classi-
fication performance achieved by LSC-(sift+ldv) is better
than that achieved by LLC-(sift+1dv).

Table 4 shows the confusion matrix at the cell level by
the proposed LLDC method using the LSC strategy on
the concatenated image representation. The entry in the
confusion matrix corresponds to row i, and column j rep-
resents the percentage of cells from class i assigned to class
j. It is obvious that cytoplasmic, centromere, and homoge-
neous patterns are classified more accurately than the oth-
ers. More particularly, cytoplasmic can achieve 100% of

Table 8 The image-level classification confusion matrix of
LLC-(sift+Idv) using the ICIP 2013 training dataset

ho (%) sp (%) nu (%) ce (%) nm (%) go (%)
ho 87.5 125 0.0 0.0 0.0 0.0
sp 0.0 87.5 0.0 125 0.0 0.0
nu 0.0 0.0 100.0 0.0 0.0 0.0
ce 0.0 125 0.0 87.5 0.0 0.0
nm 0.0 0.0 0.0 0.0 100.0 0.0
go 0.0 0.0 50.0 0.0 0.0 500

Each italicized item represents the classification accuracy for each staining
pattern.
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LDV
on ICPR 2012 dataset.

classification accuracy. Compared to the cytoplasmic pat-
tern with distinguishable shape and centromere pattern
with clear fluorescent dots, speckled pattern and homo-
geneous pattern have similar characteristics and have
hard-to-find discriminative features that hard to separate.

To evaluate the classification performance at the image
level, we report the corresponding confusion matrix in
Table 5. Similarly, the table represents the percentage

of images of class i identified to class j with respect to
the total number of images in the test set. Our pro-
posed LLDC method obtains 85.7% of the image-level
classification accuracy, which indicates that 12 images are
correctly classified while there are 14 images in the test
set. Centromere, cytoplasmic, homogeneous, and nucleo-
lar patterns achieve 100% of classification accuracy. The
most frequent mistake is existed between fine speckled
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Figure 6 Classification accuracy of the LLDC method under various ki py on ICIP 2013 training dataset.
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and homogeneous pattern, which is a common mistake at  method achieves the best performance. Particularly, LLC-
the cell level. (sift+ldv) can achieve better classification performance

than LSC-(sift+ldv). Table 7 shows the confusion matrix
Experimental results on the ICIP 2013 training dataset at the cell level by the proposed LLDC method using the
Based on the ICIP 2013 training dataset, the classification =~ LLC strategy on the concatenated image representation.
performance of different algorithms at the cell level and  Nuclear membrane pattern gets the highest classification
the image level is shown in Table 6. Our proposed LLDC  accuracy rate, followed by homogeneous pattern as they
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Figure 8 Classification accuracy of the LLDC method using LSC strategy under various ki sc.
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Table 9 Running time(s) for each method
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LSC-(sift+Idv) LSC-ldv LSC-sift LLC-(sift+Idv) LLC-ldv LLC-sift
ICPR 2012 453.7 346.1 192.0 440.6 3308 190.4
ICIP 2013 2,605.7 2,089.9 1,244.4 2,587.6 2,063.1 1,199.9

have distinguished characteristic compared with other
patterns. Golgi pattern is often mistaken for nucleolar
pattern, because some golgi pattern have large speckles
within the nucleoli while some only have several cluster of
irregular granules, which is just similar to nucleolar pat-
tern. Table 8 illustrates the confusion matrix at the image
level. The proposed LLDC method obtains the classifica-
tion accuracy of 90.2% at the image level, which means
that 37 images are correctly identified while there are 41
images in the test set. Nucleolar and nuclear membrane
patterns particularly obtain 100% of image-level accuracy.
It is evident that golgi pattern is wrongly classified as
nucleolar, which is very common at the cell level.

Discussion

To provide a more comprehensive analysis of the pro-
posed LLDC method, we further evaluate its performance
with respect to the number of nearest neighbors for cal-
culating local distance vector and the coding process,
respectively. It should be noted that the classification
performance evaluated in this section is classification
accuracy at the cell level.

Neighbor number krpy on calculating local distance
vector: In our proposed method, we firstly introduce a
merged manifold M for all the classes. Secondly, we trans-
form the original local features to local distance vectors
by searching the nearest k py neighbors around the local
feature without regard to classes isolated from the local
feature. Figures 5 and 6 show classification the accuracy
under various values of ki py for ICPR 2012 dataset and
ICIP 2013 training dataset, respectively. Obviously, the
proposed LLDC method achieves the best classification
performance when ki py = 35 while using LSC coding
scheme for ICPR 2012 dataset. For ICIP 2013 training
dataset, kpy = 50 is the best choice while using LLC
coding scheme.

Neighbor number krrc on LLC method: We investi-
gate the effect on classification performance under vari-
ous neighbor number, ki1 c, in approximated LLC coding
scheme. Figure 7 shows the performance using kiic €
{2,5,10,20,30,...,70}. As can be seen, the best classifica-
tion accuracy is achieved when kr 1 c = 5 and k¢ = 60
for ICPR 2012 dataset and ICIP 2013 training dataset,
respectively.

Neighbor number kpsc on LSC method: With respect
to LSC coding strategy, only kpsc nearest neighbors of
a local feature are considered in coding procedure. We

discuss the impact of different ki sc for staining patterns
classification performance. Figure 8 shows the classifi-
cation accuracy under kisc € {2,5,10,15,20,...,40}.
Obviously, kpsc = 10 is the best choice for ICPR 2012
dataset while kp.sc = 30 is the best for ICIP 2013 training
dataset.

At last, we evaluate the running time for each method as
show in Table 9. Our proposed framework combines two
kinds of image representations, therefore it needs more
computational time.

Conclusions

In this study, we have presented a promising framework,
LLDC, for automatic staining pattern classification of
HEp-2 cells to support the diagnosis of specific autoim-
mune diseases. The LLDC framework can extract more
discriminative information and consequently gives better
HEp-2 cells classification performance than many exist-
ing coding methods. The LLDC method is based on
local distance vector which captures discriminative infor-
mation via image-to-class distance. Furthermore, local
distance vector improves the classification performance
by making adjustments only to the classes found in the
local ki pv nearest neighbors around the local features.
It can avoid disturbance from isolated classes. Addition-
ally, the distance patterns and the original local features
are proven to be complementary to each other. There-
fore, the concatenation of two image representations
can achieve higher classification accuracy. Experimen-
tal results on the ICPR 2012 dataset and the ICIP 2013
training dataset validate that the proposed LLDC frame-
work can provide superior performance for HEp-2 cells
classification, compared with the some improved coding
methods.

Compared with traditional coding methods, the LLDC
framework is time consuming as it needs to transform
original local features to local distance vectors one-by-one
and it is an integration of two kinds of image represen-
tations. In the future, we plan to design a new model to
reduce the algorithm’s complexity [35] while improving
the accuracy.
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