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Abstract

Facial expressions (FE) are one of the important cognitive load markers in the context of car driving. Any muscular
activity can be coded as an action unit (AU) which are the building blocks of FE. Precise facial point tracking is crucial
since it is a necessary step for AU detection. Here, we present our progress in FE analysis based on AU detection on
face infrared videos in the context of a car driving simulator. First, we propose a real-time facial points tracking
method (HCPF-AAM) using a modified particle filter (PF) based on Harris corner samples which is optimized and
combined with an Active Appearance Model (AAM) approach. Robustness of PF, precision of Harris corner-based
samples, and optimization of AAM result in a powerful facial points tracking on very low-contrast images acquired
under near-infrared (NIR) illumination. Second, detection of the most common AUs in the context of car driving,
identified by a certified Facial Action Coding System coder is presented. For detection of each specified AU, the
spatio-temporal analysis of related tracked facial points is performed. Then, a combination of rule-based scheme with
Probabilistic Actively Learned Support Vector Machines is developed to classify the features calculated from the
related tracked facial points. Results show that with such a scheme, we can obtain more than 91% of precision in the
detection of the five most common AUs for low-contrast NIR images and 90% of precision in the MMI dataset.

Introduction
The goal of the SPEED-Q [1] and COBVIS-D projects [2]
is to develop a simulation environment for driver retrain-
ing, It is composed of a multi-sensor data acquisition and
analysis system for driving performance assessment and
cognitive load measurements. The persons are asked to
drive in a simulator and then react to the monitored sce-
narios (Figure 1a). Their cognitive load varies according to
the complexity level of the driving task (Figure 1b).
Facial expressions (FE) are one of the important cog-

nitive load markers in the context of car driving. FE can
be characterized globally or locally in terms of the whole
facial attitude using the Facial Action Coding System
(FACS) [3]. FACS is based onmuscular activity underlying
momentary changes in facial aspects where each change
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can be coded as a facial Action Unit (AU). AUs are the
building blocks of any FE.
A certified FACS coder has manually analyzed 90 video

sequences of 30 persons, acquired in the driving simu-
lator, in order to identify the set of most frequent AUs
depicted by car drivers. A total of 140 instances were iden-
tified composed of eye blinks, brow lowerer, jaw drops,
lips apart, lip corner puller, and lip suck. We previously
implemented a real-time eye blink detector that has been
integrated in the car simulator [4]. Here, we present our
progresses regarding real-time facial points tracking and
AU detection on the facial images of the simulator, that
are, very low-contrast frontal face images acquired under
near-infrared (NIR) illumination (Figure 2).
Tracking of facial points has many applications in pat-

tern recognition, such as FE analysis, face recognition,
speech recognition, behavior analysis, etc. AUs’ detection
enables us to analyze FE for emotion, mood, deception,
and attitude recognition.
The rest of the article is organized as follows: in the

following section related studies are reviewed. The two
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Figure 1 Simulation environment for driver retraining. (a) Driving simulator, (b) driver is asked to drive inside the simulator and respond to a
one hour driving scenario displayed on the screen.

sections after the following section present our method-
ologies about facial point tracking and AU detection
analysis, respectively. Finally, performance results and
conclusions are presented at the end of the article.

Related studies
During the last decade many vision-based driving-
assistance systems have been proposed for road safety
improvement. Some studies have focused on pedestrian
detection and tracking [5] and some others on drivers
FE analysis. For example, Murphy-Chutorian and Trivedi
[6] proposed a head pose detection systems for moni-
toring driver awareness application using Haar-wavelet
Adaboost cascades, SVM classifiers, and appearance-
based 3D particle filter (PF) tracking. Smith et al. [7]
proposed a driver visual attention system using one color
camera to detect eyeblinking, eye closures, and large

Figure 2 Labeled facial points used for tracking and AU
detection analysis.

mouth movement. Their system was color-based which
is not appropriate during night time. A real-time system
for monitoring driver vigilance using infrared images has
been proposed in [8].
Classical PF has been introduced initially in [9]. After

that, many types of modified PF tracking methods have
been introduced for different kinds of object tracking,
specifically facial point tracking.
Facial points tracking is a crucial preprocessing step

to do driver FE analysis based on AU detection in face
videos. In [10], facial point tracking has been performed
using PF with factorized likelihoods (PFFL). PFFL is an
extension of classical PF that uses color-based observation
model that combines a rigid and morphological model.
This method is dependent on color features without tak-
ing into account shape and texture to track facial points.
In [11], active appearance model (AAM) tracking is pro-
posed to model face using its texture and shape. They use
a principal component analysis (PCA) scheme to build
various facial models. Then, they compare different face
models constructed from face shape and face texture with
the initial face model using an optimization function to
find the best match with its initial face model. AAM
tracking has a good precision for facial points tracking
but fails in the presence of occlusion or fast movements.
Therefore, PF tracking in conjunction with AAM track-
ing (PFAAM) has been introduced in [12] that combines
the robustness of PF with the precision of AAM. In this
method, state vector composed of shape and texture of
AAM face model (eight parameters) along with a like-
lihood measure and AAM search are used to compare
sampled face models with target face model. Finally, AAM
optimization is used to find the best match. Fleck et al.
[13] have modified the PFAAM model by adding two dif-
ferent dynamic models to deal with occlusions and a local
optimization step.
In our approach, we combine PF and AAM tracking

methods differently where PF has a larger role than AAM.
Themain differences between our trackingmethod, called
PF with Harris corner samples and AAM optimization
(HCPF-AAM), and the others are listed below.
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1. The proposed HCPF uses Harris corners for the PF
sample set which provides selective samples with
strong features. Therefore, the PCA analysis to build
all facial changes is not used here.

2. Each facial corner is tracked individually and
independently of other facial corners using HCPF for
each facial point. Thus, the state vector in our HCPF
is composed of only facial point coordinates which
has less complexity and processing time than the
eight parameters used in [12,13]. Independent facial
point tracking provides better robustness in the case
of partial occlusion and head movements.

3. AAM is used only in the optimization step to verify
the combination of all the best samples for all facial
points together. In our AAMmodel, we have
decreased the number of facial points to 18.

There are approaches to detect AUs in static face images
[14]; however, approaches on video analysis prove to have
some advantages. FE results obtained from video analy-
sis have higher confidence level than results from static
face images. Indeed, neutral faces might contain some
AUs that can be discriminated only by video analysis. For
example, some upper neutral faces might appear to frown
because of available wrinkles between two eyes.
Some approaches for AU detection from video anal-

ysis have been proposed. Tian et al. [15] proposed a
neural network (NN) to recognize different AUs based
on edge features, face wrinkles, and shape. Besides the
complexity of tuning different parameters in NN-based
approaches (e.g., number of layers, coefficients, etc.), their
method is not applicable on our dataset because of low-
contrast images where wrinkles or edges are not signifi-
cantly visible. Using NN-based approaches Bartlett et al.
[16] obtained a 91% average recognition rate and Tian
et al. [15] 87.9%. Cohn et al. [17] used discriminant func-
tion analysis and obtained a 85% average recognition rate.
Valstar et al. [18] used a probabilistic actively learned sup-
port vector machines (PAL-SVM) method to detect AUs
in video sequences. In this method, for each AU an SVM
classifier based on some features (distances based on facial
points) is trained and a 85% average recognition rate was
obtained. The main differences between our AU detection
method compared to the method proposed in [18]:

1. In our method, PAL-SVM classifier is applied only on
frames where facial changes related to an AU are
detected by an apex/antapex detection scheme. This
scheme depends on the variations of particular facial
points distances corresponding to an AU.

2. The features in the PAL-SVM classifier have been
modified based on analysis and rules of related
muscles movement for each AU identified by a
FACS coder.

3. We have added a rule-based method to PAL-SVM
classifier results based on the AUs FACS definition.

The detail of our HCPF-AAM is explained in the follow-
ing section.

Facial points tracking
We have proposed an adaptive PF method based on a
Harris corner sampling tracker suited to our facial points
tracking problem. Harris corner is used to extract feature
point candidates. It is combined with a PF that is robust
to non-Gaussian facial points distribution, person’s head
movements, and random motions. Target modeling and
tracking are done based on samplings made around the
predicted positions obtained by the PF and feature points
are extracted by the Harris corner detector. The scoring of
the sample features is done through normalization func-
tions that are used to combine different measure values
and to standardize their magnitudes within similar ranges.
These normalization functions are applied to geometric
and appearance features.
Figure 3 shows the whole facial points tracking and AU

detection process. In this section, we concentrate on the
building blocks of the system architecture which corre-
spond to our real-time facial points tracking method. The
other building blocks in Figure 3 for AU detection method
will be described in the next section.
To do FE analysis, face elements are modeled with 18

anchor points called facial points according to the Face
and Gesture RecognitionWorking group annotation stan-
dard [19] (Figure 2). Accurate facial point tracking is
an essential preprocessing step for AU detection. Facial
points tracking is performed by applying first a modified
PF tracking method over regions containing strong fea-
tures like corners (using a Harris corner detector [20])
and then optimizing the results with an AAM tracker.
Indeed, PF is a robust tracking method but precise target
locations might vary due to the image noise if sampling
is done correctly. AAM is a precise tracking method but
fails for fast movements or occlusions. Videos in our
SPEED-Q dataset were acquired under NIR illumination
with very low contrast and because of that, using PF or
AAM alone fails in precise facial points tracking. Thus,
AAM tracking optimization is applied to increase track-
ing precision. During the PF tracking, each facial point is
tracked independently and optimized by the AAM track-
ing part, building the facial points all together into a
face model.

PF tracking
We developed a PF tracker adapted to our NIR facial
points tracking problem based on Harris corner detec-
tion. Some normalization functions are applied on the
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Figure 3 Facial points tracking and AU detection process, c: confidence level of PAL-SVM classification result, ε: threshold used for
verification of PAL-SVM classification.

samples scoring and on geometric and appearance fea-
tures. They are used to combine different measure values
to normalize their magnitudes. Normalization of the sam-
ple scores might be done by any function, but analytical
normalization functions allow tuning of the score values.
In PF, target (facial point) modeling and tracking are

done based on sampling selected around the corners with
strong features.
To have continuous FE analysis, the tracking algorithm

must not lose the facial points throughout the video and
must not be distracted by head movements. The PF is a
Bayesian method that recursively estimates the state of
the tracking target as a posterior distribution with a finite
set of weighted samples. It operates using prediction and
update phases. A sample is a prediction based on the state
of tracking target. We find PF as an appropriate solution
because of its robustness due to the facial points random
and/or regularmotions.Wewould need to find all possible
candidates resulting either from all types of facial points
motions or from head movements to find the best match
candidate. On the other hand, the tracking should be cost
effective to be used in real-time applications.
Some questions can be raised such as howmany samples

are required to cover all possible target positions? Where
the samples should be located? How the samples should
be distributed, locally, globally, or randomly? How much
the processing time of the PF will be? The answer to these
questions explains the main difference of our modified PF
method against classical PF method. Classical PF alone
would have not been appropriate, because we should have
many samples to cover all possibilities everywhere in the
image. Having of many samples increases the processing
time and since the object tracking should be cost effective,
the samples should be generated appropriately and selec-
tively. In our modified PF based on Harris corner samples,

PF samples are generated where there is only a strong cor-
ner. The head motion vector is removed by optical flow
using a radial histogram scheme that is explained in the
following. Then, our HCPF uses AAM tracking method to
optimize the tracking results.

Observationmodel
A target is represented by a rectangle α × β (e.g., 30× 30)
around each facial point. The state of the PF at each time t
is defined as a vector �Pt of the rectangle center coordinates
as:

�Pt = (x(t), y(t)). (1)

The initial state vector �Pt containing the facial points
coordinates is determined when the initial target face
model is detected by the AAM tracker.

Sample scoring using normalization functions
To localize each facial point f , features of the ith sample
sfi are compared with the initial facial point model Mf ,
and a weight or a score ωfi is given to each sfi using a set
of normalization functions. The following appearance and
geometric-based measures are used for each facial point
in our HCPF tracking method:

1. φp(sf ), the Euclidean distance between the sample
coordinates and the corresponding previous position
of the facial point, is the first measure done on a
geometric feature:

φp(sf ) =
√

(xc(sf ) − xP)2 + (yc(sf ) − yP)2 (2)

where (xc(sf ),yc(sf )) and (xP ,yP) are the sample
center coordinates and corresponding previous facial



Darvish Zadeh Varcheie et al. EURASIP Journal on Image and Video Processing 2012, 2012:15 Page 5 of 13
http://jivp.eurasipjournals.com/content/2012/1/15

point center coordinates, respectively. This distance
is normalized by a Gaussian function φ̄p(sf ) given by:

φ̄p(sf ) = e

(
− φp(sf )

2σ2

)
(3)

where σ has been determined experimentally to 10
(for image size 640 × 480).

2. φg(sf ), the 2D correlation coefficient between gray
level values of the sample template image Isf , and the
gray level values of corresponding previous position
of the facial point template image IL, is used as the
measure for this appearance feature.

φg(sf ) =
∑

α

∑
β (Isf (x, y)) − Īsf )(IL(x, y) − ĪL)√∑

α

∑
β (Isf (x, y) − Īsf )2

∑
α

∑
β (IL(x, y) − ĪL)2

(4)

where Īsf and ĪL denote the average value of Isf and
IL. φ̄g(sf ) is the considered normalization function
and applied to φg(sf ) as :

φ̄g(sf ) = φg(sf ) + 1
2

(5)

3. φh(sf ), the Euclidean distance between the
normalized gray level histogram of sample Hsf and
the normalized gray-level histogram of the previous
position of the facial point sample HL, is the measure
for this appearance feature as:

φh(sf ) =
√∑

n
(Hsf [ n]−HL[ n] )2 (6)

where n is the histogram bin number. The
normalization function φ̄h(sf ) is considered as:

φ̄h(sf ) = 1 − φh(sf )√
2

(7)

4. φe(sf ), the 2D correlation coefficient between sample
edge image, and the corresponding previous position
of the facial point edge image, is used as the measure
for this appearance feature and is similar to φg(sf ).
φ̄e(s) is the considered normalization function
similar to φ̄g(s) and applied to φe(s).

5. φpx(sf ) and φpy(sf ), the Euclidean distances between
the normalized x and y projection histograms of the
sample edge image pattern and the normalized x and
y projection histograms of the corresponding
previous position of the facial point edge image are
measures used for x and y histogram projections,
respectively; the same as φh(sf ). Their corresponding
normalization functions φ̄px(sf ) and φ̄py(sf ) are
similar to φ̄h(sf ).

The weight (score) of the sample sfi at time t, ωt
fi, is

obtained by the sum of all normalization function values
as:

ωfi
t = φ̄p(sfit) + φ̄g(sfit) + φ̄h(sfit) + φ̄e(sfit) + φ̄px(sfit)

+ φ̄py(sfit)
(8)

For each facial point target, sf is the best sample at time
t which has the maximum weights and is selected by:

sf = argmaxsfi∈Sf {φ̄p(sfi) + φ̄g(sfi) + φ̄h(sfi) + φ̄e(sfi)

+ φ̄px(sfi) + φ̄py(sfi)}
(9)

Resampling and updating
Among all NfT samples existing in each frame for each
facial point, the Nsfi samples with the highest probabili-
ties (weights) are selected. Thus, the current sample set
Sft is composed of Nsfi samples centered on (xtfi, y

t
fi) with

probability ωt
fi at time t, where (xtfi, y

t
fi) is the ith sample

coordinates of facial point f at time t and ωt
fi is the related

score of the ith sample. The sample set Sft is an approxi-
mation of posteriori distribution of the target state (facial
point f state) at time t. In our application, we observe
that the PF state between two consecutive frames does not
change significantly so only translation of sample coordi-
nates around previous position of each facial point and
around detected corners is taken into account. No rota-
tion or scaling is applied because we assume frontal face
view tracking. At each time t, the motion of the facial
point is assumed to correspond to a dynamical first-order
auto-regressive model given by:

Pt = Pt−1 + ωt . (10)

where Pt and Pt−1 are the PF states at time t and t − 1,
respectively.ωt is a multivariate Gaussian random variable
and it correlates to random translation of the sample cen-
ter coordinates. Thus, in the resampling step, N samples
are generated by a Gaussian random function in a circu-
lar region of radius rg around the centroid of the facial
point region of interest (ROI). Indeed, rg will be modified
in each frame accordingly with the inverse of error E in
Equation (12).
In our HCPF, current sample set Sft is composed of two

sample sets, Stargetft and SHarris
ft :

Sft = Stargetft + SHarris
ft (11)

Stargetft is the current sample set that is composed of pre-
vious sample set at time t − 1 and SHarris

ft is the current
sample set composed of strong corners. Using only previ-
ous sample set is not appropriate in our application since
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it requires the accurate location of facial points as strong
corners inside the face skin region. Thus, re-sampling
is done based on two types of samples: samples around
previous target position and Harris corners samples. If
the person turns his head, the person motion vector is
extracted by a pyramidal Lucas-Kanade optical flow [21]
and the tracking process with HCPF is stopped. Opti-
cal flow extracts motion-based pixels with their related
motion vectors. To determine where the person turns his
head, a radial histogram of motion vectors is calculated.
Each histogram bin is composed of the quantized length
(r) and angle (θ ) of the motion vector. The r and θ coordi-
nates of the bin that has the maximum number of vectors
are assigned to the head motion vector length and angle.
Tracking process is re-initialized after the person turns
back his head to frontal view.

Optimization with the AAM tracker
The AAMs [11] is a deformable template model that pro-
vides high precision on the facial points localization. It
contains an iterative optimization such as Gauss-Newton
that searches along the gradient direction for an improved
parameter vector. AAM uses appearance (texture g) and
geometry (mesh or shape s) features that are learned from
face examples to fit themodel to still images. AAM tracker
looks for all possible changes of face models using a PCA
analysis.
In our approach, there are two trackers: the first is

the global tracker that tracks face using all facial points
together in AAM tracker; the second is the partial tracker
that tracks each facial point individually and provide facial
point information for the global tracker. The way these
two trackers communicate and are combined is done by
replacing the PCA analysis step of the AAM tracker with
the partial tracker.
We replace PCA analysis with best PF samples given

by our HCPF to determine the optimal face model. In
fact, possible face models are composed of samples with
high score of each facial point. Face shapes and tex-
tures are extracted from given samples to determine the
possible face models. Then the AAM tracker compares
the M face models to find the best set of facial points,
Fs, from given samples that best match with target face
model. AAM tracker uses an optimization function based
on Lorentzian norm to compare composed textures from
possible facial points candidates as:

Fs = argmini∈M
{
log

(
1 + Ei

2σ 2

)}
(12)

where Ei is the quadratic norm and is defined as:

Ei = (gmodel − gi)2 (13)

Therefore, Fs is selected as the best match for target
facial points and would be used in the next section for

AU detection. Lorentzian norm is used because it has
robustness to outliers [22].

AU detection
To detect and recognize AUs, we have used a combina-
tion of rule-based scheme and PAL-SVM method. One
or more facial muscles contraction causes changes in
facial feature points positions and generates an AU of
the FACS system. Each AU is encoded by analyzing the
spatio-temporal relations between the tracked points.
From the FACS rules [3], we have identified for each AU

a particular subset of facial points called key points and
analyzed the spatio-temporal distances between them.
We are using normalized Euclidean distance P12 between
two key points P1 and P2 as the feature representing the
changes in position of the fiducial facial points. For the
selection of the key facial points, three important facts
should be considered. First, the points should be related
to the muscles changes where the contraction is happen-
ing. Second, the points should be discriminative enough
to specify a particular AU from others. Third, sufficient
number of distances should be measured and analyzed
to accurately detect the related AU. In our analysis, we
normalize P12 by dividing the current Euclidean distance
by its reference value when the face is in neutral state.
This distance normalization is performed to avoid head
motions effect, scaling, and rotation changes from our cal-
culation. In addition, the nose central point is used as the
reference point and subtracted from all facial points to
register all video frames within a sequence.
In FE analysis, AUs detection can be used either for

emotion detection [23] or for cognitive loads assessment
[24]. As explained before, in SPEED-Q and COBVIS-D
projects, cognitive overloaded should be detected for
driver retraining. We have selected several AUs for cog-
nitive load assessment based on the work of King [24].
He described the cognitive FE without referring to their
AU numbers which we had to infer. Instead, he classi-
fied expressions into upper, lower, and whole face groups.
From [24] and an analysis of our SPEED-Q dataset by
the FACS coder, we identified the following relevant AUs
for our work: brow lowerer (AU4), jaw drops (AU26),
lips apart (AU25), lip corner puller (AU12), and lips suck
(AU28). Also, from [25] eye blinks (AU45) is stated as
an AU highly relevant for cognitive load assessment. We
had previously implemented a real-time eye blink detec-
tor integrated in the car simulator [4]. Table 1 shows the
FACS rules used for recognition of the specified AUs. In
this article, we concentrate on detection of mouth-related
AUs and brow lowerer AU.
A feature vector v =< d11, d12, . . . , d1t , d21, . . . , dtn >

with t×n elements is assigned to each AU. n varies accord-
ing to the number of facial point distances used for each
AU and dij is the specified facial point distance i at time j.
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Table 1 FACS rules [3] for recognition of most common
AUs occurring in the car driving simulator

AU Definition

4 Lowers the eyebrow downward the eye

12 Pulls left and right lip corners obliquely upward (� shape)

25 Part the lips

26 Drops the jaw close to the jaw relax

28 Pull lips into mouth or suck lips into mouth

t is the duration when an AU appears until it completely
disappears. This vector is an input for a PAL-SVM classi-
fier [18]. For each AU, a particular PAL-SVM classifier is
used. The classification result is the presence (or not) of
that particular AU with a confidence level parameter c in
Figure 3. This confidence level determines the certainty of
the classification result.
An AU occurs alone or in combination with other; in

addition, it occurs for various durations. Thus, it is nec-
essary that the vector be normalized in time. We have
proposed an apex/antapex scheme to identify when a pos-
sible AU starts and ends. This scheme is a crucial step
to determine the time duration (the length) of vector v
with its start and end-points. To do so, we analyze the
Euclidean distances between various signal points. Signal
points are the facial points for which their Euclidean dis-
tance values change during an AU onset, apex and offset
to almost a � or 	 shape such as in Figure 4. We analyze
the curves of the signal points distance to find where and
when local maximums or minimums are occurring inside
a sliding window of lengthws as shown in Figure 4. Indeed,
in each frame, the signal point distance curves are simul-
taneously swept with a window size ws to find apex or
antapex. Then, from the apex point, we start sliding back-
ward and forward (left and right sides of the curve shown
in Figure 4, respectively) to search in the previous and
following frames for a neutral points distance value (i.e.,
equal to 1 since it is a normalized distance) with a variance

of ±δ. wl and wr are the duration where an AU starts from
its neutral value and ends to the apex/antapex and then
starts from apex/antapex and ends to its neutral position,
respectively. t = wl + wr is the AU duration. Using this
scheme, we can find the moment where an AU starts and
ends as well as its duration. Then, the vector v is built by
cropping a part of all key points distance curves of an AU
from the estimated AU starting point to its ending point.
This solution is appropriate when an AU occurs alone but
not when an AU occurs in combination of others. In this
later case, the distance curve might not touch the neu-
tral value line and the vector v might have an unlimited
time length. Thus, if wl or wr is greater than ws/2, we limit
the vector v time length to ws (e.g., wl and wr is equal to
ws/2 each).
As discussed above, the vector v is built by cropping

a part of all key points distance curves and is classi-
fied by PAL-SVM classifier with a confidence level c. We
applied a rule-basedmethod following the PAL-SVM clas-
sification if the confidence level c is below a threshold
τ as detailed in Table 2. These thresholds are obtained
experimentally.
Finally, our rule-based method is a combination of a

set of AND/OR rules and different thresholds that are
applied on the measured Euclidean distances between the
key points as shown in the third column of Table 2.

Results and discussion
We have tested the tracking and AU detection algo-
rithms on two types of dataset: the public MMI dataset
[26] and our SPEED-Q dataset. The SPEED-Q dataset is
composed of uncompressed video sequences of 30 sub-
jects sitting in the driving simulator (90 video sequences,
3 video sequences per subject, with an average of
25min/sequence at 30 fps). Figure 5 shows the propor-
tion of relevant AUs found in the representative sample
of our SPEED-Q dataset by a certified FACS coder. A
total of 140 AUs were identified in this sample where the
most common upper face AUs, out of 38, were eye blink

Figure 4 Sliding of the normalized Euclidean distance curve to detect apex/antapex locations (see text for details). The antapex term here
is used to express the difference between the apexes in two opposite directions. The neutral point corresponds to an absence of AU. The apex is
reached from the neutral expression when it’s increasing and the antapex correspond to a Euclidien distance less than the neutral distance.
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Table 2 Key points distance, signal points distances with thresholds used on distances of rule-based scheme for
recognition of most common AUs occurring in the car driving simulator

AU KPD SPD RBD

4 DC2,7, DC1,6, DC1,3, DC6,8 DC1,6, DC6,8, DC1,3 DC1,3 ≤ τ7 OR DC6,8 ≤ τ7

12 DC13,15, DC13,17, DC15,17, DC15,17 τ5 ≤ DC15,17 AND τ6 ≤ DC14,16

25 DC13,18, DC14,16, DC15,17 DC14,16, DC13,18 τ2 ≤ DC14,16 ≤ τ1

26 DC13,18, DC14,16 DC14,16, DC13,18 τ3 ≤ DC13,18

28 DC14,16, DC15,17 DC13,18, DC15,17, DC14,16, DC13,16, DC14,18 DC14,16 ≤ τ4

KDP, key points distances used in PAL-SVM classifier; SPD, signal points distances used in our apex/antapex detection scheme; RBD, thresholds and distances used in
rule-based method; DCi,j , normalized Euclidean distance between two facial points of Ci and Cj shown in Figure 2; τ i , different thresholds used for particular distances
in rule-based method.

(AU45) and brow lowerer (AU4). Also, the most com-
mon lower face AUs, out of 102, were jaw drop (AU26),
lips apart (AU25), lip corner puller (AU12), and lip suck
(AU28), respectively.
The five AUs we concentrate on are the AUs know to

occur in a cognitive overload situation and the ones rele-
vant to the task of car driving. We also based our selection
on the most frequent AUs observable in our SPEED-Q
video dataset. They were identified after a careful manual
video analysis of the car driver faces by a certified FACS
coder (C. Chapdelaine). The other existing AUs related
to cognitive overload (e.g., head motion) were not sta-
tistically present enough in our dataset to be taken into
account in this study. We present the result of our track-
ing method and AU detection method separately. The
whole algorithm has been implemented on GPU to run in
real time.

Facial points tracking performance
Our tracking method is a combination of HCPF and
AAM techniques. In this section, the result of the pro-
posed tracking method is compared with simple PF alone
and AAM tracking. The training step is an offline pro-
cess for the AAM tracking, done for the face model.

Figure 5 Founded AUs in the sample of SPEED-Q dataset.

We experimentally find that AAM model would be more
robust and accurate if it is trained for each dataset indi-
vidually. To train AAM tracking for the MMI dataset, we
have selected 100 MMI video sequences and used only 6
images per video (the duration of MMI video sequences
is shorter than for the SPEED-Q dataset). We have tested
our HCPF-AAM tracker on 500 MMI video sequences.
Similarly for the SPEED-Q dataset, we have selected 15
videos and used 70 images per each.We have used the rest
of the SPEED-Q video sequences for test. We evaluate the
tracking algorithm on those video parts where all facial
points are visible and the face is frontal.
To specify the localization accuracy, circles with radius

of 10, 20, and 50% of the nose length around each facial
point are used (Figure 6) for two facial points (left and
right lip corners). Nose length is assumed to be equal to
the distance between the central nose point and middle
point of the two interior eye corners on a neutral face. We
evaluate the facial points tracking algorithm performance

Figure 6 Circular zones around lip corners for measuring facial
points tracking accuracy.
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on the SPEED-Q video sequences where either all types of
AUs are occurring or no AUs have been detected.We have
used two metrics:

1. Precision (P) to calculate the facial point localization
accuracy inside the particular circular ROI. It is
defined as:

P = TP
TP + FP

(14)

where TP is the number of frames where the facial
point is detected correctly inside a particular circular
ROI. FP is the number of frames where the facial
point is detected wrongly inside a particular circular
ROI.

2. Track fragmentation (TF) is a measure of the lack of
continuity of the tracking algorithm [27] and is
defined as:

TF = Fout + FP
N

(15)

where Fout is the number of frames where the target
is detected out of a particular circular ROI and N is
the total number of frames. Therefore, TF shows the
lost of facial point tracking either by false detection
or by facial point being out of the ROI.

Tables 3 and 4 show the comparison of the proposed
tracking algorithm performance with simple PF [9] and
AAM tracking [11] methods in different circular ROI
for our SPEED-Q dataset and MMI dataset [26]. P indi-
cates the location distribution of the tracked facial points.
Tables 3 and 4 show that P values for the proposedmethod
is higher than for the PF and AAM tracking method. It
means that the correct facial point detection rate of our
method is higher than the two other methods. Also, by
increasing the ROI size the facial points tracking precision
decreases. This is shown by the precision Equation (12)
where the TP and FP are counted only in frames where
the facial point is detected inside a particular ROI. There-
fore, TP has a fixed value for all ROIs and FP increases
with larger ROIs which decreases the precision accord-
ingly. The decreasing rate for P is less than for the AAM
and PF methods. It means that most of the facial point
candidates in our method are located near the true facial
point and thus with the increase of ROI size, the FP does
not increased very much. This is not the case for the AAM
and PF methods. TF values for the proposed method is
less than the two other methods. Indeed, our method has
less continuity during facial points tracking. TF values are
fixed by increasing of ROI size according to its definition
in Equation (13). Fout + FP is constant for all ROI circular
regions because the number Fout of facial point candidates
in smaller ROI contribute as FP in larger ROI size (i.e.,
as FP increases, Fout decreases but the sum remains con-
stant). N has also no changes with increase of ROI size.

N is equal to the sum of FP, Fout and TP, and TP is fixed
in all ROI sizes thus N is also fixed.
Results of Table 3 and 4 show that our method out-

performs the simple PF and AAM trackers. This can be
explained by appropriate combination of the PF tracker
and AAM facemodel. In ourmethod, facial points are bet-
ter localized using PF since strong corner candidates are
added to each facial point. Moreover, each facial point is
tracked individually but also groups of facial points are
organized and optimized to find the best face model simi-
lar to target face model using AAM tracker. Furthermore,
results of Tables 3 and 4 illustrate that some facial points
(e.g., C14, C15, C16, and C17) are generally better tracked
than some others (e.g., C1, C2, C6, and C7). This can be
explained by the facial point features and texture around
them which, for some of them, are more robust and dis-
criminant. Results in Table 4 are better than that of Table 3
because of the nature of video data (low contrast images
with NIR illumination in the SPEED-Q dataset rather than
color optical images in the MMI dataset).

AU detection performance
A PAL-SVM classifier is required to be trained for each
AU based on the particular key points distances used for
each of them.We have only used a part of theMMI dataset
for training the PAL-SVM classifiers and tested it on both
MMI and SPEED-Q datasets. The number of videos used
for training is AU4:80, AU12:70, AU25:100, AU26:100,
AU28:20. The program has been tested on cropped videos
from the SPEED-Q dataset where all types of facial AUs
are present. To evaluate the algorithm performance, two
metrics have been used which are listed below:

1. True Positive Rate (TPR) or sensitivity which is
defined as:

TPR = TP
TP + FN

(16)

where TP is the number of times an AU is correctly
detected in the video sequences. FN is the number of
times a video sequence contains an AU but the AU is
not detected.

2. False Positive Rate (FPR) which is defined as

FPR = FP
FP + TN

(17)

where FP is the number of times an AU is wrongly
detected in a video sequence that do not contain that
AU. TN is the number of times the detection of an
AU is rejected in video sequences that do not contain
an AU. The TN and FN values are the complement
of TP and FP values, respectively. In the ideal case,
TP and TN have the maximum values and FP and
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Table 3 Precision and tracking fragmentation of the different facial points trackingmethods for the SPEED-Q dataset

Rad MC TM C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 MC

10% P%

PF 49 51 71 70 72 48 52 72 70 69 62 65 63 67 69 63 66 67 63

AAM 53 52 74 72 70 55 54 67 69 71 65 66 63 71 68 64 67 70 65

HCPF-AAM 75 76 87 88 84 74 72 89 86 83 82 84 83 93 95 92 96 89 84

20% P%

PF 42 41 65 66 63 39 41 62 64 61 53 56 52 58 53 59 57 64 55

AAM 45 46 68 69 67 43 44 66 68 65 57 53 52 64 66 62 65 65 59

HCPF-AAM 72 70 86 84 84 71 70 85 82 80 81 82 80 91 92 92 93 87 82

50% P%

PF 36 37 60 62 59 35 36 61 59 60 48 50 46 52 50 49 51 57 50

AAM 40 39 62 66 62 37 38 61 58 55 52 51 50 59 58 52 55 60 53

HCPF-AAM 67 69 85 84 77 66 64 84 80 78 78 79 77 87 88 86 89 85 79

– TF%

PF 27 26 22 24 23 28 27 23 25 22 25 24 24 22 23 21 20 21 24

AAM 25 27 21 20 19 24 22 19 20 23 22 23 21 20 22 17 19 20 21

HCPF-AAM 14 12 8 9 9 13 11 8 7 9 10 12 11 8 6 7 6 6 9

Rad, radius circle size; TM, tracking method; MC, metric;MC, average of metric values for all facial points; C1 to C18 , facial points shown in Figure 2.
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Table 4 Precision and tracking fragmentation of the different facial points trackingmethods for theMMI dataset

Rad MC TM C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 MC

10% P%

PF 57 59 65 63 64 61 58 62 53 54 57 54 58 66 69 71 70 68 61

AAM 59 60 80 79 77 62 63 60 71 75 72 74 70 69 68 75 77 74 70

HCPF-AAM 81 82 92 93 91 83 80 90 89 91 87 88 91 93 95 96 95 93 89

20% P%

PF 52 50 54 53 56 49 51 55 56 54 52 53 50 59 57 57 58 60 54

AAM 55 57 73 75 74 59 56 58 67 68 66 69 63 62 65 70 69 71 65

HCPF-AAM 77 76 84 88 89 81 78 88 85 84 83 85 88 90 89 92 91 89 85

50% P%

PF 47 48 51 50 52 49 50 51 54 52 47 49 48 52 54 51 50 57 50

AAM 52 50 68 69 71 53 51 55 64 62 63 66 59 58 60 65 64 66 60

HCPF-AAM 75 74 79 80 78 79 76 84 83 81 80 82 84 89 88 90 87 86 81

– TF%

PF 24 23 21 19 19 20 22 25 25 20 21 22 23 19 20 16 18 19 20

AAM 23 24 19 18 18 22 21 19 19 20 21 19 18 19 18 16 19 17 19

HCPF-AAM 12 10 7 7 8 11 10 7 7 8 9 10 10 7 5 5 4 5 8

Rad, radius circle size; TM, tracking method; MC, metric;MC, average of metric values for all facial points; C1 to C18 , facial points shown in Figure 2.
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Table 5 Various metric values of particular AUs for the
SPEED-Q andMMI datasets

Dataset MC AU25 AU26 AU28 AU12 AU4 MC

SPEED-Q TP 77 79 52 95 13 63

FP 12 14 7 9 4 9

TN 81 76 92 95 43 77

FN 6 5 12 4 6 6

TPR% 92 94 81 95 68 91

FPR% 12 15 7 8 7 10

MMI TP 89 92 23 82 28 63

FP 9 7 4 6 3 6

TN 76 64 53 82 36 62

FN 6 5 5 8 10 7

TPR% 93 94 82 91 73 90

FPR% 10 9 7 6 7 8

MC, metric;MC, average of metric values for all facial points.

FN are zero. Since there is no ideal method with zero
FPR and zero false negative rates, our algorithm has
both false positive and false negative.

Table 5 shows the AU detection results of the proposed
method for five specific AUs in the SPEED-Q dataset and
MMI datasets. Also, Figure 7 illustrates the face neutral
mode for each AU used in this study. Ideally, each AU
should be detected with TPR = 100% and FPR = 0.
However TPR �= 100% because of some false detections.
Besides, the AU recognition error causes by the PAL-SVM
and rule-based classifications, most of the false alarms
result from facial points tracking error and/or incomplete
occurrence of an AU when it is combined with oth-
ers. Facial points tracking error causes wrong key points
distances and has direct effect on the false AUs detec-
tion process. AU occurs differently for each person with

Figure 8 ROC curves of different AUs detection for the SPEED-Q
dataset.

various intensities and time durations. In comparison,
AUs are better detected in the MMI dataset since less FPR
is obtained with almost equal TPR. This is because the
MMI dataset has pure AUs with high quality color images.
In the SPEED-Q dataset, some facial points such as eye-
brows interior and exterior corners are less visible since
images have low contrast. In addition, the corners for thick
eyebrows are difficult to be correctly localized since eye-
brows have uniform texture. It causes false tracking of
facial points and therefore false alarms in AUs detection.
This fact can be confirmed with ROC curves of the dif-
ferent AUs detection obtained for each SPEED-Q video
sequence (Figure 8) and by results in Table 5 showing that
the detection rate for AU4 is less than other AUs.

Figure 7 Various face modes versus neutral mode. (a–e) Neutral face images in SPEED-Q dataset; most common AUs detected in SPEED-Q
driving simulator by our algorithm: (f) AU4 and AU28, (g) AU25, (h) AU28, (i) AU26, (j) AU12.
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Conclusion
We presented a study on FE analysis based on AU detec-
tion of NIR videos in the context of a car driving simulator.
We proposed a real-time facial points tracking method
(HCPF-AAM) and a PAL-SVM rule-based AU detec-
tion technique. HCPF-AAM uses a modified PF tracking
method based on Harris corner samples which is opti-
mized and combined with an AAM technique. AAM
is an accurate tracking method but fails in the case of
fast movement or occlusions while PF can handle them.
Results showed that PF when applied on Harris cor-
ner based samples and optimized with AAM, provide
a powerful facial points tracking on very low contrast
images with high precision and low tracking fragmenta-
tion. Detection of the most relevant AUs in the driving
simulator context was done by a spatio-temporal anal-
ysis of related tracked facial points. A combination of
rule-based scheme with PAL-SVM was developed to clas-
sify the features calculated from the related tracked facial
points. Results assessed by a certified FACS coder have
shows that such a scheme leads to more than 91% of pre-
cision for the detection of the five most common AUs
relevant to the driving task for the SPEED-Q simulator
and 90% of precision in the MMI dataset. Future work
will consist of extending detection of additional AUs to
be combined with those detected AUs in order to build a
higher-level FE semantic analysis module.
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