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Abstract

The discrete cosine transforms (DCTs) have found wide applications in image/video compression (image coding).
DCT-based lapped transforms (LTs), called fast LTs (FLTs), overcome blocking artifacts generated at low bit rate image
coding by DCT while keeping fast implementation. This paper presents a realization of more effective integer FLT
(IntFLT) for lossy-to-lossless image coding, which is unified lossless and lossy image coding, than the conventional
IntFLTs. It is composed of few operations and direct application of DCTs to lifting blocks, called direct-lifting of DCTs.
Since the direct-lifting can reuse any existing software/hardware for DCTs, the proposed IntFLTs have a great potential
for fast implementation which is dependent on the architecture design and DCT algorithms. Furthermore, the
proposed IntFLTs do not need any side information unlike integer DCT (IntDCT) based on direct-lifting as our previous
work. Moreover, they can be easily extended to larger size which is recently required as in DCT for the standard H.26x
series. As a result, the proposed method shows better lossy-to-lossless image coding than the conventional IntFLTs.

1 Introduction
The most popular image/video compression (image cod-
ing) standards, JPEG [1,2] and H.26x series [3,4], employ
discrete cosine transform (DCT) [5] at their transforma-
tion stages. DCT can be basically classified into types I
to IV (DCT-I to IV) and has numerous fast implemen-
tations [6-10] and applications for signal processing. In
them, DCT-II, so-called DCT, has excellent energy com-
paction capability and DCT-III is its inverse transform,
so-called inverse DCT (IDCT). However, DCT gener-
ates annoying blocking artifacts at low bit rates because
the DCT bases are short and create discontinuities at
block boundaries due to non-overlapping. To overcome
this drawback, lapped transforms (LTs), which are classi-
fied into lapped orthogonal transform (LOT) and lapped
biorthogonal transform (LBT), have received much atten-
tion. DCT-based fast LTs (FLTs), which are classified into
fast LOT (FLOT) and fast LBT (FLBT), are well-known as
fast and effective transform for image coding [11]. FLTs
are constructed by cascading DCT-II, DCT-III, DCT-IV,
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rotation matrices with π/4 angles, ±1 operations, scal-
ing factors, a delay matrix, and permutation matrices. To
improve the coding performance and reduce the complex-
ity more, LiftLT with VLSI-friendly implementation has
been proposed by Tran [12]a. However, the LTs cannot be
applied to the lossless mode.
On the other hand, JPEG achieves the lossless mode by

using differential pulse code modulation (DPCM) in place
of DCT. JPEG 2000 [13] employs 9/7-tap and 5/3-tap dis-
crete wavelet transforms (9/7-DWT and 5/3-DWT) for
lossy and lossless modes, respectively [14]. They mean
that JPEG and JPEG 2000 do not have compatibility
between the lossy and lossless mode. Of course, lossless
transform such as 5/3-DWT is applicable to lossy-to-
lossless image coding. However, its lossy performance is
not good compared with 9/7-DWT because each trans-
form is suitable only in each mode. The next standard
JPEG XR [15] has solved this problem by achieving lossy-
to-lossless image coding which is unified lossy and lossless
image coding. JPEG XR employs only hierarchical lapped
transform (HLT) for both of lossy and lossless modes
[16]. The HLT is composed of lifting structures [17-19]
with rounding operations and achieves integer-to-integer
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transform, whereas it does not have enough coding per-
formance, especially for images with many high frequency
components. Various lifting-based filter banks (L-FBs)
[20-28], which contain integer DCTs (IntDCTs) [29-35],
have been researched to improve coding performance.
However, these except for IntDCTs are not practical due
to the complexity.
This paper presents a realization of integer FLT (Int-

FLT), which is constructed by lifting structures with
rounding operations, for lossy-to-lossless image coding.
Although FLT can be easily applied to lossy-to-lossless
image coding by simple lifting factorizations of rotation
matrices and scaling factors, the obtained integer trans-
form is unsuitable due to large rounding error because
of many rounding operations. The conventional IntFLTs
also have many operations, whereas the proposed IntFLTs
have simple implementations with few operations and
direct application of DCTs to lifting blocks, called direct-
lifting of DCTs. The direct-lifting can reuse any existing
software/hardware for DCTsb. As a result, although the
proposed IntFLTs are apparently sacrificing the complex-
ity to achieve the lossless mode compared with LiftLT,
they have a great potential for fast implementation which
is dependent on the architecture design and DCT algo-
rithms. Furthermore, the proposed IntFLTs do not need
any side information unlike IntDCT based on direct-
lifting as our previous work [35]. Moreover, they can be
easily extended to larger size which is recently required
as in DCT for H.26x series. Such IntFLT already pro-
posed in [36] cannot achieve enough coding performance
due to the orthogonality. This paper introduces IntFLT
without such a restriction. Finally, the proposed method
shows better lossy-to-lossless image coding than the con-
ventional IntFLTs.

1.1 Notations
Several special matrices with reserved symbols are as fol-
lows: I, J, 0, and D are an identity matrix, a reversal
identity matrix, a null matrix, and a diagonal matrix with
alternating±1 entries (i.e., diag{1,−1, 1,−1, · · · }), respec-
tively. Also, ·T and ·−1 are transpose and inverse of a
matrix, respectively.

2 Review
2.1 Fast lapped transform (FLT)
An M-channel (M = 2k , k ∈ N) FLT can be constructed
in polyphase structure from components with well-known
fast-computable algorithms. One of themost elegant solu-
tion is the type-II FLOT. The polyphase matrix E(z) is
expressed as [11]

E(z) =
[
I 0
0 SIVCIII

]
W�(z)W

[
CII 0
0 CIV

]
WĨJ (1)

where

W = 1√
2

[
I I
I −I

]
, Ĩ =

[
I 0
0 J

]
, �(z) =

[
I 0
0 z−1I

]
,

z−1 is a delay, and CII , CIII , CIV , and SIV are DCT-II,
DCT-III, DCT-IV, and type-IV discrete sine transform
(DST-IV) matrices whose (m, n)-elements are presented
by

[CII ]m,n =
√

2
N
cm cos

(
m (n + 1/2) π

N

)

[CIII ]m,n =
√

2
N
cn cos

(
(m + 1/2) nπ

N

)

[CIV ]m,n =
√

2
N

cos
(

(m + 1/2) (n + 1/2) π

N

)

[SIV ]m,n =
√

2
N

sin
(

(m + 1/2) (n + 1/2) π

N

)

where ci = 1/
√
2 (i = 0) or 1 (i �= 0). Also, C−1

II = CT
II =

CIII , C−1
IV = CT

IV = CIV , and S−1
IV = STIV = SIV . Since

the following relationship between DST-IV and DCT-IV
matrices can be established: SIV = DCIV J, Equation 1 can
be easily represented by

E(z) =
[
I 0
0 DCIV JCIII

]
W�(z)W

[
CII 0
0 CIV

]
WĨJ.

(2)

On the other hand, the HLT for JPEG XR is based on
FLOT with scaling factors [16]. By inspiring it, the FLT in
this paper is defined by

E(z) =
[
I 0
0 DCIV JCIII

]
W�(z)W

[
s0CII 0
0 s1CIV

]
WĨJ

(3)

where s1 = s−1
0 which is the restriction for lifting factor-

ization. This is called FLBT in this paper. Since FLOT in
Equation 2 is understandably equal to FLBT in Equation 3
with s0 = s1 = 1, we use this equation (3) as a representa-
tive expression of FLT. The FLTwith this polyphasematrix
is implemented as shown in the top half in Figure 1.

2.2 Direct-lifting structure
In [35], we have presented direct-lifting which is a class of
block-lifting [25] known as a more effective lifting struc-
ture for lossy-to-lossless image coding than standard lift-
ing structure [17-19]. The block-lifting reduces rounding
error by merging many rounding operations. The direct-
lifting is a key technology to produce novel IntFLTs. To
achieve the lifting, we suppose a processing of two indi-
vidual M × 1 signals xi and xj by an M × M arbitrary
nonsingular matrix T and its inverse transform matrix
T−1, respectively, as shown at the left side of Figure 2. The
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Figure 1 Parallel process of two different typeM-channel FLTs (drawn forM = 8). (Top) FLT in Equation 3; (bottom) FLT in Equation 6.

input signals xi and xj are simultaneously transformed to
the output signals yi and yj by T and T−1 as[

yi
yj

]
=

[
T 0
0 T−1

] [
xi
xj

]
.

This block diagonal matrix diag{T,T−1} can be factorized
into complete block-liftings such as[

T 0
0 T−1

]
=

[
0 I
−I 0

] [
I 0
T I

] [
I −T−1

0 I

] [
I 0
T I

]
.

(4)

Thus, the parallel block system of T and T−1 can be
efficiently implemented by the block-liftings as shown
at the right side of Figure 2. This is a breakthrough
structure because any block T and its inverse one T−1

can be directly applied to the block-lifting coefficients
without breaking their forms. Although any existing soft-
ware/hardware for DCT cannot be directly reused for the

conventional IntDCTs, we can admit any of them as the
lifting blocks when T = CII .

3 IntFLTs based on direct-lifting of DCTs
This section presents a realization of IntFLT for lossy-
to-lossless image coding. The IntFLTs have simple imple-
mentations with few operations and direct-lifting of
DCTs.

3.1 Direct-lifting of DCTs
FLT in Equation 3 is transferred into the another type so
that direct-lifting (4) can be applied. First, Equation 3 is
rewritten as

E(z) =
[
I 0
0 DCIV JCIII

]
W�(z)W

[
CII 0
0 CII

]

×
[
s0I 0
0 s1CIIICIV

]
WĨJ (5)

Figure 2 Direct-lifting structure (white circles represent rounding operations).
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whereCIICIII = I. By moving diag{CII ,CII} to the postpro-
cessing part, Equation 5 is rewritten as

E(z) =
[
I 0
0 DCIV JCIII

] [
CII 0
0 CII

]
W�(z)W

×
[
s0I 0
0 s1CIIICIV

]
WĨJ

=
[
CII 0
0 DCIV J

]
W�(z)W

[
s0I 0
0 s1CIIICIV

]
WĨJ � Ẽ(z)

(6)

where CIIICII = I and Ẽ(z) are used to distinguish from
the original E(z) in Equation 3. Of course, Ẽ(z) is the same
transfer function as E(z). The FLT with this polyphase
matrix Ẽ(z) is implemented as shown at the bottom half
in Figure 1.
Next, as already mentioned, we consider the parallel

process of two different type FLTs in Equations 3 and 6 as
follows:[

yi
yj

]
=

[
E(z) 0
0 Ẽ(z)

] [
xi
xj

]
where xi and xj are individual input signals along pro-
cess direction, and yi and yj are their output signals as
shown in Figure 1. It means that when a row (column)
signals are processed by Equation 3, other row (column)
signals are processed by Equation 6. However, each DCT
matrix in both FLT is processed by direct-lifting of each
combination of DCT-II/DCT-III, DCT-III/DCT-II, and
DCT-IV/DCT-IV as shown in dashed line box in Figure 1.
For example, the combination of DCT-II/DCT-III is fac-
torized as[

CII 0
0 CIII

]
=

[
0 I
−I 0

] [
I 0
CII I

] [
I −CIII
0 I

] [
I 0
CII I

]

by substituting it into Equation 4.

3.2 Lifting structure of rotation matrix with π/4 angle
Since W in Equations 3 and 6 and Figure 1 includes the
scaling factor 1/

√
2, we factorize this into lifting structure.

In [14],W is simply factorized as

W =
[
I w0I
0 I

] [
I 0

w1I I

] [
I w0I
0 I

] [
I 0
0 −I

]

where w0 = 1 − √
2 and w1 = 1/

√
2. But this fac-

torization includes many floating-point multipliers. To
eliminate as much multipliers as possible, the following
scaled matrices are used in place of pureW.

[
1√
2 I 0
0

√
2I

]
W =

[
I 0
0 −I

] [
I 1

2 I
0 I

] [
I 0

−I I

]
� W1

W
[ √

2I 0
0 1√

2 I

]
=

[
I 0
I I

] [
I − 1

2 I
0 I

] [
I 0
0 −I

]
� W2

[ √
2I 0
0 1√

2 I

]
W =

[
I 0
1
2 I I

] [
I −I
0 I

] [
I 0
0 −I

]
� W3

W
[

1√
2 I 0
0

√
2I

]
=

[
I 0
0 −I

] [
I I
0 I

] [
I 0

− 1
2 I I

]
� W4

Note that a lifting structure with coefficient 1/2 and
rounding operation can be replaced by one adder and
one bit-shifter [37], i.e., multiplierless operations. With

Figure 3 Process of the two-dimensional transform of an image by the proposed IntFLTs.
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these matrices, Equations 3 and (6) are represented as
follows:

[
1√
2 I 0
0

√
2I

]
E(z) =

[
I 0
0 DCIV JCIII

]
W1�(z)W2

×
[
s0CII 0
0 s1CIV

]
W1ĨJ (7)

[ √
2I 0
0 1√

2 I

]
Ẽ(z) =

[
CII 0
0 DCIV J

]
W3�(z)W2

×
[
s0I 0
0 s1CIIICIV

]
W1ĨJ (8)

Figure 3 shows the process that an image is two-
dimensionally transformed by the proposed IntFLT. The
ith (1 ≤ ((i + 1) mod M) ≤ M/2) row signals and
the jth ((M/2 + 1) ≤ ((j + 1) mod M) ≤ M) row
signals, i.e., the yellow and green areas in Figure 3, are
processed by FLTs in Equations 7 and 8, respectively.
Here, note that the one-dimensionally transformed out-
put signals are scaled by 1/

√
2 and

√
2 as compared

with the output signals transformed by normal FLTs as
shown in the dashed line box in Figure 3. By consid-
ering these scales 1/

√
2 and

√
2 for the next column

process, Equations 3 and 6 are represented again as
follows:

E(z)
[ √

2I 0
0 1√

2 I

]
=

[
I 0
0 DCIV JCIII

]
W2�(z)W1

×
[
s0CII 0
0 s1CIV

]
W2ĨJ

(9)

Table 1 Comparisons of coding gain of the ideal FLTs and
the proposed IntFLTs (dB)

Ideal FLTs Proposed FLTs

8 × 16 FLOT 9.2189 9.2189

8 × 16 FLBT 9.4475 9.4475

16 × 32 FLOT 9.7593 9.7593

16 × 32 FLBT 9.8455 9.8455

Ẽ(z)
[

1√
2 I 0
0

√
2I

]
=

[
CII 0
0 DCIV J

]
W4�(z)W3

×
[
s0I 0
0 s1CIIICIV

]
W4ĨJ. (10)

Similarly, the ith column signals and the jth column sig-
nals, i.e., the red and blue areas in Figure 3, are processed
by FLTs in Equations 9 and 10, respectively. Consequently,
the scales are changed temporarily for fast implementa-
tion and restored after two-dimensional transform.

3.3 Lifting structure of scaling part
In this subsection, we present lifting structures of each
scaling part diag{s0I, s1I} including in Equations 7 to 10.
According to Equation 4, we define a simple realization of
integer transform in the scaling part as follows:

[
s0I 0
0 s1I

]
=

[
0 I
−I 0

] [
I 0
s0I I

] [
I −s1I
0 I

] [
I 0
s0I I

]

where s1 = s−1
0 . The lifting coefficients s0 and s1 in the

scaling part are empirically determined.

Table 2 Comparison of lossless image coding (LBR (bpp))

Test 5/3-DWT HLT Conventional FLTs Proposed FLTs

Images [14] [16] (A) (B) (C) (D) (E) (F) (G) (H)

Baboon 6.25 6.23 6.24 6.24 6.23 6.24 6.23 6.22 6.22 6.22

Barbara 4.97 4.96 5.00 4.95 4.95 4.93 4.95 4.85 4.90 4.83

Boat 5.19 5.20 5.22 5.22 5.19 5.21 5.19 5.16 5.16 5.15

Elaine 5.26 5.27 5.30 5.26 5.27 5.25 5.28 5.21 5.25 5.20

Finger 5.88 5.89 5.91 5.79 5.85 5.78 5.89 5.75 5.84 5.75

Finger2 5.64 5.62 5.65 5.57 5.57 5.56 5.63 5.51 5.55 5.51

Goldhill 5.08 5.12 5.21 5.20 5.17 5.19 5.18 5.15 5.15 5.14

Grass 6.09 6.09 6.11 6.09 6.08 6.08 6.10 6.07 6.08 6.07

Lena 4.58 4.64 4.74 4.77 4.71 4.75 4.71 4.69 4.66 4.67

Pepper 4.96 5.00 5.03 5.06 4.99 5.04 4.99 5.00 4.96 4.98

Avg. 5.39 5.40 5.44 5.42 5.40 5.40 5.42 5.36 5.38 5.35

A, the conventional 8 × 16 FLOT; B, the conventional 16 × 32 FLOT; C, the conventional 8 × 16 FLBT; D, the conventional 16 × 32 FLBT; E, the proposed 8 × 16 FLOT;
F, the proposed 16 × 32 FLOT; G, the proposed 8 × 16 FLBT; and H, the proposed 16 × 32 FLBT.
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4 Results
4.1 Coding gain
This paper designed 8 × 16 and 16 × 32 IntFLTs. First,
the comparison of coding gain of the ideal FLTs and the
proposed IntFLTs is shown.
The coding gain is one of the most important factors

to be considered in compression applications. A trans-
form with higher coding gain compacts more energy into
a fewer number of coefficients. As a result, higher objec-
tive performance such as PSNR would be achieved after
quantization. The biorthogonal coding gain is defined as
[38]

Coding gain [dB] = 10 log10
σ 2
x∏M−1

k=0 σ 2
xk‖ fk ‖2

where σ 2
x is the variance of the input signal, σ 2

xk is the vari-
ance of the kth subbands and ‖ fk ‖2 is the norm of the kth
synthesis filter. Although the coding gain does not com-
pletely dominate all image coding results due to rounding
error, it is clear that all of coding gain are not lost as shown
in Table 1.
For comparison, the coding gain of LiftLT [12] is 9.5378

(dB) which is higher than the proposed 8 × 16 IntFLTs
because this is optimized for lossy coding.

Table 3 Comparison of lossy image coding (PSNR (dB))

Comp. LiftLT 9/7-DWT HLT Conventional FLTs Proposed FLTs

Ratio [12] [14] [16] (A) (B) (C) (D) (E) (F) (G) (H)

Baboon 1 : 32 22.72 22.90 22.38 22.86 22.88 22.88 22.89 22.87 22.91 22.89 22.91

1 : 16 24.98 25.11 24.67 25.11 25.17 25.14 25.15 25.13 25.19 25.16 25.19

1 : 8 28.31 28.55 28.10 28.49 28.45 28.48 28.42 28.55 28.53 28.52 28.51

Barbara 1 : 32 28.01 27.56 27.01 27.80 28.72 28.02 28.84 27.83 28.77 28.03 28.90

1 : 16 32.02 31.49 30.85 31.70 32.55 32.02 32.65 31.76 32.67 32.08 32.80

1 : 8 37.07 36.28 36.00 36.33 36.65 36.60 36.66 36.59 37.13 36.84 37.19

Boat 1 : 32 29.20 29.43 28.80 28.93 28.98 29.21 29.08 28.97 29.04 29.23 29.13

1 : 16 32.36 32.45 32.02 32.05 32.00 32.26 32.08 32.13 32.13 32.33 32.22

1 : 8 35.70 35.50 35.21 35.20 35.07 35.23 35.04 35.44 35.43 35.46 35.40

Elaine 1 : 32 31.83 31.99 31.54 31.28 31.29 31.55 31.42 31.32 31.35 31.61 31.50

1 : 16 32.86 32.98 32.20 32.39 32.63 32.53 32.74 32.49 32.78 32.62 32.87

1 : 8 35.00 34.77 34.24 34.46 34.97 34.44 34.94 34.67 35.32 34.69 35.26

Finger 1 : 32 23.42 23.69 22.95 23.56 23.94 23.71 23.99 23.57 23.97 23.72 24.02

1 : 16 26.62 26.92 26.31 26.76 27.27 26.92 27.29 26.79 27.32 26.94 27.34

1 : 8 30.67 30.50 30.12 30.57 31.29 30.76 31.30 30.64 31.44 30.82 31.44

Finger2 1 : 32 24.36 24.63 23.27 24.40 24.72 24.62 24.79 24.42 24.76 24.63 24.82

1 : 16 27.73 28.04 27.09 27.84 28.19 28.09 28.26 27.86 28.25 28.12 28.32

1 : 8 31.83 31.85 31.39 31.80 32.24 32.10 32.23 31.89 32.42 32.19 32.39

Goldhill 1 : 32 29.72 30.06 29.62 29.39 29.53 29.66 29.62 29.43 29.59 29.69 29.68

1 : 16 32.35 32.37 32.02 31.97 32.06 32.15 32.10 32.05 32.20 32.22 32.25

1 : 8 35.57 35.36 35.17 35.03 34.98 35.06 34.93 35.26 35.36 35.29 35.30

Grass 1 : 32 24.44 24.63 24.26 24.58 24.62 24.66 24.63 24.61 24.66 24.68 24.65

1 : 16 26.65 26.73 26.37 26.76 26.87 26.81 26.87 26.78 26.92 26.84 26.92

1 : 8 29.67 29.62 29.39 29.74 29.90 29.77 29.86 29.80 30.00 29.81 29.98

Lena 1 : 32 32.80 33.46 32.76 32.27 32.44 32.83 32.69 32.37 32.55 32.89 32.83

1 : 16 36.04 36.32 35.90 35.42 35.42 35.92 35.65 35.59 35.71 36.08 35.96

1 : 8 39.02 38.83 38.62 37.95 37.57 38.09 37.64 38.47 38.53 38.55 38.50

Pepper 1 : 32 32.35 32.89 32.52 31.62 31.73 32.33 31.99 31.68 31.84 32.38 32.13

1 : 16 34.69 35.13 34.71 34.13 33.78 34.58 34.09 34.29 34.02 34.73 34.34

1 : 8 37.07 36.79 36.39 36.18 35.94 36.21 35.91 36.50 36.44 36.53 36.41

A, the conventional 8 × 16 FLOT; B, the conventional 16 × 32 FLOT; C, the conventional 8 × 16 FLBT; D, the conventional 16 × 32 FLOT; E, the proposed 8 × 16 FLOT;
F, the proposed 16 × 32 FLOT; G, the proposed 8 × 16 FLBT; and H, the proposed 16 × 32 FLBT.
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4.2 Lossy-to-lossless image coding
Lossy-to-lossless image coding results by the designed
IntFLTs are shown in this subsection. As targets for com-
parison, LiftLT [12], 5/3-DWT and 9/7-DWT for JPEG
2000 [14], HLT for JPEG XR [16], and the conventional
8×16 and 16×32 IntFLTs were applied. The conventional
8 × 16 and 16 × 32 IntFLTs are based on simple three-
step lifting factorizations of rotation matrices and scaling
factors [14]. The periodic extension was used for image
boundaries except for DWTs and HLT. To evaluate trans-
form performance fairly, a very common wavelet-based
zerotree coder SPIHT [39] was adopted for allc. Moreover,
we used 8-bit gray scale test images with 512 × 512 size
such as Barbara.
First, the proposed IntFLTs and the conventional meth-

ods are applied to lossless image coding. The comparison
of lossless bit rate (LBR)

LBR (bpp) = Total number of bits [bit]
Total number of pixels

[
pixel

]
is shown in Table 2.
If lossy compressed data is required, it can be achieved

by interrupting the obtained lossless bitstream. The com-
parison of peak signal-to-noise ratio (PSNR)

PSNR(dB) = 10 log10
(
2552

MSE

)

whereMSE is the mean squared error, is shown in Table 3.
Even though the proposed and conventional IntFLTs

have same transfer function, the proposed IntFLTs
perform better coding than the conventional IntFLTs,
especially lossy image coding results show excellent
performance. We consider that this is mainly due to the
reduction of rounding operations as shown in Table 4
and no large lifting coefficientsd. Moreover, note that

Table 4 Comparison of number of rounding operations in
each one-dimensional transform of M× 1 signals

Conventional FLTs Proposed FLTs

8 × 16 FLOT 72 36

8 × 16 FLBT 84 48

16 × 32 FLOT 240 90

16 × 32 FLBT 264 114

the proposed IntFLTs have a more effective implementa-
tion than the conventional IntFLTs due to the construc-
tion with few operations and direct-lifting of DCTs. The
direct-lifting can reuse any existing software/hardware
for DCTs. On the other hand, LiftLT and 9/7-DWT
perform often good lossy image coding because they
were designed for the lossy mode. However, it cannot
preserve the high frequency components in the images
as shown in Figure 4, whereas the proposed IntFLTs,
especially the proposed 16 × 32 IntFLT, can preserve
them.

5 Conclusions
This paper presented integer fast lapped transforms (Int-
FLTs) for effective lossy-to-lossless image coding, which
were constructed by few operations and direct-lifting of
discrete cosine transforms (DCTs). Due to merging, many
rounding operations and keeping small lifting coefficients
by use of direct-lifting, the proposed IntFLTs performed
better coding than the conventional IntFLTs in lossy-to-
lossless image coding. Also, the proposed IntFLTs can pre-
serve the high frequency components in the images. Since
the direct-lifting can reuse any existing software/hardware
for DCTs, the proposed IntFLTs have a great poten-
tial for fast implementation which is dependent on the
architecture design and DCT algorithms. Furthermore,
the proposed IntFLTs do not need any side information

Figure 4 Comparison of particular area of reconstructed image Barbara when bit rate is 0.25 (bpp). (Left to right) 9/7-DWT, LiftLT, and
16 × 32 FLBT.
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unlike IntDCT based on direct-lifting as our previous
work.

Endnotes
a“The conventional IntFLTs” do not include LiftLT in

this paper.
bAny other lifting-based DCTs cannot reuse all existing

software/hardware for DCTs.
cThe block transform coefficients through 2k-channel

(k ∈ N) FLTs are rearranged to a k-level wavelet-like
multi-resolution representation, and they are applied to
the zerotree coder [40], e.g., 3-level wavelet-like
multi-resolution representation whenM = 8.

dThe IntFLT referred by [20] has less rounding
operations. However, it performs undesirable coding due
to large lifting coefficients. For example, although the
8 × 16 FLOT has only five rounding operations in each
4 × 4 DCT, its application of lossless image coding shows
5.06 (bpp) for Barbara.
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