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For the purposes of foreground estimation, the true background model is unavailable in many practical circumstances and needs
to be estimated from cluttered image sequences. We propose a sequential technique for static background estimation in such
conditions, with low computational and memory requirements. Image sequences are analysed on a block-by-block basis. For each
block location a representative set is maintained which contains distinct blocks obtained along its temporal line. The background
estimation is carried out in a Markov Random Field framework, where the optimal labelling solution is computed using iterated
conditional modes. The clique potentials are computed based on the combined frequency response of the candidate block and its
neighbourhood. It is assumed that the most appropriate block results in the smoothest response, indirectly enforcing the spatial
continuity of structures within a scene. Experiments on real-life surveillance videos demonstrate that the proposed method obtains
considerably better background estimates (both qualitatively and quantitatively) than median filtering and the recently proposed
“intervals of stable intensity” method. Further experiments on the Wallflower dataset suggest that the combination of the proposed

method with a foreground segmentation algorithm results in improved foreground segmentation.

1. Introduction

Intelligent surveillance systems can be used effectively for
monitoring critical infrastructure such as banks, airports,
and railway stations [1]. Some of the key tasks of these
systems are real-time segmentation, tracking and analysis
of foreground objects of interest [2, 3]. Many approaches
for detecting and tracking objects are based on background
subtraction techniques, where each frame is compared
against a background model for foreground object detection.

The majority of background subtraction methods adap-
tively model and update the background for every new input
frame. Surveys on this class of algorithms are found in
[4, 5]. However, most methods presume that the training
image sequence used to model the background is free
from foreground objects [6-8]. This assumption is often
not true in the case of uncontrolled environments such
as train stations and airports, where directly obtaining a
clear background is almost impossible. Furthermore, in
certain situations a strong illumination change can render

the existing background model ineffective, thereby forcing us
to compute a new background model. In such circumstances,
it becomes inevitable to estimate the background using
cluttered sequences (i.e., where parts of the background are
occluded). A good background estimate will complement the
succeeding background subtraction process, which can result
in improved detection of foreground objects.

The problem can be paraphrased as follows: given a
short image sequence captured from a stationary camera in
which the background is occluded by foreground objects
in every frame of the sequence for most of the time, the
aim is to estimate its background, as illustrated in Figure 1.
This problem is also known in the literature as background
initialisation or bootstrapping [9]. Background estimation
is related to, but distinct from, background modelling.
Owing to the complex nature of the problem, we confine
our estimation strategy to static backgrounds (e.g., no
waving trees), which are quite common in urban surveillance
environments such as banks, shopping malls, airports and
train stations.



Existing background estimation techniques, such as
simple median filtering, typically require the storage of all the
input frames in memory before estimating the background.
This increases memory requirements immensely. In this
paper, we propose a robust background estimation algorithm
in a Markov Random Field (MRF) framework. It operates on
the input frames sequentially, avoiding the need to store all
the frames. It is also computationally less intensive, enabling
the system to achieve real-time performance—this aspect
is critical in video surveillance applications. This paper is
a thoroughly revised and extended version of our previous
work [10].

We continue as follows. Section 2 gives an overview
of existing methods for background estimation. Section 3
describes the proposed algorithm in detail. Results from
experiments on real-life surveillance videos are given in
Section 4, followed by the main findings in Section 5.

2. Previous Work

Existing methods to address the cluttered background esti-
mation problem can be broadly classified into three cate-
gories: (i) pixel-level processing, (ii) region-level processing,
and (iii) a hybrid of the first two. It must be noted that
all methods assume the background to be static. The three
categories are overviewed in the sections below.

2.1. Pixel-Level Processing. In the first category, the simplest
techniques are based on applying a median filter on pixels at
each location across all the frames. Lo and Velastin [11] apply
this method to obtain reference background for detecting
congestion on underground train platforms. However, its
limitation is that the background is estimated correctly only
if it is exposed for more than 50% of the time. Long and
Yang [12] propose an algorithm that finds pixel intervals
of stable intensity in the image sequence, then heuristically
chooses the value of the longest stable interval to most
likely represent the background. Bevilacqua [13] applies
Bayes’ theorem in his proposed approach. For every pixel,
it estimates the intensity value to which that pixel has the
maximum posterior probability.

Wang and Suter [14] employ a two-staged approach.
The first stage is similar to that of [12], followed by
choosing background pixel values whose interval maximises
an objective function. It is defined as N, /S, where N,
and §;, are the length and standard variance of the kth
interval of pixel sequence I. The method proposed by Kim
et al. [15] quantises the temporal values of each pixel into
distinct bins called codewords. For each codeword, it keeps
a record of the maximum time interval during which it
has not recurred. If this time period is greater than N/2,
where N is the total number of frames in the sequence, the
corresponding codeword is discarded as foreground pixel.
The system recently proposed by Chiu et al. [16] estimates
the background and utilises it for object segmentation. Pixels
obtained from each location along its time axis are clustered
based on a threshold. The pixel corresponding to the cluster
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having the maximum probability and greater than a time-
varying threshold is extracted as background pixel.

All these pixel-based techniques can perform well when
the foreground objects are moving, but are likely to fail when
the time interval of exposure of the background is less than
that of the foreground.

2.2. Region-Level Processing. In the second category, the
method proposed by Farin et al. [17] performs a rough seg-
mentation of input frames into foreground and background
regions. To achieve this, each frame is divided into blocks, the
temporal sum of absolute differences (SAD) of the colocated
blocks is calculated, and a block similarity matrix is formed.
The matrix elements that correspond to small SAD values
are considered as stationary elements and high SAD values
correspond to nonstationary elements. A median filter is
applied only on the blocks classified as background. The
algorithm works well in most scenarios, however, the spatial
correlation of a given block with its neighbouring blocks
already filled by background is not exploited, which can
result in estimation errors if the objects are quasistationary
for extended periods.

In the method proposed by Colombari et al. [18], each
frame is divided into blocks of size N X N overlapping
by 50% in both dimensions. These blocks are clustered
using single linkage agglomerative clustering along their
time-line. In the following step, the background is built
iteratively by selecting the best continuation block for the
current background using the principles of visual grouping.
The spatial correlations that naturally exist within small
regions of the background image are considered during
the estimation process. The algorithm can have problems
with blending of the foreground and background due to
slow moving or quasistationary objects. Furthermore, the
algorithm is unlikely to achieve real-time performance due
to its complexity.

2.3. Hybrid Approaches. In the third category, the algorithm
presented by Gutchess et al. [19] has two stages. The
first stage is similar to that of [12], with the second
stage estimating the likelihood of background visibility by
computing the optical flow of blocks between successive
frames. The motion information helps classify an intensity
transition as background to foreground or vice versa. The
results are typically good, but the usage of optical flow for
each pixel makes it computationally intensive.

In [20], Cohen views the problem of estimating the
background as an optimal labelling problem. The method
defines an energy function which is minimised to achieve
an optimal solution at each pixel location. It consists of
data and smoothness terms. The data term accounts for
pixel stationarity and motion boundary consistency while
the smoothness term looks for spatial consistency in the
neighbourhood. The function is minimised using the a-
expansion algorithm [21] with suitable modifications. A
similar approach with a different energy function is proposed
by Xu and Huang [22]. The function is minimised using
loopy belief propagation algorithm. Both solutions provide
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FIGure I: Typical example of estimating the background from an cluttered image sequence: (a) input frames cluttered with foreground
objects, where only parts of the background are visible; (b) estimated background.

robust estimates, however, their main drawback is large
computational complexity to process a small number of
input frames. For instance, in [22] the authors report a
prototype of the algorithm on Matlab takes about 2.5
minutes to estimate the background from a set of only 10
images of QVGA resolution (320 x 240).

3. Proposed Algorithm

We propose a computationally efficient, region-level algo-
rithm that aims to address the problems described in the
previous section. It has several additional advantages as well
as novelties, including the following.

(i) The background estimation problem is recast into an
MREF scheme, providing a theoretical framework.

(ii) Unlike the techniques mentioned in Section 2, it does
not expect all frames of the sequence to be stored
in memory simultaneously—instead, it processes
frames sequentially, which results in a low memory
footprint.

(iii) The formulation of the clique potential in the MRF
scheme is based on the combined frequency response
of the candidate block and its neighbourhood. It
is assumed that the most appropriate configuration
results in the smoothest response (minimum energy),
indirectly exploiting the spatial correlations within
small regions of a scene.

(iv) Robustness against high frequency image noise. In
the calculation of the energy potential, we compute
2D Discrete Cosine Transform (DCT) of the clique.
The high frequency DCT coefficients are ignored in
the analysis as they typically represent image noise.

3.1. Overview of the Algorithm. In the text below, we first
provide an overview of the proposed algorithm, followed by
a detailed description of its components (Sections 3.2 to 3.5).
It is assumed that at each block location: (i) the background
is static and is revealed at some point in the training sequence
for a short interval and (ii) the camera is stationary. The

background is estimated by recasting it as a labelling problem
in an MRF framework. The algorithm has three stages.

Let the resolution of the greyscale image sequence I be
Wx H. In the first stage, the frames are viewed as instances of
an undirected graph, where the nodes of the graph are blocks
of size N XN pixels (for implementation purposes, each block
location and its instances at every frame are treated as a node
and its labels, resp.). We denote the nodes of the graph by
N(i,j)fori=0,1,2,...,(W/N)-1,j =0,1,2,...,(H/N) -
1. Let I be the fth frame of the training image sequence and
let its corresponding node labels be denoted by £ (i, j), and
f = 1,2,...,F, where F is the total number of frames. For
convenience, each node label £¢(i, j) is vectorised into an
N? dimensional vector 17 (i, j).

At each node location (i, j), a representative set R (i, j)
is maintained. It contains distinct labels that were obtained
along its temporal line. Two labels are considered as distinct
(visually different) if they fail to adhere to one of the
constraints described in Section 3.2. Let these unique
representative labels be denoted by (i, j) for k = 1,2,...,S
(with § < F), where ry denotes the mean of all the labels
which were considered as similar to each other (mean of
the cluster). Each label ry has an associated weight Wi
which denotes its number of occurrences in the sequence,
that is, the number of labels at location (i, j) which are
deemed to be the same as (i, j). For every such match, the
corresponding r, (i, j) and its associated variance, (i, j), are
updated recursively as given below:

new

] old +

Wi —

z;:ew = Wi lzzld + Wk1+ 1 (lf - rzld>/<lf - rzld)) (2)

where 1914, 2014 and ¥, 21" are the values of ry and its
associated variance before and after the update, respectively,
and I is the incoming label which matched r{'®. It is assumed
that one element of R (i, j) corresponds to the background.
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FIGURE 2: (a) Example frame from an image sequence, (b) partial background initialisation (after Stage 2), (c) remaining background

estimation in progress (Stage 3), (d) estimated background.

In the second stage, representative sets R(i, j) having
just one label are used to initialise the corresponding node
locations $B(i, j) in the background B.

In the third stage, the remainder of the background
is estimated iteratively. An optimal labelling solution is
calculated by considering the likelihood of each of its labels
along with the a priori knowledge of the local spatial
neighbourhood modelled as an MRE. Iterated conditional
mode (ICM), a deterministic relaxation technique, performs
the optimisation. The framework is described in detail in
Section 3.3. The strategy for selecting the location of an
empty background node to initialise a label is described in
Section 3.4. The procedure for calculating the energy poten-
tials, a prerequisite in determining the a priori probability, is
described in Section 3.5.

The overall pseudocode of the algorithm is given in
Algorithm 1 and an example of the algorithm in action is
shown in Figure 2.

3.2. Similarity Criteria for Labels. We assert that two labels
1£ (i, j) and ri (i, j) are similar if the following two constraints
are satisfied:

(1 (s ) = e (1)) (1 G ) = g, (i ) ) .

7,  (3)
07,01, !
1 N2-1
N2 2 Ak ()] < 7. (4)
n=0

Equations (3) and (4), respectively, evaluate the correlation
coefficient and the mean of absolute differences (MAD)
between the two labels, with the latter constraint ensuring
that the labels are close in N? dimensional space. piy,, Hi; and
Or,, 01, are the mean and standard deviation of the elements
of labels rx and Iy, respectively, while di(i, j) = 17(i, j) —
i (i, j).

T1 is selected empirically (see Section 4), to ensure that
two visually identical labels are not treated as being different
due to image noise. 73 is proportional to image noise and is
found automatically as follows. Using a short training video,
the MAD between colocated labels of successive frames is
calculated. Let the number of frames be L and let N;, be the
number of labels per frame. The total MAD points obtained
will be (L — 1)Nj. These points are sorted in ascending order

and divided into quartiles. The points lying between quartiles
Qs and Q; are considered. Their mean, uq, and standard
deviation, 0q,,, are used to estimate 73 as 2 X (pq,, +20q,,)-
This ensures that low MAD values (close or equal to zero)
and high MAD values (arising due to movement of objects)
are ignored (i.e., treated as outliers).

We note that both constraints (3) and (4) are nec-
essary. As an example, two vectors [1,2,...,16] and
[101,102,...,116] have a perfect correlation of 1 but their
MAD will be higher than 7. On the other hand, if a thin edge
of the foreground object is contained in one of the labels,
their MAD may be well within 75. However, (3) will be low
enough to indicate the dissimilarity of the labels. In contrast,
we note that in [18] the similarity criteria are just based on
the sum of squared distances between the two blocks.

3.3. Markov Random Field (MRF) Framework. Markov ran-
dom field/probabilistic undirected graphical model theory
provides a coherent way of modelling context-dependent
entities such as pixels or edges of an image. It has a set of
nodes, each of which corresponds to a variable or a group
of variables, and set of links each of which connects a pair
of nodes. In the field of image processing it has been widely
employed to address many problems, that can be modelled
as labelling problem with contextual information [23, 24].

Let X be a 2D random field, where each random variate
X(;,j(V1i, j) takes values in discrete state space A. Let 0 € Q
be a configuration of the variates in X, and let Q) be the set of
all such configurations. The joint probability distribution of
X is considered Markov if

pPX=w)>0, VweQ,
(5)

P(Xiip | Xipgps (i) # (o)) = p(Xijy | X )

where Xy, refers to the local neighbourhood system of X(; j).

Unfortunately, the theoretical factorisation of the joint
probability distribution of the MRF turns out to be
intractable. To simplify and provide computationally effi-
cient factorisation, Hammersley-Clifford theorem [25] states
that an MRF can equivalently be characterised by a Gibbs
distribution. Thus

e U(w)/T

pX=0w)= 7 (6)
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Stage 1: Collection of Label Representatives
(1) R < & (null set)
(2)for f =1to F do

(b) for each node label £ (i, j) do
(i) Vectorise node £ £ (i, j) into 1, (i, j).

based on conditions in (3) and (4).
k—k+1
else

given by (1) and (2), respectively.
Wm(1>]) - Wm(lv]) +1
end if
end for each
end for

Stage 2: Partial Background Initialisation
1)B — T
(2) for each set R(i, j) do
if (size(R(i, j)) = 1) then
B(i,j) — 110 j).
end if
end for each

Stage 3: Estimation of the Remaining Background
(1) Full background initialisation
while (8 not filled) do

in (11) (see Section 3.3).
end if
end while
(2) Application of ICM
iteration count — 0
while (iteration count < total iterations) do
for each set R (i, j) do
if P(rnew(i>j)) > P(rold(i)j)) then

end if
end for each
iteration count = iteration count + 1

(a) Split input frame I into node labels, each with a size of N X N.
(ii) Find the representative label r,,(i, j) from the set
R, j) = (re(i, j) | 1 < k < §), matching to 17(i, j)
if (R(i, j) = {D} or there is no match). then
Add a new representative label 1, (i, j) — 1¢(3, j) to set R(3, j) and initialise its weight, Wi (i, j), to 1.

Recursively update the matched label r,, (4, j) and its variance

if B(i, j) = & and has neighbours as specified in Section 3.4 then
B(i, j) — Imax(i, j), the label out of set R (i, j) which yields maximum value of the posterior probability described

Bi, j) — Inew(i, j), where P(-) is the posterior probability defined by (11).

end while
ArLcoriTHM 1: Pseudo-code for the proposed algorithm.
where The value of V.(w) depends on the local configuration of
clique c.
_ ~U(w)/T . . .
Z= z e (7) In our framework, information from two disparate

w

is a normalisation constant known as the partition function,
T is a constant used to moderate the peaks of the distribution
and U(w) is an energy function which is the sum of
clique/energy potentials V. over all possible cliques C:

Ulw) = > Ve(w). (8)

ceC

sources is combined using Bayes’ rule. The local visual obser-
vations at each node to be labelled yield label likelihoods. The
resulting label likelihoods are combined with a priori spatial
knowledge of the neighbourhood represented as an MRF.
Let each input image I be treated as a realisation of the
random field 8. For each node B(j, j), the representative set
R(i, j) (see Section 3.1) containing unique labels is treated
as its state space with each ri(i, j) as its plausible label (to



simplify the notations, index term (i, j) has been henceforth
omitted).

Using Bayes’ rule, the posterior probability for every label
at each node is derived from the a priori probabilities and the
observation-dependent likelihoods given by

P(ri) = I(rx) p(re). 9)

The product is comprised of likelihood I(rx) of each
label 1y of set R and its a priori probability density p(rx),
conditioned on its local neighbourhood. In the derivation
of likelihood function, it is assumed that at each node the
observation components r; are conditionally independent
and have the same known conditional density function
dependent only on that node.

At a given node, the label that yields maximum a poste-
riori (MAP) probability is chosen as the best continuation of
the background at that node.

To optimise the MRF-based function defined in (9), ICM
is used since it is computationally efficient and avoids large-
scale effects (an undesired characteristic where a single label
wrongly gets assigned to most of the nodes of the random
field). [24]. ICM maximises local conditional probabilities
iteratively until convergence is achieved.

Typically, in ICM an initial estimate of the labels is
obtained by maximising the likelihood function. However,
in our framework an initial estimate consists of partial
reconstruction of the background at nodes having just one
label which is assumed to be the background. Using the
available background information, the remaining unknown
background is estimated progressively (see Section 3.4).

At every node, the likelihood of each of its labels ri(k =
1,2,...,S) is calculated using corresponding weights W (see
Section 3.1). The higher the occurrences of a label, the more
is its likelihood to be part of the background. Empirically,
the likelihood function is modelled by a simple weighted
function given by:

W,

I(ry) = ,
Zi:1 WCk

(10)

where W, = min(Wpay, Wi) and Wyax = 5 X frame rate of
the captured sequence (it is assumed that the likelihood of a
label exposed for a duration of 5 seconds is good enough to
be regarded as a potential candidate for the background).

As evident, the weight W of a label greater than Wiy
will be capped to Winax. Setting a maximum threshold value
is necessary in circumstances where the image sequence has
a stationary foreground object visible for an exceedingly long
period when compared to the background occluded by it. For
example, in a 1000-frame sequence, a car might be parked for
the first 950 frames and in the last 50 frames it drives away. In
this scenario, without the cap the likelihood of the car being
part of the background will be too high compared to the true
background and this will bias the overall estimation process
causing errors in the estimated background.

Relying on this likelihood function alone is insufficient
since it may still introduce estimation errors even when the

EURASIP Journal on Image and Video Processing

A -1 B c
T T
I AN I
1 Nz 1
1 PN 1
VA N
D |----A X E
F G H

Ficure 3: The local neighbourhood system and its four cliques.
Each clique is comprised of 4 nodes (blocks). To demonstrate one
of the cliques, the the top-left clique has dashed links.

foreground object is exposed for just slightly longer duration
compared to the background.

Hence, to overcome this limitation, the spatial neigh-
bourhood modelled as Gibbs distribution (given by (6)) is
encoded into an a priori probability density. The formulation
of the clique potential V.(w) referred in (8) is described in
the Section 3.5. Using (6), (7), and (8), the calculated clique
potentials V.(w) are transformed into a priori probabilities.
For a given label, the smaller the value of energy function, the
greater is its probability in being the best match with respect
to its neighbours.

In our evaluation of the posterior probability given by
(9), the local spatial context term is assigned more weight
than the likelihood function which is just based on temporal
statistics. Thus, taking log of (9) and assigning a weight to
the prior, we get

log(P(rx)) = log(I(xx)) + nlog(p(xk)), (11)

where 7 has been empirically set to number of neighbouring
nodes used in clique potential calculation (typically # = 3).
The weight is required in order to address the scenario
where the true background label is visible for a short interval
of time when compared to labels containing the foreground.
For example, in Figure 2, a sequence consisting of 450
frames was used to estimate its background. The person was
standing as shown in Figure 2(a) for the first 350 frames
and eventually walked off during the last 100 frames. The
algorithm was able to estimate the background occluded
by the standing person. It must be noted that pixel-level
processing techniques are likely to fail in this case.

3.4. Node Initialisation. Nodes containing a single label in
their representative set are directly initialised with that label
in the background (see Figure 2(b)). However, in some
rare situations there is a possibility that all the sets may
contain more than one label. In such a case, the algorithm
heuristically picks the label having the largest weight W from
the representative sets of the four-corner nodes as an initial
seed to initialise the background. It is assumed atleast one of
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the corner regions in the video frames corresponds to a static
region.

The rest of the nodes are initialised based on constraints
as explained below. In our framework, the local neighbour-
hood system [23] of a node and the corresponding cliques
are defined as shown in Figure 3. A clique is defined as
a subset of the nodes in the neighbourhood system that
are fully connected. The background at an empty node
will be assigned only if at least 2 neighbouring nodes of
its 4-connected neighbours adjacent to each other and the
diagonal node located between them are already assigned
with background labels. For instance, in Figure 3, we can
assign a label to node X if at least nodes B, D, (adjacent 4-
connected neighbours) and A (diagonal node) have already
been assigned with labels. In other words, label assignment at
node X is conditionally independent of all other nodes given
these 3 neighbouring nodes.

Node X has nodes D, B, E, and G as its 4-connected
neighbours. Let us assume that all nodes except X are
labelled. To label node X the procedure is as follows. In
Figure 3, four cliques involving X exist. For each candidate
label at node X, the energy potential for each of the
four cliques is evaluated independently given by (12) and
summed together to obtain its energy value. The label
that yields the least value is likely to be assigned as the
background.

Mandating that the background should be available in
at least 3 neighbouring nodes located in three different
directions with respect to node X ensures that the best
match is obtained after evaluating the continuity of the pixels
in all possible orientations. For example, in Figure 4, this
constraint ensures that the edge orientations are well taken
into account in the estimation process. It is evident from
examples in Figure 4 that using either horizontal or vertical
neighbours alone can cause errors in background estimation
(particularly at edges).

Sometimes not all the three neighbours are available. In
such cases, to assign a label at node X we use one of its 4-
connected neighbours whose node has already been assigned
with a label. Under these contexts, the clique is defined as two
adjacent nodes either in the horizontal or vertical direction.

Typically, after initialising all the empty nodes, an accu-
rate estimate of the background is obtained. Nonetheless,
in certain circumstances an incorrect label assignment at
a node may cause an error to occur and propagate to its
neighbourhood. Our previous algorithm [10] is prone to
this type of problem. However, in the current framework
the problem is successfully redressed by the application of
ICM. In subsequent iterations, in order to avoid redundant
calculations, the label process is carried out only at nodes
where a change in the label of one of their 8-connected
neighbours occurred in the previous iteration.

3.5. Calculation of the Energy Potential. In Figure 3, it is
assumed that all nodes except X are assigned with the
background labels. The algorithm needs to assign an optimal
label at node X. Let node X have S labels in its state space
R for k = 1,2,...,S where one of them represents the

o
- | - -
%i - %i_ -—
(a) (b)
FIGURE 4: (a) Three cliques each of which has an empty node. The
gaps between the blocks are for ease of interpretation only. (b) Same
cliques where the empty node has been labelled. The constraint of
3 neighbouring nodes to be available in 3 different directions as

illustrated ensures that arbitrary edge continuities are taken into
account while assigning the label at the empty node.

true background. Choosing the best label is accomplished
by analysing the spectral response of every possible clique
constituting the unknown node X. For the decomposition,
we chose the Discrete Cosine Transform (DCT) [26] due to
its decorrelation properties as well as ease of implementation
in hardware. The DCT coefficients were also utilised by
Wang et al. [27] to segment moving objects from compressed
videos.

We consider the top left clique consisting of nodes A, B,
D, and X. Nodes A, B, and C are assigned with background
labels. Node X is assigned with one of S candidate labels.
We take the 2D DCT of the resulting clique. The transform
coefficients are stored in matrix Cy of size M X M (M = 2N)
with its elements referred to as Ci(v,u). The term Ci(0,0)
(reflecting the sum of pixels at each node) is forced to 0 since
we are interested in analysing the spatial variations of pixel
values.

Similarly, for other labels present in the state space
of node X, we compute their corresponding 2D DCT as
mentioned above. A graphical example of the procedure is
shown in Figure 5.

Assuming that pixels close together have similar intensi-
ties, when the correct label is placed at node X, the resulting
transformation has a smooth response (less high frequency
components) when compared to other candidate labels.

The higher-order components typically correspond to
high frequency image noise. Hence, in our energy potential
calculation defined below we consider only the lower 75%
of the frequency components after performing a zig-zag scan
from the origin.

The energy potential for each label is calculated using

P-1P-1
Vc(wk) = (Z Z |Ck(V,M)), (12)

v=0 u=0
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FIGURE 5: An example of the processing done in Section 3.5. (a)
A clique involving empty node X with four candidate labels in its
representative set. (b) A clique and a graphical representation of its
DCT coefficient matrix where node X is initialised with candidate
label 1. The gaps between the blocks are for ease of interpretation
only and are not present during DCT calculation. (c) As per (b),
but using candidate label 2. (d) As per (b), but using candidate label
3. (e) As per (b), but using candidate label 4. The smoother spectral
distribution for candidate 3 suggests that it is a better fit than the
other candidates.
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where P = ceil(v/M? x 0.75) and wy is the local configu-
ration involving label k. Similarly, the potentials over other
three cliques in Figure 3 are calculated.

4. Experiments

In our experiments, the testing was limited to greyscale
sequences. The size of each node was set to 16 X 16. The
threshold 77 was empirically set to 0.8 based on prelim-
inary experiments, discussed in Section 4.1.3. 7; (found
automatically) was found to vary between 1 and 4 when
tested on several image sequences (77 and 75 are described
in Section 3.2).

A prototype of the algorithm using Matlab on a 1.6
GHz dual core processor yielded 17 fps. We expect that
considerably higher performance can be attained by con-
verting the implementation to C++, with the aid of libraries
such as OpenCV [28] or Armadillo [29]. To emphasise the
effectiveness of our approach, the estimated backgrounds
were obtained by labelling all the nodes just once (no
subsequent iterations were performed).

We conducted two separate set of experiments to verify
the performance of the proposed method. In the first case,
we measured the quality of the estimated backgrounds, while
in the second case we evaluated the influence of the proposed
method on a foreground segmentation algorithm. Details of
both the experiments are described in Sections 4.1 and 4.2,
respectively.

4.1. Standalone Performance. We compared the proposed
algorithm with a median filter-based approach (i.e.,
applying filter on pixels at each location across all the
frames) as well as finding intervals of stable intensity
(ISI) method presented in [14]. We used a total of 20
surveillance videos: 7 obtained from CAVIAR dataset
(http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
), 3 sequences from the abandoned object dataset used in the
CANDELA project (http://www.multitel.be/~va/candela/),
and 10 unscripted sequences obtained from a railway station
in Brisbane. The CAVIAR and and CANDELA sequences
were chosen based on four criteria: (i) a minimum duration
of 700 frames, (ii) containing significant background
occlusions, (iii) the true background is available in at least
one frame, and (iv) have largely static backgrounds. Having
the true background allows for quantitative evaluation of
the accuracy of background estimation. The sequences were
resized to 320 x 240 pixels (QVGA resolution) in keeping
with the resolution typically used in the literature.

The algorithms were subjected to both qualitative and
quantitative evaluations. Sections 4.1.1 and 4.1.2, respec-
tively, describe the experiments for both cases. Sensitivity of
77 1is studied in Section 4.1.3.

4.1.1. Qualitative Evaluation. All 20 sequences were used
for subjective evaluation of the quality of background
estimation. Figure 6 shows example results on four sequences
with differing complexities.
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FIGURE 6: (a) Example frames from four videos, and the reconstructed background using: (b) median filter, (c) ISI method [14], and (d)

proposed method.

Going row by row, the first and second sequences are
from a railway station in Brisbane, the third is from the
CANDELA dataset and the last is from the CAVIAR dataset.
In the first sequence, several commuters wait for a train,
slowly moving around the platform. In the second sequence,
two people (security guards) are standing on the platform
for most of the time. In the third sequence, a person places
a bag on the couch, abandons, it and walks away. Later, the
bag is picked up by another person. The bag is in the scene
for about 80% of the time. In the last sequence, two people
converse for most of the time while others slowly walk along
the corridor. All four sequences have foreground objects that
are either dynamic or quasistationary for most of the time.

It can be observed that the estimated backgrounds
obtained from median filtering (second column) and the ISI
method (third column) have traces of foreground objects
that were stationary for a relatively long time. The results
of the proposed method appear in the fourth column and

indicate visual improvements over the other two techniques.
It must be noted that stationary objects can appear as
background to the proposed algorithm, as indicated in the
first row of the fourth column. Here a person is standing at
the far end of the platform for the entire sequence.

4.1.2. Quantitative Evaluation. To objectively evaluate the
quality of the estimated backgrounds, we considered the
test criteria described in [19], where the average grey-level
error (AGE), total number of error pixels (EPs) and the
number of “clustered” error pixels (CEPs) are used. AGE is
the average of the difference between the true and estimated
backgrounds. If the difference between estimated and true
background pixel is greater than a threshold, then it is
classified as an EP. We set the threshold to 20, to ensure good
quality backgrounds. A CEP is defined as any error pixel
whose 4-connected neighbours are also error pixels. As our
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method is based on region-level processing, we calculated
only the AGE and CEPs.

The Brisbane railway station sequences were not used
as their true background was unavailable. The remaining
10 image sequences were used as listed in Table 1. To
maintain uniformity across sequences, the experiments were
conducted using the first 700 frames from each sequence.
The background was estimated in three cases. In the first
case, all 700 frames (100%) were used to estimate the
background. To evaluate the quality when less frames are
available (e.g., the background needs to be updated more
often), in the second case, the sequences were split into
halves of 350 frames (50%) each. Each subsequence was used
independently for background estimation and the obtained
results were averaged. In the third case each subsequence was
turther split into halves (i.e., 25% of the total length). Further
division of the input resulted in subsequences in which parts
of the background were always occluded and hence were not
utilised. The averaged AGE and CEP values in all three cases
are graphically illustrated in Figure 7 and tabulated in Tables
1 and 2. The visual results in Figure 6 confirm the objective
results, with the proposed method producing better quality
backgrounds than the median filter approach and the ISI
method.

4.1.3. Sensitivity of 71. To find the optimum value of 77, we
chose a random set of sequences from the CAVIAR dataset,
whose true background was available a-priori and computed
the averaged AGE between the true and estimated back-
grounds for various values of 77 as indicated in Figure 8. As
shown, the optimum value (minimum error) was obtained
at 77 =0.8.

4.2. Evaluation by Foreground Segmentation. In order to
show that the proposed method aids in better segmentation
results, we objectively evaluated the performance of a
segmentation algorithm (via background subtraction) on the
Wallflower dataset. We note that the proposed method is
primarily designed to deal with static backgrounds, while
Wallflower contains both static and dynamic backgrounds.
As such, Wallflower might not be optimal for evaluating
the efficacy of the proposed algorithm in its intended
domain; however, it can nevertheless be used to provide
some suggestive results as to the performance in various
conditions.

For foreground object segmentation estimation, we use a
Gaussian-based background subtraction method where each
background pixel is modelled using a Gaussian distribution.
The parameters of each Gaussian (i.e., the mean and vari-
ance) are initialised either directly from a training sequence,
or via the proposed MRF-based background estimation
method (i.e., using labels yielding the maximum value
of the posterior probability described in (11) and their
corresponding variances, resp.). The median filter and ISI
[14] methods were not used since they do not define how
to compute pixel variances of their estimated background.

For measurement of foreground segmentation accuracy,
we use the similarity measure adopted by Maddalena and
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Petrosino [30], which quantifies how similar the obtained
foreground mask is to the ground-truth. The measure is
defined as

tp
tp+ fp+ fn’

where similarity € [0, 1], while tp, fp, and fn are total
number of true positives, false positives and false negatives
(in terms of pixels), respectively. The higher the similarity
value, the better the segmentation result. We note that the
similiarity measure is related to precision and recall metrics
[31].

The parameter settings were the same as used for
measuring the standalone performance (Section 4.1). The
relative improvements in similarity resulting from the use
of the MRF-based parameter estimation in comparison to
direct parameter estimation are listed in Table 3.

We note that each of the Wallflower sequences addresses
one specific problem, such as dynamic background, sud-
den and gradual illumination variations, camouflage, and
bootstrapping. As mentioned earlier, the proposed method
is primarily designed for static background estimation
(bootstrapping). On the “Bootstrap” sequence, characterised
by severe background occlusion, we register a significant
improvement of over 62%. On the other sequences, the
results are only suggestive and need not always yield high
similarity values. For example, we note a degradation in the
performance on “TimeOfDay” sequence. In this sequence,
there is steady increase in the lighting intensity from
dark to bright, due to which identical labels were falsely
treated as “unique”. As a result, estimated background labels
variance appeared to be smaller than the true variance of
the background, which in turn resulted in surplus false
positives. Overall, MRF-based background initialisation over
6 sequences achieved an average percentage improvement in
similarity value of 16.67%.

similarity = (13)

4.3. Additional Observations. We noticed (via subjective
observations) that all background estimation algorithms
perform reasonably well when foreground objects are always
in motion (i.e., in cases where the background is visible for a
longer duration when compared to the foreground). In such
circumstances, a median filter is perhaps sufficient to reliably
estimate the background. However, accurate estimation by
the median filter and the ISI method becomes problematic
if the above condition is not satisfied. This is the main
area where the proposed algorithm is able to estimate the
background with considerably better quality.

The proposed algorithm sometimes misestimates the
background in cases where the true background is char-
acterised by strong edges while the occluding foreground
object is smooth (uniform intensity value) and has intensity
value similar to that of the background (i.e., low contrast
between the foreground and the background). Under these
conditions, the energy potential of the label containing
the foreground object is smaller (i.e., smoother spectral
response) than that of the label corresponding to the true
background.
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FIGURE 7: Averaged values of AGE (a) and CEPs (b) obtained by using 100%, 50% and 25% of the input sequences.

TaBLE 1: Averaged grey-level error (AGE) results from experiments on 10 image sequences. The results under case 2 and case 3 (using 50%
and 25% of the input sequence, resp.) were obtained by averaging over the two and four subsequences, respectively.

case 1: 100%

case 2: 50% case 3: 25%

Sequence Number of input frames =700 ~ Number of input frames =350 ~ Number of input frames = 175
median ISI proposed  median ISI proposed  median ISI proposed
filter method  method filter method  method filter method  method
m1.10 abandoned object.avi 0.88 0.88 0.42 1.45 1.08 0.70 1.27 1.3 1.25
ml.16 abandoned object.avi 2.02 1.69 1.93 2.06 2.03 2.25 2.38 2.36 2.65
m1l.15 abandoned object.avi 0.50 0.59 1.03 0.51 0.64 0.79 1.26 1.1 0.87
OneStopEnterlcor.mpg 0.99 0.98 0.85 0.50 0.39 0.59 0.65 0.63 0.73
OneStopEnter2cor.mpg 1.37 1.16 0.82 1.04 0.91 1.06 1.23 1.06 1.13
OneStopNoEnterlcor.mpg 0.90 0.96 0.21 0.56 0.92 0.42 1.65 1.44 0.49
OneStopNoEnter2cor.mpg 1.01 1.62 0.53 2.44 1.67 1.40 2.99 2.15 1.92
OneStopMoveEnterlcor.mpg 3.69 2.15 0.73 6.37 2.45 1.53 7.31 4.02 4.92
OneStopMoveNoEnter2cor.mpg 0.64 0.49 0.81 0.94 1.01 0.79 1.87 1.45 1.19
TwoEnterShoplcor.mpg 2.12 1.86 1.85 3.49 3.21 1.51 4.35 4.66 3.38
Average 1.41 1.24 0.92 1.87 1.61 1.10 2.7 2.37 1.85

From our experiments, we found that the memory
footprint to store the state space of all the nodes is on average
only 5% of the memory required for storing all the frames.
This is in contrast to existing algorithms, which typically
require the storage of all the frames before processing can
begin.

We conducted additionally experiments on image
sequences represented in other colour spaces, such as
RGB and YUYV, and evaluated the overall posterior as the
sum of individual posteriors evaluated on each channel
independently. The results were marginally better than those
obtained using greyscale input. We conjecture that this is
because the spatial continuity of structures within a scene are
well represented in greyscale.

5. Main Findings and Future Work

In this paper, we proposed a background estimation algo-
rithm in an MRF framework that is able to accurately
estimate the static background from cluttered surveillance
videos containing image noise as well as foreground objects.
The objects may not always be in motion or may occlude the
background for much of the time.

The contributions include the way we define the neigh-
bourhood system, the cliques and the formulation of
clique potential which characterises the spatial continuity
by analysing data in the spectral domain. Furthermore,
the proposed algorithm has several advantages, such as
computational efficiency and low memory requirements due
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TABLE 2: As per Table 1, but using clustered error pixels (CEPs) as the error measure.

case 1: 100%

case 2: 50% case 3: 25%

Sequence Number of input frames =700 ~ Number of input frames =350 ~ Number of input frames = 175
median ISI proposed  median ISI proposed  median ISI Proposed
filter method  method filter method  method filter method  method
m1.10 abandoned object.avi 258.00 208.00 0.00 976.50 423.50 133.50 664.75 673.25 660.75
m1l.16 abandoned object.avi 455.00 320.00 322.00 463.00 333.50 467.00 358.25 378 528.75
m1l.15 abandoned object.avi 0.00 95.00 86.00 0.00 92.00 38.00 773 521.75 135.25
OneStopEnterlcor.mpg 37.00 7.00 348.00 184.50 13.00 177.00 374.5 172.5 380.50
OneStopEnter2cor.mpg 358.00 85.00 29.00 482.00 230.50 266.00 640 351.25 374.50
OneStopNoEnterlcor.mpg 141.00 104.00 67.00 437.50 466.50 252.50 1224 819 286.25
OneStopNoEnter2cor.mpg 103.00 406.00 35.00 1919.50 854.00 678.00 2282.5 1224.25 1244.00
OneStopMoveEnterlcor.mpg 3931.00  1196.00 714.00 5756.00  2503.00 1289.50  8365.25  4622.25  3877.75
OneStopMoveNoEnter2cor.mpg ~ 257.00 63.00 232.00 574.50 348.50 259.00 1169.25 697.75 654.50
TwoEnterShoplcor.mpg 2487.00  1372.00 1733.00  3534.00  2479.50 1483.00  4468.25 3795.5 3420.25
Average 802.7 385.6 356.6 1432.75 774.4 504.40 2031.98  1325.55  1156.25
1.8 TaBLE 3: Relative percentage improvement in foreground segmen-
tation similarity (13), obtained on the Wallflower dataset, resulting
L6 from the use of the MRF-based parameter estimation in comparison

1.2 A

Average grey error (AGE)

0.8 1

0 01 02 03
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T

FiGure 8: Effect of 77 on AGE, while using a fixed value of 75.

to sequential processing of frames. This makes the algorithm
possibly suitable for implementation on embedded systems,
such as smart cameras [1, 32].

The performance of the algorithm is invariant to moder-
ate illumination changes, as we consider only AC coefficients
of the DCT in the computation of the energy potential
defined by (12). However, the similarity criteria defined by
(3) and (4) create multiple representatives for the same
visually identical block. Tackling this problem efficiently is
part of further research. We also intend to extend this work
to estimate background models of nonstatic backgrounds.

Experiments on real-life surveillance videos indicate
that the algorithm obtains considerably better background
estimates (both objectively and subjectively) than methods
based on median filtering and finding intervals of stable

to direct parameter estimation. The similarity value of moved object
sequence turns out to be zero (due to the absence of true positives
in its ground-truth) and is therefore not listed.

Wallflower Relative improvement
Sequence in similarity (13)
WavingTrees 34%
ForegroundAperture 6%
LightSwitch 1%
Camouflage 20%
Bootstrap 62%
TimeOfDay -23%
Average 16.67%

intensity. Furthermore, segmentation of foreground objects
on the Wallflower dataset was also improved when the
proposed method was used to initialise the background
model based on a single Gaussian. We note that the proposed
background estimation algorithm can be combined with
almost any foreground segmentation technique, such as [8,
33].
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