
RESEARCH Open Access

Real-time stereo matching architecture based on
2D MRF model: a memory-efficient systolic array
Sungchan Park*, Chao Chen, Hong Jeong and Sang Hyun Han

Abstract

There is a growing need in computer vision applications for stereopsis, requiring not only accurate distance but
also fast and compact physical implementation. Global energy minimization techniques provide remarkably precise
results. But they suffer from huge computational complexity. One of the main challenges is to parallelize the
iterative computation, solving the memory access problem between the big external memory and the massive
processors. Remarkable memory saving can be obtained with our memory reduction scheme, and our new
architecture is a systolic array. If we expand it into N’s multiple chips in a cascaded manner, we can cope with
various ranges of image resolutions. We have realized it using the FPGA technology. Our architecture records 19
times smaller memory than the global minimization technique, which is a principal step toward real-time chip
implementation of the various iterative image processing algorithms with tiny and distributed memory resources
like optical flow, image restoration, etc.

Keywords: Real-time, VLSI, belief propagation, memory resource, stereo matching

1 Introduction
The stereo matching problem is to find the correspond-
ing points in a pair of images portraying the same
scene. The underlying principle is that two cameras
separated by a baseline capture slightly dissimilar views
of the same scene. Finding the corresponding pairs is
known to be the most challenging step in the binocular
stereo problem.
As shown in Table 1, the conventional methods can

be categorized into the local and global methods [1].
The unit, million disparity estimations per second
(MDE/s), is the product of the number of pixels, dispar-
ity levels, and frame-rate and therefore, stands for the
overall computational speed. Note that the global meth-
ods have the low throughput due to their small number
of processors.
The local method, typically window correlation and

dynamic programming (DP) methods, examines subi-
mages only to obtain local minima as solutions. Inher-
ently, this method needs relatively small operations and
memory, making it the popular approach in real-time
DSP systems [2,3] and parallel VLSI chips [4-7]. The

local method can be easily realized in the massive paral-
lel structure as shown in Table 1. Nevertheless, there
are many situations where this method may fail: the
occlusion, uniform texture, ambiguity of the low texture,
etc. Even further, the window method tends to yield
blurred results around the object boundary.
In contrast, the global method, typically graph cut

[8,9] and BP [10-12], deals with whole images, resulting
in the global minima, analogously to the approximated
global minimum principle. This approach has the advan-
tage of low error rate but tends to need huge computa-
tional loads and memory resources. Recently, some
researchers realized BP using PC aided by specialized
parallel processors on GPU graphic card [13]. As
described in Table 1, the so-called real-time BP can
yield reasonable results only for the small throughput
(MDE/s). Unfortunately, the specialized GPU relies
upon high speed clocks and a small number of proces-
sors, which cannot be regarded as fully parallel architec-
ture. Thus, it has the throughput limitation.
Nevertheless, this system is successfully used in the real-
time computer vision area [14]. There is no full parallel
system that has fast computational power (MDE/s) for
the high resolution images or the fast frame rates.
Further, there is no genuine compact hardware

* Correspondence: mrzoo@postech.ac.kr
Department of Electrical Engineering, Pohang University of Science and
Technology, Pohang, 790-784, South Korea

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

© 2011 Park et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:mrzoo@postech.ac.kr
http://creativecommons.org/licenses/by/2.0

dedicated to the global stereo matching in real time.
Most of the existing systems are impractical in terms of
size, power requirement, and expense and are not suita-
ble for compact applications like robot vision.
If a massive parallel architecture is realized as shown

in Figure 1 then the computational time may be reduced
drastically. However, this global matching architecture is
not workable simply because of the enormous data bus
bandwidth between the processors and the big external
memory resource. In an effort to avoid this bottleneck,
the memories must be evenly distributed throughout the
processors so that each processor may access its own
memory unhindered by the others. This distributed
approach also raises problems when the number of pro-
cessors is excessively large and the memory size is too
big, making the VLSI implementation a formidable task.
Therefore, we need to use distributed internal memories
of small size, which can be easily accessed by many pro-
cessors simultaneously.
Consider the one chip solution with a systolic array

and efficient memory configuration. To avoid the huge
memory, we tried to implement the BP on the FPGA by
reducing the memory size [15], which is similar to the
hierarchical iteration sequence [16]. In this paper, we
use IF scheme [16] for our architecture and make it 2
times smaller than IF considering the message propaga-
tion direction, as we will call “Fast belief propagation
(FBP)”. Based on this method, we built a full parallel

architecture that is efficient in memory usage as well as
equivalent to the original belief propagation (BP)
method in terms of accuracy.
For a real-time application with small and compact

hardware, GPU- and CPU-based system is not good due
to their bulky size. We used this architecture to build a
stereo vision chip and observed the expected perfor-
mance–realtime and small memory for high precision
depth images.
The remainder of this paper is organized as follows.

Section 2 explains the background of the belief propaga-
tion. Section 3 defines a layer structure and explains an
FBP sequence. A new iteration filter algorithm consider-
ing iteration directions is described in Section 4. For a
VLSI realization, Section 5 suggests a parallel architec-
ture and its memory complexity. Experiments are pre-
sented in Section 6. Section 7 draws conclusions on our
newly developed architecture.

2 Review of belief propagation
The basic concept of belief propagation (BP) is to find
iteratively the maximum a posteriori (MAP) solution
on a 2-D Markov random field (MRF). All the para-
meters and variables are defined on the 2-D graph Fig-
ure 2 (we use the notation from [10]). P: a set of
nodes on 2-D MRF, which in fact corresponds to pix-
els on an image. D: a set of hidden states stored in the
nodes. p Î P: a node that is located on the coordinate
p = (p0, p1). dp Î D: a hidden state at p. gl, gr: left and
right images of N0 by N1 size. Also, NE denotes the
edge set and therefore, (p, q) Î NE for an edge
between two nodes p and q.
With the help of these notations, the pairwise MRF

energy model can be defined as determining the esti-
mate d̂, given an energy function E(·):

d̂ = argmin
d

E(d), (1)

Table 1 Comparison of several real-time stereo systems

System Style MDE/
s

Processor, no.
PE

Clock
speed

Adaptive window
[5]

Local 819 ASIC, 512 200 MHz

DP chip [19] Local 295 FPGA, 128 50 MHz

Real-time DP [20] Semi-
Global

205 MMX, 8 2.2 GHz

Real-time BP [13] Global 19.7 GPU, 26 670 MHz

Processor

Processor

Processor

VLSI chip

Processor

External
memory
device

Processor

Processor

High
bus bandwidth

(a) Parallel processors with a
global memory

Processor memory

Processor
memor

y

Processor
memor

y

VLSI chip

Processor

Processor

Processor

ProcessorProcessor memory

Processor memory

ProcessorProcessor memory

(b) Massive systolic array
processors

Figure 1 Alternative architectures for parallel algorithms. (a) Parallel processors with a global memory. (b) Massive systolic array processors.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 2 of 12

E(d) =
d∑

(p,q)∈NE

(dp, dq) +
∑
p∈P

Dp(dp). (2)

D(dp) is the data cost for the node p having the state
dp. Similarly, V (dp, dq) is the edge cost for a pair of
neighbor nodes p and q having states dp and dq,
respectively.
We assume a condition of parallel optics without

the loss of generality. Then, stereo matching simply
involves finding a point (p0, p1 + dp) in the right
image which corresponds to a point (p0, p1) in the left
image. Thus, the hidden state dp represents the offset
between the corresponding pixels, as is called
disparity.
At each state dp, the data cost constrained by the left

and right images is defined as

Dp(dp) = min(Cd|gr(p0, p1 + dp) − gl(p0, p1)|,Kd), (3)

where Cd and Kd are a weighting factor and upper
bound of the cost, respectively. This upper bound is
useful in making the data cost robust to occlusions and
artifacts that may violate the common assumptions that
the ambient brightness must be uniform.
Also, the disparity should vary smoothly almost every-

where except at some places like object boundaries. In
order to allow this discontinuity, we keep the edge cost
V (dp, dq) constant whenever the difference becomes
larger than the predefined parameter Kd:

V(dp, dq) = min(Cv|dp − dq|,Kv), (4)

where Cv and Kv are similarly defined as the
constant.
Finding the state d̂ with minimum energy in Equation

1 amounts to the estimation problem with MAP. As is
well known, the approximated MAP solution d̂ can be
estimated using the following BP update [10]:

ml
pq(dq)

= min
dp

⎛
⎝V(dp, dq) +Dp(dp) +

∑
r∈N(p)\q

(
ml−1

rp (dp) − α
)⎞
⎠ ,

(5)

α =
1
S

∑
dp

ml−1
rp (dp). (6)

N(p)\q is the neighbors of node p excluding q, a is
the normalization value, and S is the state size. This
equation expresses the following mechanism. The mes-

sage ml
pq(dq) at node p is updated at time l and then

sent to the neighbor node q. After L iterations,
the expected d̂p at each node can be decided with
Equation 7.

d̂q = argmin
dq

⎛
⎝Dq(dq) +

∑
p∈N(q)

mL
pq(dq)

⎞
⎠ . (7)

Let us explain the hierarchical BP in brief. It is based
on the iteration scheme in multiple different scale levels.
Between the levels, 2 × 2 scale change is considered to
aid the coarse-to-fine iteration. According to this
scheme, we need to over-sample the message and data
costs in the coarse level to obtain the cost for the finer

level. In this paper, Lk, lk Î [1, Lk], pk =
[
pk0 p

k
1

]
, mk, and

Dk
pk denote the iteration number, the iteration time

index, the node, message, and data cost in the M/2k by
N/2k hierarchical graph of the scale level k Î [0, K - 1],
respectively. Here, K - 1 means the coarsest level. As
shown in Figure 3, the data cost at k is calculated from
the data cost at k - 1 by the summation over a 2 × 2

block. At the scale level 0, the data cost D0
p0(d) is

equivalent to Dp(dp) that is calculated from the left and
right image pixel:

M

N

p=(p0 ,p1)
p1

p
0

Figure 2 A 2-D regular graph which corresponds to a 2-D
image.

(a) level k (b) level k − 1
Figure 3 Two layers in the hierarchical BP. (a) level k; (b) level k - 1.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 3 of 12

Dk
pk(d) =

1∑
e0=0

1∑
e1=0

Dk−1[
2pk0+e0 2pk1+e1

](d)

=
2k−1∑
e0=0

2k−1∑
e1=0

D0[
2kpk0+e02k pk1+e1

](d).

(8)

If the memory complexity at each node is B bits, the
overall memory size is

∑K−1
k=0 B(N/2k)(M/2k) bits.

3 The proposed fast belief propagation sequence
In this section, we propose our FBP algorithm and
architecture that enable us to run the BP on the FPGA
with tiny distributed RAMs and show the remarkable
memory reduction. It is 2 times smaller than the Itera-
tion Filter’s memory reduction scheme [16]. Before
entering this section, I recommend for readers to under-
stand the Iteration Filter scheme [16] that is wholly dif-
ferent from the normal iteration sequence and shows
the amazing memory reduction effect. We redesign the
Iteration Filter algorithm and implement it on the
FPGA.
If we consider a separate layer for each iteration, then

we can build a stack of layers. In this structure, the
iteration can be represented as the upward propagation.
Thus, Figure 4 can be redrawn as Figure 5. From this
interpretation, we are considering the 2D graph with the
iteration as the 3D layer graph (p0, p1, l) with the propa-
gation. Let us define message and data cost sets at each
node and layer l as:

M(p, l) =
{
ml

pq(dq)|dq ∈ [0, S − 1], q ∈ N(p)
}
, (9)

D(p, l) =
{
Dpq(dq)|dq ∈ [0, S − 1]

}
. (10)

From these definitions, we can simplify the message
update function in Equation 5 as:

M(p,l) = f (M(N(p),l − 1), D(p,l − 1)), (11)

D(p,l) = D(p,l − 1), (12)

where (N(p), l - 1) and M((N(p), l - 1)) = {M(u, l - 1)|
u Î N(p)} represent the neighbor nodes and their mes-
sage costs in the buffer, respectively.
As an initialization stage, each node p observes the

input to obtain the data cost D(p, 0). Afterward, in
every iteration l, each node calculates the new message
M(p, l) according to the update function f(·) and after
then stores it as M(p, l - 1) in the buffer.
Let Q(l) and M(Q(l)) denote the set of nodes in lth

layer and its message cost set, respectively. Then, M(Q
(l)) can be updated from M(Q(l - 1)) and D(Q(l - 1)) in
the buffer:

M(p,l) = f (M(N(p),l − 1),D(p,l − 1])), (13)

(p, l) ∈ Q(l), (N(p), l − 1) ∈ Q(l − 1),

Q(l) = {(p0, p1, l)|p0 ∈ [0,N − 1], p1 ∈ [0,M − 1]}.(14)

Consider a new FBP computing order based on the IF
scheme. Note that Q(p0 - l, l) forms a linear array of M
nodes on the p1 axis in the lth layer. If we collect all the
layers of Q(p0 - l, l) in terms of p0 then Q(p0) forms a
planar array of LM nodes:

Q(p0, l) = {(p0 − l, p1, l)|p1 ∈ [0,M − 1]}, (15)

Q(p0) = {Q(p0, l)|l ∈ [1, L]}. (16)

with the notation Q(p0 - l, l) and Q(p0), we can build
an efficient computation order. We will call this mem-
ory-efficient BP sequence, FBP. The cost of Q(p0) is
updated from the buffer of the message M (Q(p0 - 1)),
M(Q(p0 - 2)), and data cost D(Q(p0 - 1)) as described in
Algorithm 1. As shown in Figure 6, our memory
resource consists of local and layer buffers. The layer
buffer stores all the layers’ costs of Q(p0 - 1) and Q(p0 -
2). The local buffer holds only one layer’s costs on Q(p0,
l - 1).
Algorithm 1: FBP algorithm
For ℓp0 in the lth iteration layer profile, each node at

(p0 - l, p1) and the lth layer can be updated from the
node at N(p0 - l, p1) and the (l - 1)th layer. Thus, as
shown in Figure 7 and Equation 17, the nodes at Q(p0,
l) can be computed from Q(p0, l - 1), Q(p0 - 1, l - 1),
and Q(p0 - 2, l - 1).

{Q(p0 − 2, l − 1),Q(p0 − 1, l − 1),Q(p0, l − 1)} (17)

= {(N(p0 − l, p1), l − 1)|p1 ∈ [0,M − 1]}. (18)

Q(p0, l) and Q(p0, l - 1) belong to Q(p0). Hence, given
the layer buffer Q(p0 - 2) and Q(p0 - 1) and the local
buffer Q(p0, l - 1), the costs in Q(p0, l) are updated at

l

l+1

M(N(p), l-1)
D(p, l-1)

M(p, l), D(p, l)

Figure 4 3D Structure versus iteration.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 4 of 12

each layer l recursively, which sequence is described in
Figure 6a, b, and 6c. That is, given M(Q(p0 - 1)), M(Q
(p0 - 2)), and D(Q(p0 - 1)), we can calculate M(Q(p0)).
The new costs in local buffer should be stored in the
layer buffer to process the next set Q(p0 + 1) in the
next time. This sequence shifts the layer buffer to the p0
axis direction. Then, for p0 from 0 to N + L - 1, we can
obtain the final iterated message M(Q(p0, L)). For the
example, as shown in Figure 6b, and 6c, the location of
the buffer is changed from Q(p0 = 5) to Q(p0 = 6) by
our sequence.
In the hierarchical case, as shown in Figure 6d, we can

construct the hierarchical layer structure by considering
the hierarchical iterations. At each level, we can follow
the FBP sequence at each level only if considering two
by two scale changes between levels. Please refer to [16]
for the detailed hierarchical memory reduction scheme
of IF.
If we use the notation B as BP memory complexity at

each node and consider the nodes of Lk by M/2k size in

Qk(·), we need two layer buffers of the BLkM/2k size and
one local buffer of BM/2k size at each level k. Thus,
compared with the hierarchical BP, the overall memory

size can be reduced from
∑K−1

k=0
B(N/2k)(M/2k)bits to

∑K−1

k=0
B(2Lk + 1)(M/2k) bits by adopting the iteration

filter scheme to our VLSI sequence. This can be shown
as follows.

Reduction rate =

∑K−1
k=0 B(N/2k)(M/2k)∑K−1

k=0 B(aLk + 1)(M/2k)
, (19)

(a = 2). (20)

If we approximately consider the total memory as the
0th level, the reduction rate amounts to N/(2L0 + 1)
times when 2L0 ≪ N. In summary, the update sequence
must be effective whenever N, one of the image size com-
ponents is big, and L0, the iteration number, is small.

0

2
1

3

Buffer

p00 1 2 3 4 5

p1

Layer (l)

(a) Q(l = 2)

0

2
1

3

Buffer

p00 1 2 3 4 5

p1

Layer (l)

(b) Q(l = 3)

Figure 5 Prior iteration sequences in the 3D layer graph. (a) Q(l = 2); (b) Q(l = 3).

0

2
1

3

p00 1 2 3 4 5
p1 Buffer

Layer (l)

(a) l=1 in Q(p0 = 5)

p1
0

2
1

3

p00 1 2 3 4 5

Local
Buffer

Layer (l)

Layer Buffer

(b) l=2 in Q(p0 = 5)

0

2
1

3

p00 1 2 3 4 5
p1

Layer (l)

6

(c) l=1 in Q(p0 = 6)

p0
Layer Buffer1

1

k
0

1

2

2

0 1 2 3 4 5
0 1 2 p0

6
3

lk

1

0

(d) 3D layer graph

Figure 6 The message update sequences. (a) l = 1 in Q(p0 = 5); (b) l = 2 in Q(p0 = 5); (c) l = 1 in Q(p0 = 6); (d) 3D layer graph.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 5 of 12

4 New iteration sequence considering the
iteration direction
Let us consider the message propagation direction for
the further memory reduction. As shown at the defini-
tion of M(p, l) in Equation 9, we assumed that the mes-
sages of all the directions are stored in the buffer.
However, due to the message propagation direction
information, we can reduce the memory resource 2
times smaller. Among the neighbor messages M(N(p), l

- 1), only ml−1
rp (dp) for r Î N (p) is necessary for updat-

ing M (p, l). In Figure 8, let us denote the message pro-
pagation direction as Δ = p - N(p). The needed
messages for the update are the ones that are propa-
gated from neighboring node N(p) to p. Except for the
message of the direction Δ = [+1 0] that is propagated
from local buffer, all the other messages are being
loaded from the layer buffer. This is summarized at the
access column part of Table 2. But, in the data cost
case, as shown in Figure 9, we do not need to consider
the propagation direction and simply read D(Q(p0 - 1, l
- 1)) in the layer buffer Q(p0 - 1) for D(Q(p0, l)) because

D(Q(p0, l)) is equal to D(Q(p0 - 1, l - 1)) like Equation
12.
As explained in the FBP algorithm, at each update

time, the location of the buffer is shifted to p0 axis
being updated by the new cost. The newly updated mes-
sages and data cost in the local buffer should be stored
in the layer buffer for the processing of the next Q(p0 +
1). Thus, if the messages from all possible directions be
saved in the local buffer, then some messages can be
transferred to Q(p0 - 1, l - 1). At the same time, some
old costs in Q(p0 - 1, l - 1) are moved to Q(p0 - 2, l - 1)
in a similar way. With this scheme, the number of pro-
pagation directions to be stored at the buffer is
described at the store(Δ) part in Table 2.
From the definition in Equations 15 and 16, the num-

ber of nodes is LM for both Q(p0 - 2) and Q(p0 - 1) and
M for Q(p0 - (l - 1), l - 1). Table 2 shows the required
number of messages and data costs at each node. The
number of states is S, and the number of bits for the
message cost and data cost is Bm and BD, respectively.
Then, by multiplying all the parts, we can calculate the
memory size of the buffer as shown in Table 3.
If B = 4BmS + BDS, then we can obtain as follows:

Reduction rate =

∑K−1
k=0 B(N/2k)(M/2k)∑K−1

k=0 B(aLk + 1)(M/2k)
, (21)

(a = 1). (22)

Q(p1,l)

Q(p1-2,l-1)
Layer
buffer
region

Local
buffer
region

Q(p1,l-1)Q(p1-1,l-1)

Figure 7 Layer and local buffer access at each layer.

[-1 0] [1 0][0 -1]

[0 1]

=

Q(p1-2, l-1)

Layer
buffer
region

Local
buffer
region

Q(p1,l-1)Q(p1-1,l-1)

Q(p1,l)

Figure 8 Layer and local buffer access at the lth layer profile: The
propagation direction of the message is denoted as vector Δ.

Table 2 Number of messages stored at each node in the
buffer

Access(Δ) Store(Δ)

Directions No. Directions No.

Q(p0, l - 1) [+1 0] 1 [±1 0], [0 ± 1] 4

Q(p0 - 1, l - 1) [0 ± 1] 2 [-1 0], [0 ± 1] 3

Q(p0 - 2, l - 1) [-1 0] 1 [-1 0] 1

Q(p1-2,l-1)

Layer
buffer
region

Local
buffer
region

Q(p1,l-1)Q(p1-1,l-1)

Q(p1,l)

Figure 9 Layer and local buffer access at each layer.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 6 of 12

If you compare Equations 20 and 22, the value a is
changed from two to one. Therefore, due to the propa-
gation direction of BP, we can obtain 2 times smaller
memory than the iteration filter [16].

5 Systolic VLSI architecture
Our architecture has four hierarchical levels. This level
affects the iteration times. The higher hierarchical levels
make iteration times smaller because the message can
be converged faster in the coarse level. In our FBP
architecture, it makes the memory size much smaller
because our memory resource is dependent on iteration
times. The HFBP algorithm can be easily realized with a
systolic array architecture. As depicted in Figure 10, it
consists of identical PE groups with nearest neighbor
communication. In our implementation, it has a total of
20 PE groups. The PE group is divided into eight identi-
cal PEs as shown in Figure 11. Therefore, it amount to
160 PEs for processing a pair of 160 × 240 images. Fig-
ure 12 represents the local and layer buffer assignment
for each PEk = 1,...,7 in the PE group. Thus, the 8/2k

number of PEs in the group is activated at level k due
to the scale-down of the hierarchical structure.
As shown in Figure 11, the PE group consists of two

parts. The first part is the data cost module that com-
putes the initial costs using the left and right scan lines
of the images. The other group is for updating the mes-
sage and data cost. The pixel data from the left and
right cameras enter into the PE group and each PE
computes the data cost and the new message using the
old messages from neighboring PEs and its own buffers.
Figure 13 shows the data cost module that calculates
the hierarchical data costs along the levels 0 to 3. In Fig-
ure 13b, the left and right scan lines are first stored in
the registers, and then the right scan line registers are
shifted by state d to compute Dp(dp) according to

Equation 3. For each state, the data cost Dp(d) at level 0
is obtained by taking the absolute difference of the left
and right pixel values. On the other hand, B in Figure
13c is used for computing the higher level data cost

Dk
pk(d). For the level k’s cost, the previous level k-1 data

costs are summed up and then accumulated over 2k

scan lines. This is equivalent to applying the summation
of the 2k × 2k window for the hierarchical data cost;
each data cost is used by the PE at each level. Data
costs at each level, computed in the data cost module,
are processed and saved in the corresponding PEs and
buffers. See Figure 13. As described in Figure 12, the
multiplexer (MUX) selects the messages and data costs
at each level from which new messages and data costs
can be updated and saved at the local buffer. Mean-
while, the old costs in this buffer are shifted into the
layer buffer. In the four scale levels, 4-to-1 message
multiplexer (MUX) is used.
For S number of states, the time complexity O(S) is

needed to update one message at each node by forward,
backward, and normalization operations [10]. Normally,
it needs 3S steps. As explained in Equation 9, four mes-
sages that are propagated to neighbor nodes need to be
computed at each node. To compute these messages,
our system needs only 6S clocks due to the pipeline
structure. See Figure 14.
Since (M/2k) nodes are handled by (M/2k) processors

in parallel on pk1 axis, the total required clocks are

reduced from
∑K−1

k=0
6S(M/2k)(N/2k) to

∑K−1

k=0
6SLk(N/2k). As a whole, each PE calculates the

messages in parallel by accessing the local buffer or the
layer buffer which is located in the neighboring PEs or
PE groups.

6 Experimental results
Our new architecture has been tested by both a simula-
tion and FPGA realization.

6.1 Software simulation
First, we verify our VLSI algorithm using the Middle-
bury data set with a software simulation. In the previous
sections, we presented a new architecture which is

Table 3 FBP buffer size

Buffer Message Data cost

Layer buffer Q(p0 - 2) BmSML 0

Layer buffer Q(p0 - 1) 3BmSML BDSML

Local buffer Q(p0 - (l - 1), l - 1) 4BmSM BDSM

Total 4BmSM (L + 1) BDSM (L + 1)

PE
group

PE
group

PE
group

0 1 N
1
/8

PE
group

2
Message

Pixel Data

...

Figure 10 Systolic array architecture of FBP.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 7 of 12

equivalent to HBP in terms of input-output relationship
and which is a systolic array with a small memory
space. Hence, it is suitable for VLSI implementation.
The requirement for both memory resource and com-

putation time is only dependent on the layer number Lk.
Therefore, it is reasonable to analyze the performance in
terms of iterations as well as various images. We specify
the accuracy using the following equation.

error(%)

=
100
N

∑
(p0,p1)∈Pm

(|d̂(p0, p1) − dTrue(p0, p1)| > 1),

N =
∑

(p0,p1)∈Pm
1,

where d̂ is the estimated disparity, dTrue is the true
disparity, Pm is the area except for the occlusion part,
and N is the pixel number in its area. This error means
the rate where the disparity error is larger than 1.
For fair comparison, the same parameters are used

throughout the experiments: Cv = 28, Kv = 57, Cd = 4,

and Kd = 60. Figures 15 and 16 are the results of the
Middlebury test images. In Figure 15, four levels are
used both for HBP and HFBP. The layer number at
each level is assigned as (8, 8, 8, 8) from coarse-to-fine
scale levels. With the same iterations, HFBP and HBP
show the same lower error results.
Figure 16 shows the relationship between the iteration

layers and FBP’s average memory reduction rates when
compared with HBP, where the same iteration times, (L,
L, L, L), are applied for each layer. Due to the hierarchi-
cal scheme, the iteration converged around 28 iterations
and yielded 0.8% maximum error. The remarkable
result, though, is the memory reduction, which is
around 32 times. In fact, even less memory is possible
for a higher error rate. Thus, this architecture makes
the performance scalable between the space and
accuracy.
Table 4 compares our FBP FPGA with other real-time

systems in terms of error. It is evident that our method
shows almost the same error as Real-time BP. Here,
real-time BP is also based on the HBP algorithm [10]

PE

Local
buffer

Layer
buffer

PE

Local
buffer

Layer
buffer

PE

Local
buffer

Layer
buffer

PE

Local
buffer

Layer
buffer

... ...

PE
0

PE
k-1

PE
k PE7

Data Cost
Hierarchical Data Cost Module

Message Bus

Message

Pixel
Data

Message

MUX MUX MUX MUX

Figure 11 Internal architecture of the PE group.

O O

O

O

O O

O

O O

O

O

O O

O

O

PE
0 PE

1 PE
2

PE3 PE4 PE
5

PE6 PE
7

Level 0

Level 1

Level 2

Level 3

8

Number of nodes
in PE group

4

2

1

Figure 12 Activated PE and hierarchical buffer assignment at each level in the PE group.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 8 of 12

and known for the lowest error among real-time
systems.

6.2 FPGA implementation
We developed the VHDL code on FPGA as follows
using the specs: S = 32, Bm = 7, BD = 10, (L3, L2, L1, L0)
=(8, 8, 8, 10), 15 frames/sec at 160 × 240 or 160 × 480
image.

If we use Equation 22, the total buffer size becomes
3.3 Mb, which is 19 times smaller than HBP’s 62 Mb.
Also, for processing one frame image, the 160 PEs need
0.6 MHz clocks. This speed amounts to 18.8 MHz
clocks processing 15 frames in 1 s. In order to achieve
maximum 36.8 MDE/s throughput for a 160 × 480
image, only a 18.8 MHz system clock is necessary ide-
ally. Tables 5 and 6 show the computational perfor-
mance between our new system and other systems. The
local matching is effectively implemented as the pipeline
and parallel structure since it does not need to access
the huge memory size iteratively. GPU is the SIMD pro-
cessor with a high speed core clock and external mem-
ory clock. Even if it is not a full parallel structure, it
operates in real time due to the high clock speed and
small number of parallel processors. But, our system is
the fully parallel and can operate at the much slower 25
MHz clock speed. Furthermore, our system has one
chip solution that consumes less memory resources
inside the FPGA and can easily be parallelized to multi-
ple chips due to the systolic array architecture. This
simple and regular architecture is suitable for VLSI
implementation. In addition, the semi-global matching
[17] needs two frames’ latency times, but our FBP has

A A A A A A A A

B B

B

B

MUX MUX

B B

B

MUX MUX

Data Cost Block RAM

Level 0
Cost

Level 1
Cost

Level 2
Cost

Level 3
Cost

(a) Hierarchical summation

g l

gr

|-|

A

(b) Data cost module A

+

Register Accumulator

B

(c) Summation module B

Figure 13 Architecture for hierarchical data cost module. (a) Hierarchical summation. (b) Data cost module A. (c) Summation module B.

F B N

F B N

F B N

F B N

6S clocks

S clocks

Figure 14 The pipeline message computation sequence with
forward (F), backward (B), and normalization (N) operations.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 9 of 12

the latency time below one frame due to the processing
sequence like the filter.
For a higher resolution solution, we need to increase

the computational power. It is possible by simply cas-
cading several chips together in proportion to the image
size or increasing the clock speed.
It has been observed that the FPGA, incorporating 160

PEs, operates at a 25 MHz clock rate. For convenience,
more specifications are summarized in Table 7. Ideally,
to store the local and layer buffers, our necessary mem-
ory size is around 3.3 Mb. But, in the real implementa-
tion, we used 395 internal block RAMs in FPGA, which
amount to 7.1 Mb. Incidentally, assigning each buffer to
Block RAMs may result in unused leak memory, that is
waste, that can be avoided in full ASICs.

(a) Left image (b) True disparity

(c) Hierarchical BP (d) Our result

Figure 15 Output comparisons of Tsukuba images at 28 layers. (a) Left image. (b) True disparity. (c) Hierarchical BP. (d) Our result.

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%

1 5 9 13 17 21 25 29
layers

error
0
50
100
150
200
250Average Error

Memory Reduction

Memory
Reduction

Rate

Figure 16 Relation between average error convergence and
memory reduction Rm in Middlebury test images.

Table 4 Disparity error comparison of several real-time
methods (%)

Image System Tsukuba Map Venus Sawtooth

Our FBP Virtex2 1.7 0.5 0.7 0.8

Real-time BP [13] Geforce
7900

1.5 NA 0.8 NA

Accelerated BP [21] Virtex2 2.6 0.2 0.8 0.8

Semi-Global
matching [17]

Virtex5 4.1 NA 2.7 NA

Trellis DP [19] Virtex2 2.6 0.9 3.4 1.9

Real-time DP [20] MMX 2.9 6.5 6.5 6.3

Local matching [22] Virtex5 9.8 NA 5.3 NA

Table 5 Comparisons of computation time between the
real-time systems

Spec System Image Levels fps

Our FBP, One FPGA FPGA, Virtex2 160 × 480 32 15

Two FPGAs FPGA, Virtex2 320 × 480 32 15

Semi-global matching
[17]

FPGA, Virtex5 640 × 480 128 103

Local matching [22] FPGA, Virtex5 640 × 480 64 230

Accelerated BP [21] FPGA, Virtex2 256 × 240 16 25

Real-time BP [13] GPU, Geforce
7900

320 × 240 16 16

Real-time DP [20] CPU, MMX 320 × 240 100 26.7

Trellis DP [19] FPGA, Virtex2 320 × 240 128 30

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 10 of 12

The new architecture is implemented in FPGA as
shown in Figure 17. Here, Figure 17a is a block diagram
and Figure 17b is a photo of the actual board. As can be
seen, two cameras supply a pair of video streams and
two FPGAs perform preprocessing and our FBP algo-
rithm. The disparity map forms a stream from FPGA to
a grabber through Camlink cables. From the video RAM
on the grabber board, the PC reads the disparity data

and converts it to a gray scale image for the observation.
Figure 18 shows the typical video output of the FPGA.

7 Conclusions
In this paper, a new architecture for the global stereo
matching algorithm has been presented. The key idea is
to rearrange the computation order in BP to obtain a
parallel and memory-efficient structure. As the results
show, our system spends 19 times less memory than the
ordinary BP. The memory space can be negotiated with
the iteration number. The architecture is also scalable in
terms of image size; the regular structure can be easily
expanded by cascading identical modules.
When applied to binocular stereo vision, this architec-

ture shows the ability to process stereo matching in real
time. Experimental results confirm that this array archi-
tecture easily provides high throughput with low clock
speed where small iterations are guaranteed by the hier-
archical iteration scheme.
In the future, we plan to realize this architecture with

a small and compact ASIC chip. Beyond the program-
mable chips, we can simply expect a real-time chip with
higher resolution and the lowest error rate with huge
PE numbers. Unlike the bulky GPU and CPU systems,
making the complex stereo matching system with a
compact chip may lead to many real-time vision
applications.
Furthermore, if we change the message and data cost

model, our memory-efficient architecture can be consid-
ered to other BP-based motion estimation and image
restoration [10]. The combined effort of parallel processing
and efficient memory usage makes a chance to implement
a compact VLSI chip. Furthermore, more general iterative
algorithms can be considered, which communicate only
neighbor pixels in the image, such as GBP typical cut [18].
As explained in [16], if we apply the IF scheme to these
algorithms, we can reduce their memory resources to a tiny

Table 6 Comparisons of hardware spec. between the real-
time systems

Spec System clock PEs Int.
Mem.

Ext.
Mem.

Our FBP, One FPGA Virtex2 25 MHz 128 3.3
Mb

No

Two FPGAs Virtex2 25 MHz 256 6.6
Mb

No

Semi-global matching
[17]

Virtex5 133
MHz

30 3.3
Mb

Yes

Local matching [22] Virtex5 93 MHz 64 5.8
Mb

No

Real-time BP [13] Geforce
7900

670
MHz

26 NA 62
Mb

Accelerated BP[21] Virtex2 65 MHz 24 2 Mb 9 Mb

Real-time DP [20] MMX NA NA NA Yes

Trellis DP [19] Virtex2 50 MHz 128 Yes No

Table 7 Additional hardware specifications used in our
system

Spec. (Resource usage percentage)

FPGA Xilinx Virtex II pro-100

Number of multiplier 0

Number of divider 0

Number of slice flip flops 30,585 (34%)

Number of 4 input LUTs 46,812 (53%)

FBP
Chip

FPGA

Image

Preprocess

FPGA

��

Right

Camera
�

Left
Camera

�

�
Disparity Out

to Grabber board

(a) Overall system (b) Hardware board

Figure 17 The overall hardware system. (a) Overall system. (b) Hardware board.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 11 of 12

size. Thus, if they have simple update logics for the itera-
tion, then full parallel VLSI architectures may be realizable.

Acknowledgements
This work was supported by the following funds: the Brain Korea 21 project
and the Ministry of Knowledge Economy, Korea, under the Core Technology
Development for Breakthrough of Robot Vision Research support program
supervised by the National IT Industry Promotion Agency.

Competing interests
The authors declare that they have no competing interests.

Received: 24 January 2011 Accepted: 17 August 2011
Published: 17 August 2011

References
1. Scharstein D, Szeliski R: A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms. Int J Comput Vision 2002, 47(1-3):7-42.
2. Kanade T, et al: A stereomachine for video-rate dense depth mapping

and its newapplications. Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition 1996.

3. Konolige K: Small vision systems: Hardware and implementation.
Proceedings of Eighth International Symposium Robotics Research 1997.

4. Corke P, Dunn P: Real-time stereopsis using fpgas. IEEE TEN-CON.Speech
and Image Technologies for Computing and Telecommunications 1997,
235-238.

5. Hariyama M, et al: Architecture of a stereo matching VLSI processor
based on hierarchically parallel memory access. The 2004 47th Midwest
Symposium on Circuits and Systems 2004, 2:II245-II247.

6. Kimura S, et al: A convolver-based real-time stereo machine (SAZAN).
Proceedings of Computer Vision and Pattern Recognition 1999, 1:457-463.

7. Woodfill J, Von Herzen B: Real-time stereo vision on the parts
reconfigurable computer. IEEE Workshop FPGAs for Custom Computing
Machines 1997, 242-250.

8. Kolmogorov V, Zabih R: Computing visual correspondence with
occlusions using graph cuts. ICCV 2001, 2:508-515.

9. Xiao J, Shah M: Motion layer extraction in the presence of occlusion
using graph cuts. IEEE Trans Pattern Anal Mach Intell 2005,
27(10):1644-1659.

10. Felzenszwalb PF, Huttenlocher DR: Efficient belief propagation for early
vision. Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition 2004, 1:I261-I268.

11. Zheng NN, Sun J, Shum HY: Stereo matching using belief propagation.
IEEE Trans Pattern Anal Mach Intell 2003, 25(7):787-800.

12. MacCormick J, Isard M: Estimating disparity and occlusions in stereo
video sequences. Asian Conference on Computer Vision (ACCV) 2006, 32-41.

13. Yang Q, et al: Real-time global stereo matching using hierarchical belief
propagation. The British Machine Vision Conference 2006.

14. Mignotte M, Jodoin P-M, St-Amour J-F: Markovian energy-based computer
vision algorithms on graphics hardware. ICIAP’05, LNCS 2005,
3617:592-603.

15. Park S, Chen C, Jeong H: VLSI Architecture for MRF Based Stereo
Matching. 7th International Workshop SAMOS 2007, 55-64.

16. Park S, Jeong H: Memory-efficient iterative process on a two-dimensional
first-order regular graph. Opt Lett 2008, 33(1).

17. Banz Christian, et al: Real-time stereo vision system using semi-global
matching disparity estimation: Architecture and FPGA-implementation.
International Conference on Embedded Computer Systems (SAMOS) 2010,
93-101.

18. Shental N, et al: Learning and inferring image segmentations using the
GBP typical cut algorithm. ICCV 2003, 1243-1250.

19. Park S, Jeong H: Real-time stereo vision FPGA chip with low error rate.
International Conference on Multimedia and Ubiquitous Engineering 2007,
751-756.

20. Forstmann S, et al: Real-time stereo by using dynamic programming.
CVPR, Workshop on Real-Time 3D Sensors and Their Use 2004.

21. Park S, Jeong H: High-speed parallel very large scale integration
architecture for global stereo matching. J Electron Imaging 2008,
17(1):010501.

22. Jin Seunghun, et al: FPGA design and implementation of a real-time
stereo vision system. IEEE Trans Circuits Syst Video Technol 2010,
20(1):15-26.

doi:10.1186/1687-5281-2011-4
Cite this article as: Park et al.: Real-time stereo matching architecture
based on 2D MRF model: a memory-efficient systolic array. EURASIP
Journal on Image and Video Processing 2011 2011:4.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

(a) Input video im-
age

(b) Output t (c) Output t + 1

Figure 18 FPGA output for real images. (a) Input video image. (b) Output t. (c) Output t + 1.

Park et al. EURASIP Journal on Image and Video Processing 2011, 2011:4
http://jivp.eurasipjournals.com/content/2011/1/4

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/16237998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16237998?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Review of belief propagation
	3 The proposed fast belief propagation sequence
	4 New iteration sequence considering the iteration direction
	5 Systolic VLSI architecture
	6 Experimental results
	6.1 Software simulation
	6.2 FPGA implementation

	7 Conclusions
	Acknowledgements
	Competing interests
	References

