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Abstract

vector machine

Fault diagnosis of induction motors in the practical industrial fields is always a challenging task due to the difficulty
that lies in exact identification of fault signatures at various motor operating conditions in the presence of
background noise produced by other mechanical subsystems. Several signal processing approaches have been
adopted so far to mitigate the effect of this background noise in the acquired sensor signal so that fault-related
features can be extracted effectively. Addressing this issue, this paper proposes a new approach for fault diagnosis
of induction motors utilizing two-dimensional texture analysis based on local binary patterns (LBPs). Firstly, time
domain vibration signals acquired from the operating motor are converted into two-dimensional gray-scale images.
Then, discriminating texture features are extracted from these images employing LBP operator. These local feature
descriptors are later utilized by multi-class support vector machine to identify faults of induction motors. The
efficient texture analysis capability as well as the gray-scale invariance property of the LBP operators enables the
proposed system to achieve impressive diagnostic performance even in the presence of high background noise.
Comparative analysis reveals that LBPg; is the most suitable texture analysis operator for the proposed system due
to its perfect classification performance along with the lowest degree of computational complexity.
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1. Introduction

Induction motors are one of the most widely used ma-
chines on which industrial production processes depend
on. Faults of these vital equipments can cause massive
financial loss to the production plants which motivated
the researchers to investigate and develop efficient fault
diagnosis systems for this kind of rotary equipments
[1,2]. Numerous fault diagnosis methods for induction
motors have been proposed so far which can be classi-
fied in three main types depending on their diagnosis
procedure [1], namely model based, signal based, and
data based. However, signal processing is a crucial part
for all of these three types but with a different impact
and role. The most popular signal processing techniques
include time domain analysis, frequency domain techniques
like spectral analysis, and time-frequency domain methods
such as short-time Fourier transform (STFT) or wavelet
analysis. The main purpose of signal processing step in a
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fault diagnosis system is to reveal the fault signatures
from the measured quantities which is a difficult task in
the presence of background noise.

Mechanical vibrations, obtained by the accelerometers
mounted on the motor body, are widely used for the
detection and diagnosis of induction motor faults. In a
practical industrial environment, motors are usually
coupled with other mechanical components of different
speeds which also contribute to the measured vibration
along with the motor of interest. As a result, the mea-
sured vibration signal contains unavoidable background
noise coming out from other coupled mechanical sub-
systems and sometimes from the sensor itself. This un-
expected noise component can mask the fault signature
within the acquired signal which will make the fault
diagnosis difficult. To separate or reduce noise compo-
nent from the signal of interest, several noise cancelation
methods have been proposed in the literature which in
fact utilized adaptive or wavelet-based filtering processes.
In [3], Lee and White proposed a two-stage adaptive line
enhancer to enhance the measured vibration signal.
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Application of self-adaptive noise cancellation algo-
rithm was illustrated in [4] by Antoni and Randall.
Again, a denoising algorithm for vibration signals incorp-
orating NeighCoeff shrinkage model with dual-tree
complex wavelet transform was proposed by Wang
et al. in [5]. However, all of these existing noise reduction
algorithms work as a preprocessing step of fault signature
extraction and increase computational complexity of a fault
diagnosis system.

To achieve higher diagnostic performance as well as
attain robustness to environmental noise, Do and Chong
in [6] proposed a fault diagnosis system using features
of vibration signal in two-dimensional domain. In
fact, it converted one-dimensional vibration data into
two-dimensional gray-scale image and extracted local
features utilizing scale invariant feature transform
(SIFT). The 128-dimensional keypoint descriptors,
produced by SIFT, were utilized for the classification
of motor faults. Robustness of this scheme was claimed
due to the fact that it converted signals into images, and
the added noise acts as illumination variation when
transformed into images. As SIFT is invariant to image
rotation, translation, and scale variation [7] and partially
invariant to illumination changes, so efficient diagnosis
of motor faults was expected even in the presence of
background noise. However, robustness of this SIFT-based
fault diagnosis system was not justified with necessary
experimental results; therefore, applicability of this kind
of system in a noisy industrial environment remained as
a question. Besides, there are some critical drawbacks of
applying SIFT, one of which is uncertainty in the number
of keypoints for different images and another one is high
computational cost for the processing of 128-dimensional
feature descriptors. To mitigate complexity of unequal
keypoint descriptors, adaptive clustering technique was
incorporated for the creation of ‘texton dictionary, and
later, it was utilized in distance-based pattern matching
for identifying a fault instance in [6]. However, limitations
caused by the application of SIFT in fault diagnosis system
can be avoided by replacing this method by a superior one
with illumination invariance capability. Such an option is
the local binary pattern analysis technique, introduced by
Ojala et al. [8,9], in which the local binary pattern (LBP)
operator provides us with a binary code for each pixel of
an image calculated by thresholding the local neighbors at
the gray level of the pixel of interest. As the definition
states, local binary patterns are useful texture measure-
ment which are extremely robust against any monotonic
transformation of the gray scale and rotation of the image
while determination of these patterns require a low degree
of computational complexity [9]. Moreover, it facilitates
the generation of fixed and relatively small number of
feature descriptors which can be utilized for fault classifi-
cation. Considering these benefits of local binary pattern
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analysis, in this paper, a fault diagnosis system for in-
duction motors is proposed where local image features,
related to image textures, are determined by the LBP
operator. Later on these feature descriptors are utilized
by the classifier to diagnose motor faults. In the pro-
posed system, multi-class support vector machine
(SVM) is employed for solving classification problems.
Performance of the proposed system has been evalu-
ated for eight different motor operating conditions in a
laboratory environment. Moreover, diagnosis capability
of the proposed scheme has also been measured in the
presence of different noise level to justify its effective-
ness in practical industrial application. In addition, a
number of LBP variants have been incorporated in the
experimental analysis to identify the most suitable texture
analysis operator in terms of diagnostic capability and
computational complexity.

2. Texture analysis by local binary patterns

The LBP texture analysis operator, introduced by Ojala
et al. [8], is defined as a gray-scale invariant texture
measure which is derived from a general definition of
texture in a local neighborhood. LBP operator labels
each pixel of an image by thresholding its P neighbor's
intensity values with the center value and converts the
result into a pattern code by (1):

P-1
LBPp(xc, %) = Y _s(g,¢.) M
lx2

0x< (()) ,g. denotes the gray value of the

center pixel (%, y.), and g, corresponds to the gray values
of P equally spaced pixels on the circumference of a circle
with radius R as shown in Figure 1. The pixel values are se-
lected using bilinear interpolation whenever the sampling
point is not in the center of a pixel. This individual LBP
pattern is capable of describing the texture information at
the center pixel.

Being a highly discriminative texture operator, it records
the occurrences of various patterns in the neighborhood
of each pixel in a P-dimensional histogram. Signed differ-
ence g, — g is not affected by changes in mean luminance.
Thus, a gray-scale shift does not affect the LBP code of an
image. This is achieved due to the consideration of just
the signs of the differences instead of their exact values.
Therefore, the LBPpr operator is invariant against any
monotonic transformation of the gray scale, i.e., as long as
the order of the gray values in the image stays the same,
the output of the LBPpr operator remains constant.
Figure 2 illustrates the generation of the basic LBP
code for a center pixel with P = 8.

After computing the LBP code for each pixel (x., y.),
the input image I of size M x N (x.€{0, 1,2, ..., N-1},

where s(x) = {
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Figure 1 Neighborhood set for different P and R values.

y.€1{0,1,2,..., M - 1}) is represented by an LBP histo-
gram H using (2). The resultant histogram H is the
LBP descriptor of that image. Thus, each image is
represented by an LBP descriptor which is later used as
a feature vector for classification:

M-1 N-1

H(T) = Z Zf(LBPP,R(xCayc)v T)7

y.=lx=1

()

la=r1
where 7€[0,K], f(a,1)= {0 else
maximal LBP code value. For P = 8, 7 will have 2° = 256
different labels; therefore, 256 histogram bins H(z) will be
obtained which can be used as texture descriptors.

Again, for a central pixel g. and its P circularly and
evenly spaced neighbors g,, p = [0, P - 1], the difference
between g, and g, can be expressed as a combination of
two components d, = g, — g. = s,"m,, where s, = sign
(d,) and m,, = |d,|. Guo et al. [10] argued that d,, can be
more accurately approximated using the sign component
s, than the magnitude component m,. This implies
that s, will preserve more information of 4, than m,,
and hence, it is more likely to result in better pattern recog-
nition performance. However, it was also observed that the
information contained in the magnitude difference i,
can provide a significant performance enhancement [10].
Hence, CLBP_S and CLBP_M operators were proposed in
[10] to encode the sign and magnitude components of local
differences respectively (Figure 3).

The CLBP_S operator takes s, to encode the pattern
which is essentially the same as the original LBP operator.
As the magnitude component 1, is of continuous values

, and K is the

instead of binary ‘1’ and ‘-1, so it cannot be directly
encoded as that of s,. To ensure consistency with CLBP_S,
the CLBP_M operator is defined as follows:

P-1

CLBP_Mpp = szot(mp, )22, (3)

where £(x,c) = {§ ¥¢, and c is a threshold to be deter-
mined adaptively [10]. Here, c is taken to be the mean
value of m,, over the whole image.

To build a CLBP descriptor, histograms of the CLBP_S
and CLBP_M codes are calculated separately and then
the two histograms can be concatenated together [10].
This CLBP scheme can be represented as ‘CLBP_S_M’
which is utilized in the proposed fault diagnosis system
for the purpose of feature extraction.

Two common extensions for LBP as well as for CLBP
are ‘uniform patterns’ and ‘rotation invariant patterns’
[9]. An LBP code is called uniform if the binary pattern
contains at most two bitwise transitions from 0 to 1 or
vice versa when the bit pattern is traversed circularly. For
example, the patterns 00000000 (0 transitions), 01110000
(2 transitions), and 11001111 (2 transitions) are uniform,
whereas the patterns 11001001 (4 transitions) and
01010011 (6 transitions) are not. In rotation invariant
patterns, each LBP binary code is circularly rotated into
its minimum value. Hence, both the patterns 00111100
and 00001111 are mapped to 00001111. The notion of
uniform pattern was proposed to take account of and
give importance to those patterns which are most com-
mon and significant in texture classification. Rotation
invariant patterns help to classify rotated texture image
by applying rotation invariant mapping.

Figure 2 Code generation by the basic LBP operator.
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24

3. Proposed fault diagnosis system

In the proposed fault diagnosis method, vibration signals,
acquired from a running induction motor, are first
converted to gray-scale images from which discriminating
texture features are determined and fault classification is
performed. Processing steps of the proposed fault diagnosis
system are shown in Figure 4.

3.1. Signal-to-image conversion

The signal-to-image conversion scheme converts a time
domain signal into a gray-scale image. The size of the
image is dependent on the signal duration ¢. The choice
of ¢ is application specific, and it has to be set such that
all possible fault vibrations are accommodated more
than once in each of the signal images. Therefore, a large
value of ¢ may be desired for higher performance in
diagnosis, but an extremely large value of £ would not be
practical as it will not only increase the computational
burden but also decrease early detection property of the
diagnosis method. Considering the abovementioned
facts, it is reasonable to set the minimum value of ¢ at
tmin = 2 / fiin, Where fii, is the lowest possible vibration
frequency in hertz. Now, let us consider that the mea-
sured vibration signal of ¢ second duration contains the
L number of samples. The first step of conversion pro-
cesses is to normalize the L number of samples so that
their values are between 0 and maximum gray-scale
pixel intensity. Then, this block of L number of samples
is converted into an M x N gray-scale image where both

-
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Figure 4 Proposed fault diagnosis system for induction motors.

M and N are integer numbers and M x N = L. For ensuring
optimum utilization of the image pixels in texture analysis,
less number of pixels is desired at the image border.
Therefore, to keep the summation of M and N low, we
have to set their values closest to VL. Among the L
number of samples, the first N samples construct the
first row of gray-scale image; similarly, the next N samples
construct the second row and so on. This conversion
process is illustrated in Figure 5.

A vibration signal in time domain and corresponding
signal image, after conversion, are shown in Figure 6. In
this case, the vibration signal contained 7,680 samples,
and it is converted into a 96 x 80 gray-scale image.
Texture property of this image can be quantified by
the LBP operators through appropriate analysis. The
texture descriptors, obtained by analysis, are then utilized
for fault classification. Thus, signal-to-image conversion
scheme facilitates diagnosis of motor faults through classi-
fication of the image textures.

3.2. Texture feature extraction

The local binary pattern analysis technique is an ex-
tremely powerful gray-scale invariant texture analysis
tool which confirms its suitability in the proposed sys-
tem. Vibration signal images, obtained from different
fault situations, usually exhibit rich texture properties
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Figure 5 Signal-to-image conversion scheme.

due to the existence of fault-related frequencies in the vi-
bration signals. Again, external noise, induced in the signal
from other coupled equipments, appears as gray-scale
variation in the converted image. Therefore, powerful tex-
ture analysis capability as well as the gray-scale invariance
feature of the local binary pattern analysis technique can
be exploited in the proposed fault diagnosis systems to
achieve optimum diagnostic performance as well as ro-
bustness of the system in the noisy industrial environ-
ment. To identify the most suitable LBP operator, we
analyzed the performance of LBPpr operator along with
its other uniform and rotation invariant variations, namely
LBP}%, LBP} ;, and LBPZ'? [9]. To investigate the contri-
bution of magnitude component along with the sign com-
ponent in the case of accurate classification, we applied
the following CLBP operators, ie, CLBP _Spr_Mpg,
CLBP_Sj% Mp%, CLBP.Sy, My, and CLBP_Sp'Z Mp2
for the extraction of texture features in the proposed
fault diagnosis system. The objective of this incorpor-
ation of different operators is to discover discriminating
features which are most efficient for texture analysis in
the proposed system. Finally, based on the classification
performance and computational complexity consideration,
the optimum texture analysis operator is determined for
the proposed fault diagnosis system.

3.3. Fault classification

The feature descriptors, obtained by texture analysis, are
then utilized by the classifier for the diagnosis of motor
faults. Among the classifiers, SVM is suitable for the
proposed system as it has the capability of solving learn-
ing problem with a smaller number of samples. More-
over, SVM supports multi-class classification by
adopting the one-against-all (OAA) or one-against-one
(OAOQ) strategy. In the proposed system, classification is
performed using linear kernel by exploiting OAA tech-
nique. In the case of OAA technique, a binary classifier
is trained for each fault instance to discriminate one
fault case from all others and outputs the class with the
largest outputs. This OAA technique is elaborately
explained by Hsu and Lin in [11], whereas its accuracy
issue is addressed in [12] by Rifkin and Klautau.

4. Experimental setup and signal database

The experiments were set up under a self-designed test
rig (Figure 7) [6] which consisted of motor, pulleys, belt,
shaft, and fan with changeable blade pitch angle. In the
experiments, six 0.5-kW, 60-Hz, two-pole induction
motors were used to produce the vibration data under
full-load condition. One motor was operated under
normal condition as a benchmark for comparison with
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Figure 6 A vibration signal converted into a 96 x 80 gray-scale image.
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Figure 7 Experimental setup.

other faulty motors. The other faulty motors were represen-
tatives of the following faults: bowed rotor, broken rotor
bar, bearing outer race fault, rotor unbalance, adjustable
eccentricity (misalignment), and phase unbalance (Figure 8).
Thus, eight categories of vibration signals were acquired
from the motors, namely angular misalignment (AMIS),
bowed rotor shaft (BRS), broken rotor bar (BRB), faulty
bearing (outer race) (FBO), rotor unbalance (RUN), normal
motor (NOM), parallel misalignment (PMIS), and phase
unbalance (PUN). Fault dimensions of the faulty induction
motors are described in Table 1. Three accelerometers
were attached to the motors to acquire vibration signals
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generated in horizontal, vertical, and axial directions. The
maximum frequency of interest of the measured signals
was 3 kHz which was adequate to include possible mech-
anical vibrations [13]. In the experiments, the sampling
frequency of the data acquisition unit was 7.68 kHz which
was higher than the required Nyquist rate.

As stated above, seven different fault types were studied
in our experiments. The minimum possible fault frequency
for the mentioned faults was the pole passing frequency
which is equal to the slip times the number of poles. For an
induction motor, the typical slip is 4% [14]; therefore, we
can get a minimum value of signal duration #,,;, = 0.4167 s.
To accommodate tolerance of the slip, a reasonable choice
of the signal duration ¢ was made as ¢ = 1 s. Through the
laboratory experiments, we obtained 12 signal samples for
every fault category, each of them having 1-s duration and
7,680 number of samples. Each of the vibration signals was
converted into a 96 x 80 gray-scale image. As the number
of signal category was eight, so we obtained a database
containing a total of 96 vibration signal images. As we
obtained data from three different sensors, therefore,
we had 96 signal images for axial sensor, 96 for vertical
sensor, and 96 for horizontal sensor. In Figure 9, vibration
signals, acquired from the axial sensor, for the eight signal
categories and their corresponding signal images are
shown. These signal images are later utilized for the
diagnosis of motor faults.

5. Performance analysis and discussion
Four LBP operators, i.e., LBPpg, LBPI”)?R, LBP;{R, and
LBP,'%, and four CLBP operators, i.e., CLBP_Spr_Mpg,

-
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Faulty bearing

Figure 8 Faults of induction motors.
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Table 1 Description of induction motor faults
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Fault type Fault description Others

BRB Number of broken bar (12 ea) Total number of 34 bars
BRS Maximum bowed shaft deflection (0.075 mm) Air gap (0.25 mm)

FBO A spalling on the outer raceway #6203

RUN Unbalance mass on the rotor (84 g) -

Eccentricity (AMIS, PMIS)

Parallel and angular misalignments

Adjusting the bearing pedestal

PUN

Added resistance on one phase
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Timezec)

Broken §
rotorbarf °

=

] LB 0.2 0.3 o4 os 06
Tieced

Normal i :

<

LF-H

Fault bearing ;

(outer race)
N
284 CH) 0.3 .3 CX] CE) o8
Tmesso
10
L]
Rotor
unbalance
-
] [N} [ ) 0 0.5 LX)
Trwizec
-7-1}
Parallel ¢ °%;
misalignment ¥ .ocos
Q01
-0.015
1 T 0.2 0.3 o4 o5 0.5
Tivezec)

Phase i,
unbalance 7 °

Bowed
rotor shaft ;

“ Mieaecs

Figure 9 Vibration signals and corresponding gray-scale images for the eight signal categories.
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CLBP_S% Ms%, CLBP_S} ,_M7. ;, and CLBP_Sj¢ M7,
were employed for extracting local texture patterns
from the signal images. Then, histogram of these
patterns was calculated and the histogram bins were con-
sidered as feature descriptors. Although texture analysis
based on local binary patterns could be performed for
different values of P and R, to ensure minimum computa-
tional complexity and lowest number of feature descrip-
tors, we kept our analysis limited to P = 8 and R = 1.
Feature descriptors, obtained from axial, vertical, and
horizontal sensor data, were concatenated to form a com-
bined feature vector. The feature vectors were then intro-
duced to the multi-class SVM to perform the classification
process using OAA method and linear kernel. To measure
exact classification performance, cross validation approach
was adopted in our experiments. Using a fourfold cross-
validation, the input feature vectors were randomly
partitioned into four subsets for training data and
testing data. Therefore, we had 72 training data and 24
testing data for any iteration. Sequentially, one of the sub-
sets was tested using the SVM classifier while trained on
the remaining three subsets. Thus, each instance of the
whole training set is predicted. The cross-validation accur-
acy, obtained in this process, is the percentage of data that
are correctly classified.

In this laboratory experiments, a self-designed test rig
was used to acquire vibration data which contained pulleys
and fan as additional mechanical subsystem coupled to
the testing motor. However, in a practical industrial
environment, motors may be coupled with many other
rotating components which are usually not phase locked to
the motor speed. Thus, these subsystems generally provide
random contribution to the measured vibration signals
which can be reasonably modeled by a Gaussian distribu-
tion. Therefore, for proving the robustness of the proposed
system to high background noise of an industrial environ-
ment, we introduced additive white Gaussian noise to the
vibration signals at different signal-to-noise ratio (SNR).
Then, the texture features were extracted from those noisy
signal images by the abovementioned LBP operators, and
classification performance is measured accordingly. In this
case, training of the classifier was performed by the feature
vectors obtained from the original vibration signals, and the
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noisy signals were regarded as test samples. Therefore, 96
training and 96 testing samples were available while
evaluating the diagnostic performance in the presence
of background noise.

5.1. Identification of optimum LBP operator based on
classification performance

A comparison between overall classification results obtained
for LBP, CLBP, and their variants along with SIFT and
wavelet-based methods [6] are provided in Table 2.

Besides, Table 3 illustrates the scenario of individual
classification accuracy for the different fault categories.
According to the obtained results, SIFT and wavelet-based
methods are proved to be less accurate than most of the
LBP-based techniques as they demonstrate misclassification
in different categories including the ‘NOM’ category.
Inability to distinguish the normal operation mode
from other fault types can drain out the purpose of a
fault diagnosis system. Another observation obtained
from the classification result is that the so-called uniform
patterns, failed to account all the discriminating patterns.
This happened due to the fact that texture patterns
exhibited by the motor fault signal images were of unusual
nature compared to typical images; therefore, many of the
discriminating patterns contained more than two spatial
transitions (bitwise 0 to 1 change or vice versa). As a result,
when the non-uniform patterns were also considered, bet-
ter classification results were obtained which is confirmed
by the accuracy of LBPY, operator in Table 2. This operator
considers the rotation invariant binary patterns regardless
of the uniform definition; therefore, it can discover more
discriminating texture features with less number of descrip-
tors compared to LBPg?1 operator. Considering inappropri-
ateness, we disregarded LBP} and CLBP_S¥2_M%% in our
remaining analysis. On the other hand, accuracy obtained
by CLBP_S§“*_M g’”f operator shows that magnitude com-
ponent can add discriminating information, but this state-
ment requires appropriate judgment for different noise
levels to quantify its advantage.

Moreover, noise was introduced at different SNR
values in the measured signal, and performance was
evaluated to prove robustness of the proposed system

Table 2 Overall classification accuracy for LBP, CLBP, SIFT, and wavelet-based fault diagnosis schemes

LBP-based scheme CLBP-based scheme

SIFT- and wavelet-based schemes [6]

Feature extraction Classification Feature extraction

Classification Feature extraction Classification

operator accuracy (%) operator accuracy (%) method accuracy (%)
LBPg, 100 CLBP_Sg1_Ms, 100 SIFT 97916
LBP’ 97.9167 CLBP_ S _ M3 98.9583 Wavelet variance 89.582
LBP{ | 100 CLBP_S§, Mg, 100 Wavelet cross-correlation 79.165
LBPEY? 989583 CLBP_Sp Mgy 100
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Table 3 Individual classification accuracy for each of the fault categories
Feature extraction method Classification accuracy (%) for different fault categories

AMIS BRB NOM FBO RUN PMIS PUN BRS
LBPg 100 100 100 100 100 100 100 100
LBP§?1 100 100 8333 100 100 100 100 100
LBng] 100 100 100 100 100 100 100 100
LBPEY 91,67 100 100 100 100 100 100 100
CLBP_Sg1_Msg, 100 100 100 100 100 100 100 100
CLBP_Sg3 M3 100 100 91,67 100 100 100 100 100
CLBP_Sg, _/\/lg,1 100 100 100 100 100 100 100 100
CLBP_ S _ Mgy 100 100 100 100 100 100 100 100
SIFT 98.33 9833 86.67 100 100 100 100 100
Wavelet variance 8333 100 8333 100 8333 8333 8333 100
Wavelet cross-correlation 83.33 8333 8333 66.67 100 83.33 83.33 50

against the background noise. A comparative illustration
of classification accuracies, achieved by the operators at
different noise level, is provided in Table 4. As men-
tioned before, the added noise acts as illumination vari-
ation when converted to image, whereas the operators
we used for feature extraction are gray-scale invariant
which enables to achieve higher classification accuracy
at reasonably higher noise level. This robustness is
extremely useful for a fault diagnosis system to be
applicable in a real industrial environment. It should be
mentioned here that vibration measured from the motor
of interest would be at least three times stronger than
the induced background noise [15]; therefore, lower
SNR value up to 10 dB would be adequate to simulate
practical industrial situation. However, at extremely high
noise level (SNR < 10 dB), lower accuracy is observed
for some operators because the uneven illumination pro-
duced by the induced noise almost modified the local
texture patterns of the entire image. Therefore, texture
patterns, obtained from those noisy images, held little
correlation with corresponding patterns without noise.
From Table 4, it is also evident that at moderate noise

level rotation invariant operators (LBPy, and LBPy4

cannot exhibit higher accuracy as rotation invariance

disregards many alternative patterns which would con-
tribute for achieving discrimination between the fault
types. On the other hand, consideration of magnitude
components can increase classification accuracy as far as
noise level is not extremely high as observed by the
classification accuracy of CLBP_Sg ,_My; and CLBP_S%?
_Mgi’{z at noise levels of up to 15-dB SNR. It is caused by
the fact that additional information provided by magni-
tude component remained discriminative as long as it is
not considerably modified by the noise disturbance and
thus boosted the classification accuracy. However, when
the noise level is excessively high (SNR = 5 dB), less
accurate classification results are observed in the case of
CLBP_ g’l_]\/Igl , and CLBP_Sgiﬁz_Mg{”iz compared to corre-
sponding LBP operators. However, similar observation can
be obtained for classification accuracy of CLBP _Sg; Mg,
as compared to LBPg; at SNR values less than 15 dB.
Moreover, individual fault classification results at SNR value
of 10 dB are provided in Table 5 to identify the most
efficient texture analysis operator. From the illustration, it is
evident that, although both LBPg; and CLBP _Sg; Mg,
exhibit better performance than other operators in the case
of accurate detection of the normal case (NOM’), LBPg is
superior to CLBP_Sg ; Mg ; while considering classification

Table 4 Overall classification accuracy achieved by the operators at different noise levels

Feature extraction operator

Classification accuracy (%) at different SNRs (dB)

40 35 30 25 20 15 10 5

LBPg 100 100 100 100 100 100 89.5833 84375
LBPg 100 100 100 989583 947917 89.5833 81.25 520833
LBPEY 100 100 989583 89.5833 81.25 76.0417 729167 53.125
CLBP_Sg1_Ms; 100 100 100 100 100 100 885417 69.7917
CLBP_SE,_M2, 100 100 100 100 100 100 78.125 50

CLBP_Sp42_Mig4? 100 100 100 100 9375 87.5 854167 416667
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Table 5 Individual fault classification accuracy of the operators for SNR = 10 dB

Feature extraction operator

Classification accuracy (%) for different fault categories

AMIS BRB NOM FBO RUN PMIS PUN BRS
LBPg, 100 100 91,67 100 25 100 100 100
CLBP_Sg1_Ms, 100 100 91,67 100 16,67 100 100 100
CLBP_S5,_Ma, 100 100 0 100 5833 100 66.67 100
CLBP_Sg42_Mig4? 100 100 0 100 9167 100 9167 100

accuracy of the ‘RUN’ category. Besides, at a higher noise
level (SNR = 5 dB), LBPg; performed considerably well
among these two operators (Table 4). Therefore, we can
reach at a conclusion that, as far as classification perform-
ance is concerned, LBPg; operator should be the best
choice for texture feature extraction in the proposed sys-
tem. However, in the next section, computational perform-
ance of the operators will be evaluated to reach a more
rigid conclusion.

5.2. Computational complexity evaluation
The complexity of calculating LBP code for a gray-scale
image is O(n), where n is the number of pixels of the
image. However, execution time required for calculating
LBP code varies for different operators as mapping
operations have to be performed for specific operators to
determine rotation invariant and uniform patterns. More-
over, classification time also varied depending on the LBP
operator used as the number of feature descriptors was dif-
ferent. To get a comprehensive measurement of the overall
system execution time, calculation time was determined for
each of the processing steps of the proposed fault diagnosis
system which is presented in Table 6. It should be
mentioned here that, in this performance analysis, we used
MATLAB implementation of LBP and CLBP operators
which were obtained from [16,17] and [18], respectively.
All the measurements were taken in MATLAB 7.10
platform running on a personal computer with Core
i7-2600, 3.40-GHz processor and 4 GB of RAM. Along
with the classification performance, this computational

measurement would enable us to decide the most suitable
feature extraction operator for the proposed system. It
is observed that classification time varies for different
operators as the number of features varies. The total
execution time reveals that feature extraction with
LBPg ; operator can provide us with the lowest compu-
tational time. It is because of the fact that, like other
LBP or CLBP operators, it does not require any mapping
or determination of magnitude component.

From the above analysis of classification performance
and computational complexity, it is evident that, in the
case of fault diagnosis using signal images, each of the
available local binary patterns is crucial as it contains
some discriminative information. This statement becomes
more evident as the noise level in the measured vibration
signal is increased. Because at an increased noise level some
of the image locations become extremely distorted, there-
fore, the texture pattern distribution associated with the
image is changed. If all the possible local binary patterns
are considered then, reasonably, some patterns will remain
undistorted which can provide necessary discriminating
information for accurate classification. However, according
to the above analysis, LBPg; operator showed the optimal
classification performance even in the case of extreme noise
level requiring the lowest computational time.

6. Conclusions

Local texture properties, obtained by local binary pattern
analysis, are exploited efficiently in the proposed system
for the diagnosis of induction motor faults. The proposed

Table 6 Computational time evaluation for the proposed system in the case of different texture analysis operators

Feature extraction Total number

Execution time (ms)

operator of features

Signal-to-image Feature extraction Classification by Total

conversion SVM (testing)

LBPg 768 0.3794 1.3011 0.6417 23222
LBPg; 177 03794 17708 04564 26066
LBPgJ 108 03794 1.7552 04236 2.5582
LBng2 30 03794 1.7615 0.3694 25103
CLBP_Sg1_Ms,; 1,536 03794 2414 0.8969 3.6903
CLBP_S§3 _ M 354 03794 3.0829 05161 3.9783
CLBP_Sj, Mg, 216 03794 2.9966 04583 38342
CLBP_Sg#2 Mg 60 0.3794 2.9794 04077 3.7664




Shahriar et al. EURASIP Journal on Image and Video Processing 2013, 2013:29

http://jivp.eurasipjournals.com/content/2013/1/29

system is tested in the case of eight different motor operat-
ing situations in a laboratory setup, and excellent diagnostic
performance is obtained. Gray-scale invariance of the
LBP operator facilitates the proposed system to exhibit
robustness even in higher level of background noise
which is justified by the experimental results. Based on
classification performance and computational time,
LBPg ; operator is identified as the optimum choice for
the proposed fault diagnosis system. Future research
will be focused on the identification of dominant and
most discriminative texture patterns for different
motor fault categories and application of the proposed
system in the case of multiple motor fault diagnosis.
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