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Abstract

A revolutionary feature of emerging media services over the Internet is their ability to account for human
perception during service delivery processes, which surely increases their popularity and incomes. In such a
situation, it is necessary to understand the users’ perception, what should obviously be done using standardized
subjective experiences. However, it is also important to develop artificial quality assessors that enable to
automatically quantify the perceived quality. This efficiently helps performing optimal network and service
management at the core and edges of the delivery systems. In our article, we explore the behavior rating of new
emerging artificial speech quality assessors of VoIP calls subject to moderately bursty packet loss processes. The
examined Speech Quality Assessment (SQA) algorithms are able to estimate speech quality of live VoIP calls at run-
time using control information extracted from header content of received packets. They are especially designed to
be sensitive to packet loss burstiness. The performance evaluation study is performed using a dedicated set-up
software-based SQA framework. It offers a specialized packet killer and includes the implementation of four SQA
algorithms. A speech quality database, which covers a wide range of bursty packet loss conditions, has been
created and then thoroughly analyzed. Our main findings are the following: (1) all examined automatic bursty-loss
aware speech quality assessors achieve a satisfactory correlation under upper (> 20%) and lower (< 10%) ranges of
packet loss processes; (2) they exhibit a clear weakness to assess speech quality under a moderated packet loss
process; (3) the accuracy of sequence-by-sequence basis of examined SQA algorithms should be addressed in
detail for further precision.
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Introduction
Early telecommunication networks were engineered in
such a way that enables offering a steady perceived qual-
ity of delivered services during a media session. This
goal is achieved through the reservation of resources
needed before launching services’ delivery processes.
Telecoms operators are impelled to select and install
suitable transmission mediums and equipment that
guarantee a standardized perceived quality for their cus-
tomers independently of their geographical location and
service delivery context. In such a situation, a client
request is solely admitted if there are sufficient
resources to accommodate it in the transport network.
However, the introduction of 2G cellular telecom sys-
tems that deliver services to moving customers induces
difficulties to conquer the challenge of keeping a time-

constant perceived quality. The principal factors entail-
ing perceived quality fluctuation are handovers among
access points and vulnerability of wireless channels to
unpredictable interferences and obstacles. It is worth to
note here that keeping a steady perceived quality over a
mobile telecom system is achievable, but the remedies
are unreasonably expensive and impracticable for tele-
com operators. In reality, mobile customers are more
tolerant and tend to accept fluctuations in the perceived
quality during a media session given their awareness
regarding mobile network features. The integration of
delay sensitive telecom services over the best effort IP
networks obviously emphasizes the fluctuation of per-
ceived quality of delivered services.
There are a wide range of vital network-related opera-

tions where the accurate assessment of time-varying
perceived quality is desirable and helpful [1,2]. A reliable
measure of perceived quality can be beneficial before,* Correspondence: sofiene.jelassi@inria.fr
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during, and after service delivery. The offline usages of
perceived quality measurement include network plan-
ning, optimization, and marketing. The online usages of
perceived quality measurement include networks and
services management, monitoring, and diagnosis. This
ultimately indicates that the use of perceived quality
help decision makers to select choices that maximize
profitability while maintaining an optimal user’s satisfac-
tion. Under the scope of this work, we explore the
accurate estimation of perceived listening quality of
PC-to-PC and PC-to-PSTN phone calls, denoted often
as VoIP (Voice over IP), that currently live in their
blossoming period.
A wide range of factors can affect the perceived qual-

ity of VoIP services, such as coding scheme, packet loss,
noises, network delay and its variation, echoes, and
handovers. Recent studies reveal that packet loss consti-
tutes the principal source of perceived quality degrada-
tion of VoIP calls [1,3]. The negative effect of missing
packets is more disturbing especially when packets are
removed in bursts, i.e., multiple media units are conse-
cutively dropped from the original media stream. As a
rule of thumb, the higher the loss ‘burstiness degree’,
the greater the quality degradation. Unlike independent
packet losses, missing media chunks under bursty packet
loss processes exhibit high temporal dependency. This
means that the probability of missing a given packet is
much higher when the previous ones have been
dropped. Figure 1a presents a packet loss pattern with
independent packet losses. As we can observe, isolated
and temporally-independent loss instancesa, denoted
sometimes as loss islands, are introduced in the ren-
dered stream. Figure 1b presents packet loss patterns
following heavy bursty packet loss processes. Here, loss
instances are temporally closed and may comprise mul-
tiple packets. A particular scenario of bursty packet loss
processes is when isolated missing chunks are dropped
with high frequency (see Figure 1c). This is referred to
as sparse bursty packet losses. From users’ perspective,
each packet loss pattern generates a distinct perceived

quality [3]. Therefore, the accurate measure of perceived
quality needs to consider the prevailing packet loss
pattern.
Basically, rather than the packet loss pattern itself,

theoretical and representative models that capture the
relevant features of packet loss processes are used for
the estimation of the perceived quality for efficiency
purposes. The characterization parameters are extracted
from packet loss models that are calibrated at run-time
using efficient packet-loss driven counting algorithms.
Next, the effect of prevailing packet loss patterns can be
judged using parametric assessment quality models built
a priori. Typically, temporally-dependent packet loss
processes are modeled using a simple, yet accurate 2-
state discrete-time Markov chain, referred to as the Gil-
bert model, which has been well studied in the literature
[3]. In a few words, Gilbert model has NO-LOSS and
LOSS states that, respectively, represent successful and
failing packet delivery operation. The Gilbert model is
wholly characterized by the Packet Loss Ratio (PLR) and
the Mean Burst Loss Size (MBLS) [4]. Typically, the
higher the value of MBLS, the greater the burstiness of
the loss process. For the sake of a more subtle charac-
terization of packet loss processes, Clark [5] proposed a
dedicated packet loss model that discriminates between
isolated and bursty loss instances. The author defined
adequate rules to classify loss instances either in isolated
or bursty state and developed an efficient packet loss
driven algorithm that enables to calibrate his enriched
model at run-time. ‘Appendix’ section gives a survey
about models of packet loss processes over VoIP
networks.
This article explores the effectiveness of four single-

ended bursty-loss aware Speech Quality Assessment
(SQA) algorithms to evaluate the perceived quality of
VoIP calls subject to distinct and limited bursty packet
loss processes. To do that, a dedicated SQA framework
has been set-up and a suitable SQA database has been
built. It is crucial to note here that the perceived quality
is automatically estimated using the double-sided signal-
layer speech quality assessor defined in the ITU-T Rec.
P.862, denoted as Perceived Evaluation of Speech
Quality (PESQ), recognized by its accuracy to estimate
subjective scores under a wide range of circumstances.
The limitations of ITU-T PESQ have been considered in
the design phase of the conducted empirical experi-
ences, reducing its known defective behavior under ‘gen-
eralized’ bursty-packet loss processes (see below). To
enhance measures’ faithfulness, data filtering procedures
have been applied on gathered raw ITU-T PESQ scores
that involve outliers’ detection and removal, coupled
with the computation of the average scores among re-
iterated experiences of each considered condition. More-
over, our study investigates the perceived effect of

Lost packet 

Received packet 

(c) Sparse bursty packet loss pattern 

(b) Heavy bursty packet loss pattern 

(a) Independent packet loss pattern 

Inter-loss duration 

Loss duration

Figure 1 Examples of independent, bursty, and sparse bursty
packet losses. (a) Independent packet loss pattern. (b) Heavy
bursty packet loss pattern. (c) Sparse bursty packet loss pattern.

Jelassi and Rubino EURASIP Journal on Image and Video Processing 2011, 2011:9
http://jivp.eurasipjournals.com/content/2011/1/9

Page 2 of 15



Comfort Noise (CN) and frequency bandwidth change-
over required for speech material preparation. A statisti-
cal analysis has been conducted that enables drawing
some conclusions about the rating behavior of existing
bursty-loss aware SQA algorithms. As such, a set of
potential clues for a better and consistent judgment
accuracy of VoIP calls at run-time are identified and
summarized.
The following sections are organized as follows. ‘A

review of SQA algorithms sensitive to packet loss bursti-
ness’ section reviews the four examined SQA algorithms
that subsume packet loss burstiness. ‘Set-up SQA frame-
work and measurement strategy’ section presents our
set-up speech quality framework and measurement
strategy. ‘Speech material preparation and configuration
parameters selection’ section describes and discusses
speech material preparation processes. A performance
evaluation analysis is presented in ‘Performance analysis
of bursty-loss aware SQA algorithms’ section. Conclud-
ing remarks and perspectives are given in ‘Concluding
remarks and perspectives’ section.

A review of SQA algorithms sensitive to packet
loss burstiness
The next sections introduce four SQA algorithms that
will be thoroughly evaluated later. The shared feature of
examined artificial speech quality assessors resides in
their sensitivity to the different degrees of packet loss
burstiness sustained by a VoIP packet stream.

VQmon: Voice Quality monitoring
VQmon is an early SQA algorithm intended to evaluate
VoIP calls delivered over communication channels offer-
ing a time-varying quality [5]. Precisely, the delivery
channel status alternates between Good and Bad states
that refer to periods of time where packet loss ratio is
low and high, respectively. In such a context, it is
obvious to differentiate between intermediate and over-
all rating factors, denoted, respectively, hereafter as RI

and R, that vary between 0 (Poor Quality) and 100 (Toll
Quality). Specifically, the rating factor RI quantifies the
perceived quality at the end of an independent short
interval of duration 2 to 5 s. The rating factor R quanti-
fies the perceived quality at the end of a presented
speech sequence. Moreover, earlier listening subjective
tests of time-varying speech quality revealed that
improvement (resp. degradation) of speech quality upon
a transition from high to low (resp. low to high) loss
periods is detected by subjects with some delay [6]. As
such, immediate switching between plateaus RI values
was found unnatural. This observation leads to define
the notion of the perceptual instantaneous rating factor,
RP, which denotes the satisfaction degree at an arbitrary
instant during the presentation. Figure 2 illustrates the

evolution of RI (dashed line) and RP (solid line) as
function of time and channel state during a presented
speech sequence.
VQmon models the evolution of the perceptual

instantaneous rating factor, Rp, at the transition from
high to low loss periods using an exponential decay,
where the rapidity of the descent is calibrated according
to subjective results [6]. Formally speaking, VQmon
uses functions (1) and (2) to capture users’ rating
behavior at the transition from Good to Bad state, and
conversely.

RP (x) = RI (tk) + [RP (tk - 1) − RI (tk)] · e−(x−tk - 1)/τ1 , (1)

RP
(
y
)
= RI (tk+1) − [RI (tk+1) − RP (tk)] · e−(y−tk)/τ2 , (2)

where ti is the switching instant from (i-1)th to ith
segment, RI(ti) refers to the intermediate rating factor
estimated during the interval [ti, ti+1], RP(ti) refers to
the perceptual instantaneous rating factor estimated at
the instant ti. The time variable x refers to the prevail-
ing instant in the speech presentation. The time con-
stants τ1 and τ2 are used to calibrate the rapidity of
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the exponential decay at the transition from Good to
Bad state, and converselyb. In the scope of VQmon,
the value of RI is automatically estimated based on a
directory of empirical subjective results that holds a
mapping between the average PLR values and subjec-
tive rating factors.
At the end of a listened sequence, VQmon extracts

packet loss characterization metrics, e.g., interval
durations and their corresponding Good/Bad status and
features, from a 4-state chain calibrated at run-time (see
‘Appendix’ section for further details). These control
data are used to calculate the overall rating factor as fol-
lows, the built perceptual instantaneous rating function
RP over a given Good and the next adjacent Bad seg-
ment is integrated over time. Then, the obtained value
is divided by the interval duration. The resulting rating
factor is referred to as average rating factor, Ri(av),
where the index i represents the number of ith good/
bad segment (see Figure 2).
The limited subjective tests conducted by Clark

showed that most of the time VQmon predicts with
acceptable accuracy subjective rating of time-varying
speech quality. In our opinion, the key shortcoming
of VQmon resides in its incapability to accurately
estimate RI value under bursty packet loss behavior.
In fact, VQmon quantifies the effect of a bursty
packet loss process solely using PLR value. As such,
there is no subtle characterization and specification
of the burstiness of the packet loss processes. This
could lead to a wrong judgment of perceived quality
because it has been subjectively observed that two
distinct bursty packet loss patterns with identical PLR
may lead to an obvious difference in the perceived
quality [7]. Moreover, the rapidity of the exponential
decay/growing is hold static independently of the
duration of preceding Good or Bad state and the
magnitude variation of previous and current packet
loss ratios.

E-Model
The ITU-T defines in Rec. G.107 a computational
model for use in planning of telephone networks,
known as E-Model [8]. Briefly, the E-Model combines a
set of characterization metrics of the transport system
and provides as output a rating factor, R, that quantifies
the users’ satisfaction. The ultimate objective of E-
Model consists of giving a synthesized overview regard-
ing the perceived quality delivered over a given telecom
infrastructure. It has been subsequently extended to
consider packet-based telephone networks and to oper-
ate as a single-ended speech quality assessor [9]. The
original release of the E-Model solely considers the
negative perceived effect of independently removed
voice packets. It has been recently evolved to account
for bursty packet loss processes characterized using two
newly defined parameters [8]. The first metric, denoted
as BurstR, is defined as the ratio between the undergone
average number of successive missing packets and the
expected average number of successive missing packets
under independent packet lossesc. The second metric,
denoted as Bpl, is a constant defined to consider the
robustness of a given couple of CODEC and Packet
Loss Concealment (PLC) algorithm to deal with bursty
packet loss processes. The value of Bpl is derived a priori
for each CODEC and PLC algorithm using subjective
tests and a comprehensive regression analysis [3].
Both BurstR and Bpl metrics are used in the calcula-

tion of the effective equipment impairment factor, Ie, eff,
that basically quantifies distortions caused by the coding
scheme and the packet loss processes. The diagram
given in Figure 3 summarizes the methodology followed
to compute the value of Ie, eff under a given configura-
tion. As we can see, a real coefficient 0 ≤ W ≤ 1 is cal-
culated as a function of the variables PLR and BurstR,
and the constant Bpl (see Figure 3). The distortions
caused by packet losses under a given coding scheme
are captured by an impairment factor denoted as Ie, loss.

Distortions due to 
CODEC 

Distortions due 
bursty packet loss 

CODEC 

PLR 

Bpl

plB
BurstR
PLR

PLRW

Ie,eff

Inherent listening 
quality: 95 - Ie, codec

Ie, codec

Ie, loss

Ie, codec

BurstR 
Figure 3 The measurement of quality degradations caused by coding scheme and bursty packet loss processes.
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It is obtained through the multiplication of the inherent
achievable quality, (95 - Ie, codec), and W. Finally, the
value of Ie, eff is obtained by adding distortions caused
by the coding scheme under no-loss condition, Ie, codec,
and those caused by packet losses, Ie, loss.
For the sake of planning, one can assume that sus-

tained bursty packet loss processes exactly follow a Gil-
bert model that is wholly characterized using the PLR
and CLPd. In such a case, the value of MBLS required
to calculate BurstR is equal to 1/(1 - CLP). The curves
plotted in Figure 4a show that bursty packet loss pro-
cesses (i.e., where BurstR > 1) produce higher quality
degradations than with independent losses (BurstR = 1)
for an identical PLR. This is clearly observed especially
for PLR greater than 4%. Figure 4b shows the quality
degradation under different packet loss burstiness condi-
tions. Basically, for a given PLR, the higher the packet
loss burstiness, the greater the observed quality
degradation.

The previously defined metrics for the characterization
of packet loss burstiness explicitly (resp. implicitly) con-
sider the nominal average length of sustained loss
instances (resp. inter-loss durations). This could raise a
biased quality rating factor because the subtle details of
packet loss patterns are definitely ignored. The next pre-
sented speech quality assessors will consider this con-
cern in a more careful fashion.

Genome
As outlined before, the previously described speech
quality assessors capture the burstiness of packet loss
processes using global characterization parameters.
Hence, the concrete packet loss pattern is poorly con-
sidered in the estimation of the listening perceived
quality. To overcome this shortage, Roychoudhuri and
Al-Shaer [10] proposed a subtle grained speech quality
assessor, denoted as Genome, that more accurately
considers the pattern of dropped voice packets. To do
that, a set of ‘base’ quality estimate models which
quantify the perceived quality entailed by the applica-
tion of a periodic packet loss processese were devel-
oped, following a simple logarithmic regression
analysis. The base quality estimate models are parame-
terized using the inter-loss gap and burst loss sizes.
Specifically, for a packet loss run equal to 1, 2, 3, or 4
packets, a dedicated base quality estimate model,
which has as input parameters the inter-loss gap size,
has been built.
At run-time, Genome probes and records the effective

experienced inter-loss gap and the following burst loss
size. At the end of a monitoring period, the overall lis-
tening quality is computed as the weighted average of
the ‘base’ quality score of each pair, where the weights
are calculated as a function of the inter-loss gap dura-
tions (see Figure 5). Notice that the combination for-
mula of Genome implies that the larger the inter-loss
gap size of a given pair, the greater the influence on the
overall perceived quality. Moreover, a high frequency of
a given pair entails more impact on the overall per-
ceived quality. These statistical properties of Genome
can result in a biased behavior rating. Moreover, the
fine granularity of Genome considerably disables its abil-
ity to consider the context in which a given loss
instance happens. This perhaps explains why the
authors confined the performance evaluation of Genome
to independently dropped speech packets.

Q-Model
It is recognized that existing quality models are suffi-
ciently accurate to estimate listening perceived quality
of speech sequences subject to independent packet
losses using PLR metric. This fact was the stimulus for
the development of the speech quality assessor Q-Model
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reported in [11]. In such a case, the concern consists of
finding the optimal PLR value of the independent packet
losses that generates the equivalent perceived quality of
a sustained bursty packet loss pattern. The curves
plotted in Figure 6 illustrate the logic behind the equiva-
lent perceived quality. The dashed line refers to quality
degradation caused by independent packet losses. The
other two solid lines represent quality degradation
under two different bursty packet loss processes. As
expected, independent packet losses produce the smal-
lest degradation of perceived quality. The example given
in Figure 6 shows that for a given PLR value, PM, differ-
ent levels of quality degradation are observed according
to the burstiness of the packet loss processes. For a
measured PLR value equal to PM, the independent
packet losses processes that generate the equivalent per-
ceived quality of first and second bursty packet loss pro-
cesses are characterized by PLR values equal to PE1 and
PE2, respectively.
The Q-Model uses the following equation to deter-

mine the PLR of independent packet losses that

produces the equivalent perceived quality of an observed
bursty packet loss pattern:

PLRE = PLRM +
N−1∑
n=0

αnBn, (3)

where, PLRM refers to the measured packet loss ratio,
N is the total number of packets, and an is the weight-
ing coefficient that has been derived following empirical
trialsf [11]. The variable Bn quantifies the local packet
loss burstiness that is only calculated if the nth packet is
missing, otherwise it is set to 0. The value of Bn is
obtained according to the prevailing distances that sepa-
rate the current missing packet, n, and previous ones
along a monitoring windowg with a fixed length equal
to Nmax. Basically, the larger the distance between suc-
cessive missing packets, the lower the value of Bn. After
an empirical study, the authors proposed the following
equations to compute Bn:

Bn,ed =
Nmax∑
i=1

Pn−i

2i−1 and Bn,ld =
Nmax∑
i=1

Pn−i

i
, (4)

where Bn, ed (resp. Bn, ld) refers to the exponential
(resp. linear) dependency measurement strategy. The
value of Bn, ed (resp. Bn, ld) geometrically (resp. linearly)
decreases as the distance between two missing packets
increases.

Set-up SQA framework and measurement strategy
The diagram given in Figure 7 illustrates the main
building blocks of our set-up SQA framework. In short,
a lossless stream of voice packets is created for each
treated speech sequence following a specific encoding
scheme and packetization strategy. The lossless packet
stream goes through a packet killer that removes pack-
ets following a Gilbert model calibrated using PLR and

Pair 1 
(3, 1) 

Pair 2 
(1, 2) 

Pair 3 
(8, 2)

Experienced pattern of
packet loss process  

3,1MOS1
P

i
i

i
ii

i
Pi

10G

B,GMOS10G
MOS

Legend

Gi: Gap duration of ith pair 

Bi: Burst duration of ith pair 

ii
i
P B,GMOS : The MOS score attributed to ith

pair, that refers to the perceived quality following

the periodic application of (Gi, Bi) pattern 

1,2MOS2
P 8,2MOS3

P

. . .

Lost packet Received packet

Figure 5 SQA methodology followed by Genome.

0

10

20

30

40

50

60

0 4 8 12 16 20

D
eg

ra
da

tio
ns

 d
ue

 to
 c

od
in

g 
sc

he
m

e 
an

d 
pa

ck
et

 lo
ss

PLR[%]

Bursty Packet Loss Processes (1)
Bursty Packet Loss Processes (2)
Independent Packet Loss Processes

CODEC = G.711

PM PE2PE1

Figure 6 Equivalence between independent and bursty packet
loss processes in term of quality degradation.

Jelassi and Rubino EURASIP Journal on Image and Video Processing 2011, 2011:9
http://jivp.eurasipjournals.com/content/2011/1/9

Page 6 of 15



MBLS values (see Figure 7). A degraded speech
sequence is created according to the dictated pattern of
missing packets. The lossless speech sequence is com-
pared at the signal level to the lossy one using the SQA
algorithm defined in ITU-T Rec. P.862, a.k.a PESQ [12].
PESQ is well-recognized by its good correlation and
accuracy to estimate subjective LQ (Listening Quality)
scores [12]. Note that this methodology has been advo-
cated and followed by several researchers to avoid time,
space, and budget costly subjective tests [1]. The quality
scores calculated by PESQ are given on the MOS scale,
i.e., between 1 (Poor Quality) and 5 (Excellent). How-
ever, apart Genome, the remaining examined SQA algo-
rithms produce quality scores on the R scale. That is
why, PESQ scores are mapped to the corresponding R
factor using a standardized function given in ITU-T
Rec. G.108 (see Figure 7). As we can note in Figure 7,
we use the term ‘measured’ scores to refer to values cal-
culated using PESQ algorithm and ‘estimated’ scores to
refer to values returned by examined speech quality
assessors. This terminology has been adopted since
PESQ algorithm subtly models the processing behavior
of the human auditory system in temporal and fre-
quency domains. As such, PESQ scores can be seen as
virtually measured scores that replace to a certain extent
subjectively measured values.
It is worth to note here that typical VoIP applications

install packet loss protection mechanisms at application
and/or CODEC levels such as Forward Error Correction
(FEC) or interleaving, in order to recover dropped voice
packets in the network. Moreover, an adaptive de-jitter-
ing buffer is usually deployed that enables smartly redu-
cing losses caused by late arrivals. Both, packet loss
recovery schemes and de-jittering buffer policies are
implicitly considered in our context because the consid-
ered packet loss pattern is monitored at the input of the

speech decoder which should receive speech frames at a
fixed frequency. Note that the perceived effect of many
recovery schemes and de-jittering buffer dynamics has
been studied in literature [13,14].
The PESQ algorithm has been basically designed to

evaluate speech quality over telecom networks. In such
a circumstance, the deletion of large speech sections
(> 80 ms) is seldom observed. As such, PESQ algorithm
will produce chaotic scores for degraded speech
sequences subject to large loss instances. However,
PESQ is sufficiently accurate to assess bursty sparse
packet loss patterns and distorted speech sequences sub-
ject to loss instances with duration less than 80 ms [15].
Armed with this knowledge, our measurement space has
been limited to MBLS and PLR values, respectively,
equal to 80 ms and 30% (see Table 1). Moreover, we
ensure that every loss instance is small than 80 ms. To
fairly cover the whole packet loss space, the prevailing
PLR and MBLS values of a generated packet loss pattern
are checked. As a result, a synthesized trace is solely
retained and considered when the deviation between
specified and actual PLR and MBLS values are smaller
than a given threshold.
The measurement process is conducted using speech

material that includes 32 standard 8 s-speech sequences,
spoken by 16 male and 16 female English speakers.

Original voice 
sequence 

Degraded voice 
sequence 

ITU-T Rec. 
P.862 

Statistical analysis Packet loss 
simulator 

Encoding and 
Packetization  

De-packetization 
and decodingPLR 

Flow of voice 
packets 

MOS2R 
(MOS-LQO) 

Measured R 

VQmon 

Q-Model 

E-Model

Genome 

Estimated R 

Seed 

MBLS

Figure 7 Diagram of developed SQA framework for the evaluation of VoIP calls.

Table 1 Empirical conditions for packet loss behavior
using Gilbert model.

Parameters Conditions Instances

CODEC G.729 1

Packet Loss Ratio (PLR) 3, 5, 10, 12, 15, 20, 25, 30% 8

Mean Burst Loss Size (MBLS) 1, 2, 3, 4 4

Speech sequences 16 male, 16 female 32

Total number of combinations 1 × 8 × 4 × 32 1024
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Such duration induces a maximal number of created 20
ms-voice packets equal to 400. Typically, such cardinal-
ity is insufficient to produce packet loss patterns with
PLR and MBLS values close to theoretical values of PLR
and MBLS set by users (see ‘Appendix’ section for
further details). Moreover, unsent silence parts of a
given speech sequence alter the initially generated
packet loss pattern. This explains why we calculate and
store the actual PLR and MBLS values for each couple
of packet loss pattern and speech sequence (similarly as
what it is done in [16] for video quality assessment).
Table 1 summarizes conducted experiences, where a
total number of 1024 scores have been produced. As
indicated in Table 1, we evaluate the performance of
each SQA algorithm using the ITU-T G.729 coding
scheme that is the unique speech CODEC covered by
all examined speech quality assessors. It worth to note
that our primary concerns is to examine the behavior
and performance of bursty aware speech quality asses-
sors under common configurations. In the scope of this
work, the performance evaluation and improvement of
speech CODECs under bursty packet loss processes are
secondary concerns. A personalized extension of consid-
ered speech quality assessors to cover a large set of
shared speech CODECs will be investigated in our
future work using subjective tests.

Speech material preparation and configuration
parameters selection
A preparatory processing stage of speech material is
necessary for a faithful assessment of speech quality.
Indeed, manipulated raw speech sequence must meet a
set of prerequisites for a consistent use of the ITU-T
G.729 speech CODEC and the SQA algorithm defined
in ITU-T Rec. P.862. In our case, raw speech material
used to conduct our experiences was taken from the
ITU-T P.Sup23 coded speech database [17]. The original
sampling rate of considered speech sequences is equal to
16 kHz, where each sample is encoded using 16 bits.
However, the specification of ITU-T G.729 speech
CODEC indicated that input speech signals should be

coded following linear PCM format characterized by a
sampling rate and sample precision, respectively, equal
to 8 kHz and 16 bits. As such, a down-sampling algo-
rithm should be executed before processing speech sig-
nals by ITU-T G.729 speech CODEC. To do that, we
resort to the open source and widely used software Sox
(SOund eXchange) that comprises three distinguished
resampling technology, a.k.a. frequency bandwidth chan-
geovers, denoted as polyphase, resample, and rabbit
strategies.
A dedicated SQA framework for the selection of suita-

ble resampling technology has been set-up (see Figure
8). As we can observe, speech scores are artificially
obtained using the full-reference ITU-T PESQ algorithm
that can solely operate on speech signals sampled at 8
or 16 kHz. Note that the original and distorted speech
sequences should be sampled at an equal frequency, i.e.,
either 8 or 16 kHz. Actually, the ITU-T PESQ algorithm
is unable to score degraded speech sequences that
incorporate fragments sampled at an unequal frequency.
That is why each down-sampling operation should be
followed by an up-sampling one. The features of consid-
ered speech material urge using the WB-PESQ algo-
rithm that has been conceived for the evaluation of
wideband coding schemes.
In Figure 8, we see that there is a possibility to evalu-

ate multiple down- and up-sampling iterations using
distinguished resampling technologies. Moreover, speech
sequences are not coded to filter-out the effect of cod-
ing/decoding schemes. Actually, additional factors can
interfere with resampling technology, such as filtering
schemes, echo cancellers, de-noising algorithms, encod-
ing schemes, and voice activity detectors. Moreover,
configuration parameters of each re-sampling technol-
ogy, such as window features, number of samples, and
cutoff frequency influence its behavior.
A statistical analysis is applied to extract the perceived

effect of resampling technologies. Figure 9 gives some
illustrative results about the perceived effect caused by
the resampling technology using our set-up speech qual-
ity framework. Note that ITU-T WB-PESQ provides as a
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Figure 8 Framework for the evaluation of re-sampling technologies.
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score a static value equal to 4.46 on MOS scale, when
the two input speech signals are identical. Figure 9a
illustrates the effect of one-iteration of up- and down-
sampling iterations using polyphase and resample tech-
nologies on the treated speech sequences. As we can
see, sampling technologies have distinct perceived effects
following the speech content. The quality-degradation
caused by the resampling technology is higher than the
polyphase one. The average deviation of MOS-LQOWB

between Poly-phase and Resample is equal to 0.1. As we
can note, the quality-degradation is less perceptible for
female sequences that are characterized by a high fre-
quency. As a rule of thumb, the higher the final score,
the smaller the quality deviation observed between
examined resampling technologies. It seems that

resampling technologies are less disturbing for speech
waves characterized by a high frequency. Further tests
indicate that the MOS-LQOWB scores are insensitive to
the number of up- and down-iterations in a noiseless
environment. Such an observation suggests that treated
resampling technologies are roughly idempotent. In
other words, the quality-degradation happens by resam-
pling the original speech signals is null for already
resampled speech signals.
The histograms given in Figure 9b present the average

MOS-LQOWB scores produced by each treated re-sam-
pling technology. As we can note, polyphase outper-
forms candidates resampling technologies. This explains
why the polyphase resampling technology has been used
to down-sample our original speech material.
Apart the perceived effect of resampling technology, it

is necessary to consider the VAD (Voice Activity Detec-
tor) algorithm included in ITU-T G.729 CODECh to
discriminate between active and silence speech wave
sections [18]. This allows holding packet delivery pro-
cesses during silence periods, which is highly recom-
mended for the sake of utilization efficiency of network
resources. The shortcoming of such a procedure con-
sists of generating a mute-like signal between successive
active periods in a way that could embarrass talker
party. To generate more human-relaxing silence, ITU-T
G.729 speech CODEC has been equipped with a CN
capability. This option enables to periodically send at
low rate Silence Insertion Descriptor (SID) packets that
contain description about the ambient noise surround-
ing the listener party. As a result, the receiver will be
able to generate more human-relaxing background
noise.
For the sake of better quantification of perceived effect

of CN mechanism, we conducted a preliminary series of
experiences where eight reference speech sequences are
distorted using a packet loss pattern generated following
a Bernoulli distribution under activated and deactivated
CN functionality. The average MOS-LQO scores of
degraded speech sequences under enabled and disabled
SID option are calculated for each loss condition. Under
enabled SID option, loss instances that drop SID packets
are ignored to emphasize their perceptual effect. The
obtained results are plotted in Figure 10. As we can see,
the overall LQ is basically insensitive to CN mechanism.
In fact, considered speech sequences are gathered in a
noiseless environment. This results in a little effect of
CN mechanism on listening perceived quality. In reality,
the CN mechanism should be explored in the context of
considerable and time-varying background noises. This
would allow developing smarter CN mechanisms that
could be enabled/disabled according to prevailing back-
ground noises and packet loss processes. This will be
considered in further detail in our future work.
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Performance analysis of bursty-loss aware SQA
algorithms
In next sections, we start by describing calibrated para-
metric speech quality models that will subsequently
enable an unbiased evaluation analysis. Next, we define
our judgment metrics and discuss our findings. Notice
that we assign the default values for various constants
utilized by each speech quality assessor. To reach
unbiased and consistent findings, the score yield by the
explored SQA algorithms should be properly calibrated
to satisfy the rating assumptions of PESQ algorithm. In
fact, the designers of the PESQ algorithm calibrate its
output to lay between that 1.5 to 4.5. That is why, we
utilize existing quality models that has been derived
using PESQ, rather than earlier subjective results [8,19].
Precisely, for the VQmon and Q-Model assessment
tools, we use the quality model given in (5) to estimate
distortions due to independent packet losses. This
model that is dedicated to the ITU-T G.729 speech
CODEC has been obtained following a logarithmic
regression analysis of PESQ scores under a wide range
of PLR conditions [19]. The equation is

Ie = 22.45 + 21.14× ln (1 + 12.73× PLR) . (5)

As we can see from (5), under no loss condition, the
utilized Ie model induces a distortion amount equal to
22.45 rather than 11, which has been suggested based
on earlier subjective-based testing [8]. Moreover, follow-
ing ITU-T Rec. G.107, the values of Ie should lay in the
interval [0...40]. However, the Ie model given in (5) can
generate distortion measures as high as 73 for a PLR
greater than 30%. Following our preliminary tests, this
value may be considered as the upper bound that can
be accurately obtained using PESQ algorithm. As such,
for PLR values higher than 30% a value equal to 73 is
assigned to Ie. For a fair comparison, we set, respec-
tively, the lower and upper bound of the E-Model to

22.45 (no loss condition) and 73 (PLR higher than 30%).
Further calibration is needless for Genome since it has
been initially developed based on PESQ.
The metrics used to judge the performance of exam-

ined SQA algorithms are Pearson correlation coefficient
and root mean squared error (RMSE) between measured
and estimated rating factors, denoted hereafter respec-
tively as r and Δ. The value of Δ is obtained using the
following expression:

� =

√√√√ 1
N

N∑
i=1

(
Ri
M − Ri

E

)2
, (6)

where, RM and RE refer, respectively, to measured and
estimated rating factors and N is the number of mea-
sures. The conducted measurement study evaluates rat-
ing performance according to the following two
perspectives:

- Sequence-by-sequence methodology: It consists of
directly computing r and Δ values using the mea-
sured and correspondent estimated scores. This
strategy enables some understanding of the sensitiv-
ity of a given SQA algorithm with respect to a speci-
fic bursty packet loss pattern and the speech content
of a given sequence.
- Cluster-by-cluster methodology: It consists in creat-
ing a set of groups of measured scores according to
shared features, such as PLR, MBLS, active and
silence durations. For each measure and examined
SQA algorithm, the estimated score is inserted into
the corresponding group of the measured cluster.
Finally, we calculate the average of measured and
estimated scores of each produced cluster. The
values of r and Δ are obtained by processing aver-
aged scores of clusters. This strategy enables to fil-
ter-out deviations caused by speech content and
specific packet loss distributions that may be
required to satisfy specific needs of some applica-
tions and service providers, especially for planning
purposes.

In the following, E-Model(1) and E-Model(2) denote,
respectively, the E-Model designed to consider indepen-
dently and bursty dropped packets [3]. Q-Model(1) and
Q-Model(2) refer, respectively, to the Q-Model where
local burstiness increases linearly and exponentially, as a
function of inter-loss gap (see ‘Genome’ section) [11].
Histograms given in Figure 11a summarize the

obtained value of r using sequence-by-sequence and
cluster-by-cluster measurement strategies. Each cluster
comprises scores obtained for a given measured PLR
range independently of the MBLS values and speech
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contents. The width range of PLR values covered by
each cluster is equal to 5%. As we can see in Figure 11a,
all SQA nearly achieve a perfect correlation coefficient
under cluster-by-cluster measurement strategy. The cor-
relation coefficients are slightly inferior using a
sequence-by-sequence measurement strategy. This
observation is somehow expected, as a significant
increase of PLR values induces a considerable decrease
of MOS scores, and conversely. All existing SQA algo-
rithms are designed using monotonic quality models as
functions of PLR values, which explains the observed
good correlation coefficients. This feature is more
emphasized for the cluster-by-cluster measurement

methodology, since it eliminates unusual deviations
caused by a specific bursty packet loss pattern and
speech content. As we can see, Q-Model(1) and Q-
Model(2) slightly outperform other SQA approaches.
Moreover, we see that VQmon achieves the minimum
correlation coefficient following our measurements.
Histograms given in Figure 11b summarize the

obtained values of Δ using sequence-by-sequence and
cluster-by-cluster measurement strategies. As we can
see, the examined SQA algorithms induce significant
deviation between measured and estimated scores. E-
Model(1) induces the maximal value of mean deviation,
which is expected since it has been designed for ran-
domly removed packets. Q-Model(2) achieves the mini-
mum average deviation. The accuracy of E-Model(2) is
better than E-Model(1)’s since it subsumes more prop-
erly packet loss burstiness. As we can note, the mini-
mum value of Δ is roughly equal to 6, which in our
opinion is still pretty important. This constitutes the
principal weakness and limitation of the treated SQA,
which should be comprehensively tackled in future
work.
For a deeper understanding of the behavior of the

examined four SQA algorithms, in Figure 12 we provide
scatter plots that visually illustrate the correlation and
accuracy of estimated scores. As we can see, Q-Model
(1) and Q-Model(2) exhibit superior behavior rating
than other SQA algorithms (see ‘◊’ symbols located
more closely to the y = x line). Moreover, we note the
presence of certain outliers that significantly deviate
from measured scores, which are more significant for
VQmon. Furthermore, we can see that E-Model(1),
Genome, VQmon, and Q-Model(1) tend to overestimate
the measured scores. However, the trend of E-Model(2)
is to over- (resp. under-) estimate measured scores
under small (resp. high) PLR values. This signifies that
an additional calibration process can surely improve the
output accuracy of SQA algorithms. For the sake of
explanation, a first-order linear regression process has
been applied on the obtained raw dataset. Table 2 illus-
trates that the calibration process notably improves the
estimation accuracy (< 6) while keeping exactly the
same correlation coefficient. The transformed score of
the ith measure is given by:

Ri
T = aRi

R + b, (7)

where a and b are the fitting coefficients that mini-
mize the RMSE. RT and RR stand for transformed and
raw rating factors, respectively. As we can see, Q-Model
(1) and Q-Model(2) slightly outperform other competing
strategies. The transformed (improved) models can be
utilized for a better estimation of measured rating
factor.
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The performance metrics previously calculated con-
sider all measurements at once, which may lead to
ignore/hide some specific features of the examined
SQA algorithms. For the sake of enlightenment, we
calculate the values of r and Δ using striped dataset
scores following the value of PLR. Precisely, each data-
set strip comprises scores that have been observed for
a PLR range equal to 10%. Figure 13 illustrates the
values of r and Δ for each dataset strip. As we can
see, bursty-aware SQA algorithms exhibit an accepta-
ble correlation under small (< 10%) and high (> 20%)
packet loss ratios. However, there is a clear trouble to
estimate scores under moderated PLR values (10 to
20%). From Figure 13b, we see that the values of Δ are
quite large under all conditions. Moreover, as

expected, E-Model(1) achieves an acceptable correla-
tion under light loss process, where voice packets are
independently/sparsely deleted. However, the efficiency
of E-Model(1) sharply decreases as packet loss severity
increases. E-Model (2), Q-Model(1), and Q-Model(2),
which are the bursty aware varieties of E-Model(1),
provide more accurate and correlated scores. These
results revealed that Q-Model(2) achieves best trade-
off between correlation and accuracy.
Besides the limited previously explored space, we

conducted with precaution some experiences in order
to evaluate the performance of bursty-aware SQA
algorithms over a wide range of conditions. The
values of PLR (resp. MBLS) have been varied from 5%
(resp. 1 packet) to 40% (resp. 10 packets). A total
number of combinations equal to 2240 have been
evaluated. Table 3 summarizes the obtained values of
r and Δ on sequence-by-sequence basis. The perti-
nent observed feature is the high value of Δ. This is
somehow expected since neither the full-reference
SQA algorithm ITU-T Rec. P.862 nor examined
bursty-aware SQA are designed to evaluate loss con-
ditions characterized by large losses instances (> 80).
In [20], a proposal for a novel speech quality assessor
has been introduced that considers more properly this
problem.
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Figure 12 Relationship between measured and estimated scores through scatter plots. (a) Emodel(1), (b) Emodel(2), (c) Genome, (d)
VQmon, (e) Qmodel(1), and (f) Qmodel(2).

Table 2 Summary of calibrated models and their
performance.

SQA algorithm a b r Δ

E-Model(1) 1.170 -23.016 0.91 4.738

E-Model(2) 0.607 9.066 0.91 4.664

Genome 0.821 -2.740 0.89 5.324

VQmon 0.965 -11.694 0.87 5.741

Q-Model(1) 1.017 -11.466 0.92 4.380

Q-Model(2) 0.872 -1.344 0.92 4.473
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Concluding remarks and perspectives
The learned lessons of our performance analysis of
bursty-aware SQA algorithms can be resumed as
follows:

(1) Existing bursty-aware SQA algorithms are
basically designed to averagely approximate the sub-
jective score of a given disturbing configuration.
This signifies that they are unsuitable to accurately
estimate speech quality on a sequence-by-sequence
basis.
(2) The strategy of the Q-Model achieves a consis-
tent and reasonable performance under a wide range
of conditions. Further investigation is necessary for a
better and dynamic calibration. The Q-Model
assures an elegant trade-off to subsume the per-
ceived effect of packet loss at short- and long-terms.
In our opinion, it constitutes a solid base for the
development of a sequence-by-sequence SQA strat-
egy, which considers speech content, packet loss
burstiness, and ‘recent’ effect.
(3) VQmon and E-Model(2) need more improve-
ment to accurately judge perceived quality. Indeed,
they seem to be more suitable for assessments over
long periods since they utilize characterization para-
meters that need an important amount of measures

to be stabilized. Moreover, both strategies definitely
ignore temporal distribution details of loss instances.
(4) The statistical property of Genome leads to some
inaccuracy in the estimated scores. Preliminary con-
ducted experiences revealed that it is insensitive to
the distribution of (inter-loss, loss) couples.

As future work, we strongly believe that a hybrid
speech quality assessor that utilizes additional meta-data
about speech wave are required to improve accuracy of
existing SQA algorithms such as silence/active patterns
and feature of removed signals, e.g., voiced or unvoiced.
Moreover, the location of a given loss instance should
be considered during the evaluation processes. We
believe that a perceptual packet loss pattern should be
determined according to the concrete packet loss pat-
tern and sequence features. Furthermore, it is crucial to
extend existing speech quality assessors to cover a wide
range of speech CODECs using subjective tests under
longer bursty packet loss processes. This will enable
identifying which assessment methodology is better as a
function of the running speech coding scheme. The goal
is the development of a versatile and highly accurate
speech quality assessor of VoIP service on call-by-call
basis.
Finally, it is important to note that the authors realize

that extensive subjective testing should be done to tune,
validate, and improve the competitive speech-quality
assessment technologies. This constitutes a principal
priority that will be addressed in our future work.

Appendix
On Packet Loss Modeling over VoIP Networks
The metrologies of packet loss throughout VoIP calls

show that voice packets are removed in bursts. Basically,
bursty packet loss processes are modeled using either
discrete- or continuous-time Markov chains. A simple,
yet accurate 2-state discrete-time Markov chain, referred
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Figure 13 Performance judgment metrics as function of PLR range under a limited bursty packet loss space. (a) Correlation on interval
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Table 3 Performance of bursty-aware SQA algorithms
under a large space.

SQA algorithm r Δ

E-Model(1) 0.940 14.273

E-Model(2) 0.898 18.488

Genome 0.882 15.465

VQmon 0.913 14.634

Q-Model(1) 0.938 14.338

Q-Model(2) 0.929 15.125
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to as Gilbert model, or sometimes simplified Gilbert
model, has been well explored in the literature (see
Figure S1a, Additional file 1) [21]. It was proposed to
analyze noisy channels that introduce bursty bit errors.
It has been subsequently extended to model bursty
packet loss processes [21].
In a few words, Gilbert model has NO-LOSS and

LOSS states that respectively represent successful and
failing packet delivery operations. The Gilbert model is
fully characterized by its transition probabilities p and q
(see Figure S1a, Additional file 1). For sake of clarity,
the model is instead characterized using Packet Loss
Ratio (PLR) and Mean Burst Loss Size (MBLS). The
following relationships enable the mapping between
characterization parameters:

p =
PLR

MBLS× (1− PLR)
and q = 1− 1

MBLS
. (8)

Besides capturing the features of bursty packet loss
processes, the Gilbert chain can be utilized to synthesize
packet loss patterns following user-defined PLR and
MBLS values. Notice that a large number of packets
should be generated to produce packet loss patterns
that respect PLR and MBLS values given by the user.
Figure S2, Additional file 1 illustrates the average devia-
tion between specified and measured PLR and MBLS of
ten generated packet loss patterns using distinct seed
values, as a function of the number of generated pack-
ets. As we can observe, the greater the number of gener-
ated packets, the lower the deviation between specified
and measured PLR and MBLS. This series of experi-
ences showed that number of packets greater than 3000
packets achieves sufficient accuracy between target and
measured PLR and MBLS values.
Besides this discrete-time Gilbert model, a continu-

ous-time 2-state Modulated Markov Poison Processes
(MMPP-2) can be used to characterize time-varying
packet loss processes that alternate between low and
high packet loss periods (see Figure S1b, Additional file
1). In state 0 (resp. 1), packet loss instances are intro-
duced to the rendered packet stream following Bernoulli
processes with average value equal to PLRLOW (resp.
PLRHIGH). The parameters of the MMPP-2 model can
be estimated at run time for a given data trace using a
maximal likelihood estimator (MLE) [22]. Multiple var-
iants of the expectation-maximization (EM) algorithm
have been utilized by statisticians to obtain such values
[23]. Li [23] developed a freely downloadable code of a
variety of EM algorithms dedicated to calibrate MMPP
model. The calibrated model can be utilized to judge
the severity of packet loss burstiness and its variability.
To generate packet loss patterns using the MMPP-2

model, the PLR values can be randomly selected at the

start time of each new period among a set of user-
defined values. The sojourn period in each state follows
an exponential distribution that should be parameterized
by users. Figure S3, Additional file 1 shows multiple
profiles generated using the MMPP-2 model described
previously under several settings. As we can observe,
MMPP-2 produces more realistic packet loss profiles
under a large observation interval.
The previously described Gilbert and MMPP models

give coarse features of time-varying and bursty packet
loss process. As such, packet loss patterns that could
lead to misestimating the perceived quality are poorly
considered. To enable a better characterization, Clark
[5] proposed a dedicated packet loss model that discerns
between loss instances happen in gap and in burst (see
Figure S4, Additional file 1). As we can see, Clark’s
model has four states labeled 1, 2, 3, and 4. The sub-
chain 1 is used to consider isolated packet loss
instances. However, the sub-chain 2 is used to consider
temporally dependent packet loss instances. The author
defines the following two triggering conditions to switch
from sub-chain 1 to sub-chain 2:

(1) A loss instance that comprises more than two
consecutive missing packets.
(2) A single missing packet preceded by a loss event
that has been happened at a distance smaller than a
given constant gmin. Clark recommends using a value
equal to 16 10-ms voice packets.

A transition from sub-chain 2 to sub-chain 1 happens
once an isolated packet loss instance preceded by gmin

successfully received packets is detected. Clark [5] devel-
oped an efficient packet loss driven algorithm that
enables to calibrate at run-time the proposed model. A
set of metrics can be extracted from Clark model at the
end of a monitoring period, e.g., PLR during gap and
bursty loss periods and their corresponding durations.
As depicted in Figure S4, Additional file 1, Clark
accounted for the effect of discarded packets at the de-
jittering buffer caused by late arrivals.

Endnotes
a. A loss instance is defined as a block of consecutive
missing packets delimited by two successfully received
ones.
b. The initial version of VQmon suggests the use of

time constants τ1 and τ2, respectively, equal to 5 and 15
s [4]. Recently, a more elaborated analysis conducted by
Raake [3] indicated that time constants τ1 and τ2,
respectively, equal to 9 and 22 s are more accurate to
mimic users’ behavior rating.
c. This definition implies that the delivery network

introduces independent (resp. bursty) packet losses
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when BurstR is equal to (resp. greater) one. As a rule of
thumb, the greater the value of BurstR above 1, the
higher the intensity of packet loss burstiness. Notice
that MBLS value of the expected independent packet
loss processes is equal to 1/(1 - PLR) where the value of
PLR is set to the measured packet loss ratio.
d. The variable CLP refers to the probability of losing

a packet given that the previous one is lost.
e. A packet loss process that periodically drops a static

number of consecutive speech frames preceded by a
given inter-loss gap size.
f. Precisely, the value of an is set to 1 if packet loss

ratio till nth packet is below 4%, otherwise it is set to
-1/2.
g. The recommended value of window size is equal to

8 20-ms voice packets.
h. Basically, all emerging speech CODEC include a

built-in VAD.

Additional material

Additional file 1: Figure S1. Modeling of packet loss processes using 2-
state Markov model. (a) Gilbert Model. (b) Markov Modulated Poisson
Processes (MMPP). Figure S2. Deviation of target and measured PLR and
MBLS values as function of number of packets. Figure S3. Generated
profiles using the MMPP-2 model. Figure S4. Modeling of packet loss
processes that distinguish between isolated and burst loss periods [24].

Abbreviations
CN: Comfort Noise; LQ: Listening Quality; MBLS: Mean Burst Loss Size; PESQ:
Perceived Evaluation of Speech Quality; PLR: Packet Loss Ratio; RMSE: root
mean squared error; SID: Silence Insertion Descriptor; SQA: speech quality
assessment; VoIP: Voice over IP.
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