
Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2010, Article ID 865803, 13 pages
doi:10.1155/2010/865803

Research Article

Design and Optimization of
the VideoWebWireless Camera Network

Hoang Thanh Nguyen, Bir Bhanu, Ankit Patel, and Ramiro Diaz

Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA

Correspondence should be addressed to Hoang Thanh Nguyen, nthoang@cs.ucr.edu

Received 2 January 2010; Accepted 16 August 2010

Academic Editor: Peter Tu

Copyright © 2010 Hoang Thanh Nguyen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Sensor networks have been a very active area of research in recent years. However, most of the sensors used in the development
of these networks have been local and nonimaging sensors such as acoustics, seismic, vibration, temperature, humidity. The
emerging development of video sensor networks poses its own set of unique challenges, including high-bandwidth and low
latency requirements for real-time processing and control. This paper presents a systematic approach by detailing the design,
implementation, and evaluation of a large-scale wireless camera network, suitable for a variety of practical real-time applications.
We take into consideration issues related to hardware, software, control, architecture, network connectivity, performance
evaluation, and data-processing strategies for the network. We also perform multiobjective optimization on settings such as video
resolution and compression quality to provide insight into the performance trade-offs when configuring such a network and
present lessons learned in the building and daily usage of the network.

1. Introduction

We describe the design and development of a new laboratory
called VideoWeb to facilitate research in processing and
understanding video in a wireless environment. While
research into large-scale sensor networks has been carried
out for various applications, the idea of massive video sensor
networks consisting of cameras connected over a wireless
network is largely new and relatively unexplored. The
VideoWeb laboratory entails constructing a robust network
architecture for a large number of components, including
cameras, wireless routers and bridges, and video-processing
servers. Hardware and equipment selection needs to take
into account a number of factors, including durability,
performance, and cost. In addition, VideoWeb requires a
number of software applications including those for data
recording, video analysis, camera control, event recognition,
anomaly detection, and an integrated user interface.

Challenges for the design of VideoWeb include creating a
wireless network robust enough to simultaneously support
dozens of high-bandwidth video cameras at their peak
performance, providing power and connectivity to cameras,

building a server farm capable of processing all the streaming
data in realtime, implementing a low-latency control struc-
ture for camera and server control, and designing algorithms
capable of realtime processing of video data.

The paper is organized as follows. In Section 2, we
cover related work and contributions of this paper. Section 3
discusses the requirements and specifications used in
designing the system and discusses the technical chal-
lenges and solutions for actual implementation. Section 4
delves into the performance metrics used to evaluate the
system. Section 5 concludes with closing comments and
lessons.

2. RelatedWork and Contributions

Many wireless camera platforms have been proposed [1–
3], and emerging research in the design of wireless camera
networks includes those with customized camera hardware
nodes (e.g., CITRIC [4], eCAM [5]) including iMote2 and
WiCa-based networks [6, 7], as well as networks with
carefully-calibrated cameras [8].



2 EURASIP Journal on Image and Video Processing

Control monitor

Network switch

Interface server
+ high-level
processing

DB, DVR

Mid-level
processing servers

Low-level
processing servers

Wireless bridge

IP cameras

Wireless
routers

Figure 1: Overall architecture. Top down: a single interface is used
for direct control of any server/camera and high-level processing
(e.g., user-defined face recognition). The server connects to a switch
which hosts a database and joins two sets of servers: a series of
mid-level (e.g., feature extraction) and low-level processors (e.g.,
detecting moving objects). The switch connects to routers which
communicate with wireless bridges connected to the IP cameras.

This paper makes the following contributions.

(1) We expand upon [9] by exhaustively detailing
the design considerations made in building the
VideoWeb wireless network in order to provide a
general guideline for those looking to build their
own network. We also discuss lessons learned from
building and using the VideoWeb network so that
others may benefit from our experience.

(2) We make the case for IP cameras and server-side
processing by designing and implementing a system
utilizing network cameras running on a softwarere-
configurable server and network architecture. While
we use conventional IP cameras without on-board
camera processing, the configuration of the server-
side processing is user-configurable and allows on-
the-fly changes such as going from tiered-processing
(e.g., low-level processing servers do object detection
and send silhouettes to mid-level processors which
generate object signatures and broadcast to high-level

servers) to 1-to-1 camera-to-server processing which
simulates the behavior of on-camera processing
networks.

(3) We describe performance metrics on which to eval-
uate a video network’s performance and show how
multiobjective optimization can be used in order to
discover Pareto-efficient settings for configuring the
network.

3. Building a Camera Network

3.1. Choosing the Type of Network. There are many types
of camera networks (e.g., wired versus wireless, multihop
wireless, distributed versus central processing), but the most
important factor in deciding what kind of network to build
is determining the primary application. For instance, if a
network’s primary concern is surveillance (where reliability
or maintaining uptime may be paramount), a hard-wired
network may be the only way to satisfy said requirements. A
wireless network, on the other hand, provides more freedom
and allows cameras to go where hard-wired cameras cannot
(restricted only by power source).

3.1.1. Our Requirements and Implementation. The VideoWeb
network consists of a heterogeneous mixture of over 50
wireless pan/tilt/zoom (PTZ) network cameras, 3 mobile
robots equipped with cameras (see Figure 5(c)), and a 128-
core server rack for data processing. The network is designed
to be a flexible general-purpose camera network for use
as a research testbed for applications such as multicamera
tracking, scene analysis, and 3D reconstruction, as well as for
research in improving robustness of wireless camera systems.
Our implementation utilizes wireless cameras in order to
take advantage of the flexibility in camera placement and cost
savings afforded by not having to run network cable through
the walls and ceilings to connect each of the cameras.

The complete architecture of the VideoWeb network
(Figure 1) is comprised of a camera component, a wireless
component, an application server component (e.g., database
servers, digital video recording servers), and a processing
component comprised of 3 levels: a set of servers which
process camera feeds at a low level (e.g., human detection,
per-camera tracking), a set of servers which use this infor-
mation for mid-level processing (e.g., feature extraction,
multicamera tracking), and a master interface server which
uses this data for high-level processing and user control
(e.g., task assignment, scene analysis, face recognition).
The high-level server is also used as an interface for the
network. Using a central switch to connect the two levels of
processing servers allows data to move flexibly across servers
to minimize network latency.

The server architecture is designed as a 3-level tree
hierarchy: a master high-level interface server communicates
with a set of mid-level processing servers, which in turn
process data received from a number of low-level servers.
A server architecture physically connected in this fashion
would entail cameras forwarding data to one set of servers
which forward low-level data to another set of servers, and



EURASIP Journal on Image and Video Processing 3

once more to the high-level server. To minimize network
overhead, we use a central network switch to connect the
servers (as opposed to physically tiering the servers with
direct connections) and implement the server hierarchy in
the network’s DNS configuration and in the communication
strategy of our software.

An interface server is employed to allow users to view live
or processed data from the cameras and to manually assign
processing tasks (such as running a particular algorithm on
some arbitrary number of cameras) from a central location
(for VideoWeb, this location is back in the laboratory away
from the noisy server room). For the wireless component
of the network, cameras and servers are bridged through a
single-hop wireless network using wireless routers connected
to the servers to communicate with wireless bridges located
throughout the building which connect to the cameras.

The following sections detail the design considerations
made in building the network.

3.2. Choosing the Right Camera. Choosing the wrong camera
can be a costly mistake when building a large video network.
When selecting a camera, a number of factors should be
taken into consideration. Besides cost, these may include the
following.

(i) Wired versus Wireless Cameras. Deciding between a wired
or wireless camera is often a trade-off between whether
or not speed and reliability can be sacrificed in order to
gain flexibility and freedom in placement. Cameras which
connect to a processing location (central or distributed
server) with dedicated wire connections (e.g., Ethernet,
audio/video cables) excel in providing improved speed and
reliability. This comes at the cost of restricting installation
locations to those which can be reached via physical cables
and installation may prove to be very labor-intensive,
expensive, or simply unfeasible. Wireless cameras on the
other hand allow greater freedom in placement as well as
offering the opportunity of mobility (in the case of non-
stationary cameras, for example, robots, field sensors), but
may sacrifice speed, reliability, and/or security. Cameras
with built-in wireless are essentially stuck with the installed
protocol (though 802.11n is also backwards-compatible
with 802.11g). Since the IEEE 802.11n standard supercedes
802.11g, this tends to make 802.11g-dedicated cameras feel
outdated (especially if streaming requirements later exceed
the bandwidth of the protocol or find that frame rates suffer
from congestion and the only way to improve the situation
then is by installing larger antennas, routinely changing wire-
less channels, and/or installing wireless repeaters). Cameras
with built-in 802.11n wireless are preferred over 802.11g in
almost all cases due to the increase in bandwidth, range, and
potentially a less-crowded frequency range (though this may
change with time). It is worth noting that wired cameras
which lack built-in wireless transmitters can easily be made
wireless cameras via wireless bridges or adapters. This may
be a better choice for long-lifespan camera networks which
may need to be concerned with forward compatibility, for
instance, as it avoids the network from being locked into any

single standard. How easy it is to make this modification is
affected by whether the cameras are digital or analog.

(ii) IP versus Analog CCTV. Digital versus analog in the
context of video cameras is often an issue of convenience.
Traditional analog closed-circuit TV (CCTV) systems are
often simpler and more cost-efficient, but search and
retrieval of data is cumbersome and any applications beyond
surveillance and monitoring may be awkward or require
dedicated systems for each application. IP systems, on the
other hand, can be more costly and/or complex, but output
digital streams easily processed on computers and can even
be accessed anywhere in the world simply by putting them
on an Internet-accessible connection. If the video streams
will be subject to constant or routine processing, analysis,
or retrieval, IP cameras offer greater convenience and all the
benefits of cheap digital storage, but may require additional
network and software training for those only familiar with
traditional CCTV systems.

(iii) Single-Hop versus Multihop Wireless. If wireless cameras
are to be used, there are two primary ways they can
reach their processing/storage destination: via a single-
hop connection (cameras connect directly to wireless
router/receivers) or via multihop connections (cameras
connect to other cameras and pass on data before reaching
the router/receiver). Multi-hop networks impose additional
complexity and hardware as well as increased latency, but
gain flexibility and wireless coverage by essentially turning
every camera into a repeater node; these are moresuited
for cameras with on-board processing capabilities. Single-
hop networks are recommended if it is viable (i.e., network
routers can be installed in locations in which all cameras can
reach) for purposes of lower latency and reduced hardware
requirements.

(iv) External versus On-Camera Processing. Whether or not
to perform processing on-camera or deferring processing to
external computers/systems is impacted by camera capabil-
ity/programmability and network latency and bandwidth.
For instance, a multihop network may be too slow to permit
active tracking if video needs to first be passed through
several sensors before reaching a processor, whose control
commands then need to be relayed across several more
sensors before the camera ever receives the command to “pan
left”. Outside of basic scripting capabilities, most commercial
cameras do not offer the flexibility or processing power to
achieve processing tasks more complicated than basic motion
detection or tracking. This issue often prompts network
builders to develop custom programmable camera hardware
for use in their systems [4–7]. On-camera processing can
also reduce bandwidth consumption of the network (e.g,
transmitting only areas of interest as opposed to full-frame
video), while external processing allows a greater range of
control and processing power.

(v) Pan/Tilt/Zoom (PTZ) versus Static Cameras. As the
name implies, PTZ cameras offer active panning, tilting,



4 EURASIP Journal on Image and Video Processing

(a) (b)

Figure 2: Stream corruption caused by network congestion may manifest in different ways depending on the video format. (a) corrupted
Motion JPEG stream due to partial data, (b) corrupted MPEG-4 stream due to partial data.

Table 1: Camera behavior can vary radically across vendors and models. Under congested network conditions for example, cameras
may permanently drop frames or attempt to resend missed frames at the expense of live data. The Panasonic camera in this case output
“smoother” video (fewer frame drops between two successive frames) under heavy network congestion (until its on board cache is exhausted)
at the cost of delays in upwards of 6 seconds.

Panasonic WVNS202 Axis 215 PTZ

Configuration 640 × 480 pixels, 0% compression 704 × 480 pixels, 0% compression

Cameras per bridge 2 3 2 3

Frame delay (seconds) <1.0 >6.0 <0.5 <1.0

and/or zooming capabilities whereas static cameras retain a
permanent fixed field of view and orientation. PTZ cameras
have the advantage of being able to cover larger areas (as a
whole) and can zoom in or out to obtain better views of
a scene as appropriate. This comes at the cost of increased
complexity by requiring (manual or automated) control in
order to take advantage of this capability. These cameras
also contain moving parts, potentially affecting long-term
maintenance. Static cameras on the other hand, are often less
expensive and provide consistent scene coverage. In addition,
they also often allow interchangeable lenses which can mimic
some versatility of PTZ cameras by allowing one to customize
a camera for certain applications, for example, installing a
wide-angle lens to cover a larger area or installing a sharp
telephoto lens to capture the entrance of a certain doorway
(note that barrel distortion caused by using wider lenses
should also be taken into account). Even with wider lenses,
however, static cameras may require more installations to
cover the same area as PTZ cameras and may do so with
compromised quality (camera placement is often a balance
between sacrificing area coverage for close-up detail).

(vi) Pan/Tilt/Zoom Speed and Magnification. If PTZ cameras
are used, the responsiveness of such camera commands
should be taken into consideration when choosing between
models, as some cameras may respond or move too slowly
to be useful for applications such as active tracking. Since
the timing/latency specifications are often omitted by camera
manufacturers, it is strongly recommended to experiment
with trial cameras and testing if their PTZ speed is adequate
before purchasing. In addition, the level of optical zoom may
be important depending on the detail required for specific

applications and the camera’s physical distance from the
scene. For most applications, digital zoom is worthless (at
the raw capture stage) and should only be done in data
processing.

(vii) Progressive versus Interlaced Cameras. All other things
equal, progressive cameras should be chosen over interlaced
cameras where possible. This may not aways be the case,
however, as progressive models may offer reduced frame
rate, resolution, or cost substantially more. While interlaced
cameras can usally perform on-camera de-interlacing to
avoid the combing artifacts inherent to interlaced video, such
techniques tend to wash out fine detail for static objects
and result in ghosting effects on moving objects ones (the
alternative, processing only every other line in the video, also
effectively halves the vertical resolution). There may be some
exceptions to choosing a progressive camera, such as when a
CMOS-sensor progressive camera has a rolling shutter which
is so slow that its video exhibits noticeable skew on moving
objects (also known as the “jello effect” as often seen in
handheld cameras when the camera is panned too quickly),
but even this may be preferred over the combing or ghosting
artifacts from interlaced video.

(viii) Sensor Size and CMOS versus CCD. Sensor size is
often more indicative of a camera’s image quality than
its stated resolution and this is true of video cameras as
much as photographic cameras. Larger sensors tend to offer
less image noise (especially in low light conditions) and
sharper image quality. These sensors are typically either
CMOS or CCD. While both sensors are used to achieve
the same thing, complementary metal-oxide-semiconductor



EURASIP Journal on Image and Video Processing 5

(CMOS) sensors typically use a rolling shutter (i.e., light
is captured in a sweep across the sensor) whereas charge-
coupled device (CCD) sensors use global shutters (i.e., light
is captured simultaneously across the sensor). The two are
typically characterized by different kinds of artifacts each
produces. For instance, CMOS sensors may suffer from skew
on moving objects or scenes if its shutter speed is too slow,
while CCD sensors are vulnerable to smearing artifacts when
bright light sources overload a column or row of pixels.
It is recommended to consider the typical environment
the cameras will be used in (e.g., low light, indoor versus
outdoor) and to trial all candidate cameras where possible.

(ix) Bandwidth: Video Format, Resolution, and Frame Rate.
Resolution and frame rate go hand in hand as they will
(in addition to video format) directly affect the bandwidth
required for transmitting and storage required for archiving.
Typical video cameras offer VGA resolution (640 × 480)
at 30 frames per second, but newer high-definition (e.g.,
720p or 1080p) cameras are becoming more readily available.
While 640 × 480 resolution may be usable for many
computer vision processing applications, those interested in
face recognition (or better yet, face reconstruction) may find
VGA to be particularly challenging to work with. Networks
with particularly demanding requirements may want to con-
sider specialty cameras, for example, super high-resolution
cameras, hardwarestitched 360◦ cameras, or even high-speed
cameras, though these tend to demand a premium. The
output format of the camera will also affect image quality; in
addition to the traditional and easy-to-decode Motion JPEG
codec (essentially a large series of JPEG images concatenated
together), many cameras also offer MPEG-4 output for
reduced bandwidth and/or higher quality using the same
bandwidth via interframe compression. Decoding the video
for custom-built applications may be more difficult with
MPEG-4 however, and video artifacts caused by stream
corruption (e.g., network congestion, dropped packets) may
appear less appealing (see Figure 2). With either format, we
recommend using the open source libavcodec [10] library to
facilitate decoding in custom applications.

(x) Power Requirements of Camera. Depending on the power
requirements, cameras may be able to draw from existing
power sources or require separate power supplies. Depending
on the building or location, installing power cabling to the
cameras may be easier than installing cabling for the data
(in the case of a wired network) since a building’s electrical
architecture is usually more sophisticated than its network
architecture. For the most remote installations which require
more permanence than battery-operated sensors, readers
may want to consider solar-powered wireless cameras.

(xi) Physical Appearance and Camera Enclosures. Appearance
should not to be overlooked when it comes to installing
cameras. If the cameras will be installed in an outdoor
environment, large outdoor enclosures may invoke a sense
of intimidation (see Figure 4(a)). It is recommended to
take into consideration the environment the cameras will

Figure 3: 37 camera locations cover the 14,300 square foot second
floor of Engineering Building Unit II at the University of California,
Riverside. Locations were manually selected and evaluated to ensure
that usable fields of view were available for every square inch of the
building from at least two viewpoints.

be installed to decide whether discreetness or visibility are
higher concerns. As opposed to surface-mounting (installing
a camera directly on a ceiling surface), flush-mounting
(cutting a hole and installing a camera in the ceiling with the
optics exposed) will provide a more discreet and streamlined
appearance, but will require permanent alteration to the
installation locations. If a network is temporary, readers are
recommended to consider the life expectancy of the network
before opting for flush mounting.

3.2.1. Our Requirements and Implementation. Initial specifi-
cations for the VideoWeb network required a minimum of
VGA resolution (640 × 480 pixels) as well as a minimum of
20 frames per second as a threshold for acceptable realtime
performance. In addition, we utilize digital IP cameras which
provide a range of benefits such as streamlined processing
(no digitizing required), relatively easy data storage, and
simplified connectivity. The cameras are to be installed in an
indoor and outdoor building environment which includes
locations such as remote open spaces exposed to rain and
corridors void of sunlight. As a camera network for long-
term applications with year-round use, battery-powered
cameras are not sufficient and we instead use network
cameras with power adapters.

Among conventional pan/tilt/zoom (PTZ) cameras con-
sidered were the Panasonic WVNS202, Axis 214, and Axis
215 cameras. Besides cost, factors influencing camera choice
include performance, physical size, and availability of non-
intimidating outdoor enclosures. The Panasonic cameras
were deemed unsuitable after experiments which showed
that the video stream begins to lag when the network
becomes congested (Table 1), that is, in the event of network
throughput issues which limit cameras to low frame rates,
instead of dropping frames, the Panasonic resends cached
video frames stored in its buffer. The Axis cameras on the
other hand, drops frames, maintaining a relevant video



6 EURASIP Journal on Image and Video Processing

stream despite low frame rates. Between the two Axis
cameras, the 215 was selected as the primary camera (despite
being an interlaced camera from lack of availability at the
time of selection) due to lower cost and lower mechanical
latency when issuing PTZ commands.

Using 45-degree fields of view for the cameras, 37
locations were selected for complete coverage of the 14,300
square foot building (Figure 3). As such, the network consists
of 37 outdoor cameras (36 Axis 215 PTZ cameras and a
larger Axis 214 PTZ camera overlooking a courtyard) and
16 indoor legacy cameras. Camera locations are selected
such that every square inch of the building is viewable by
at least two cameras. In testing, each camera is capable
of outputting a sustained 2.65 MB/second of Motion JPEG
(M-JPEG) video at a peak of 30 frames per second when
set to the maximum resolution of 704 × 480 pixels and
a minimal compression setting of 0 (out of 100). This
represents the maximum throughput and frame rate in an
ideal environment (i.e., connecting to a camera via a direct
ethernet connection and experiencing no frame drops).
Other available resolutions of the cameras include 704× 240,
352 × 240, and 176 × 120.

While the selected Axis 215 camera offers an outdoor
dome enclosure, a dilemma was faced as there were no
discreet outdoor enclosures for them; we had to find a way
to make the cameras relatively weatherproof to withstand
humidity and moisture. By choosing the Axis 215, we had
to compensate for the lack of an available outdoor enclosure
and improvise using the supplied flush-mount enclosures
with smoked domes and surface-mount enclosures with clear
domes, both designed for indoor installation. The solution
was to use the surface-mount enclosures and make them
weather-resistant by sealing the plastic seams with silicone
sealant. In addition, the clear domes were interchanged with
the smoked domes. The end result was a non-threatening
camera dome suitable for surface-mounting at any of the
37 locations (see Figure 4(c)). Long-term effects of humidity,
heat, and moisture on the cameras despite the sealed domes
remains to be seen.

Electrical power was provided by installing dedicated
power supplies in two of the building’s electrical rooms and
running conduit to the camera cluster locations where power
outlets were installed. Since we had full control of the power
by using our own power supplies, the cumbersome power
adapters for the cameras were removed and the required
power is supplied directly.

3.3. Choosing and Configuring the Network Hardware. The
network hardware has a single purpose: to connect the
cameras to the processing location(s) and to be as transpar-
ent as possible. Factors to consider when selecting network
hardware include the following.

(i) For Wired Networking. If IP cameras are being used, it
is recommended to install the highest-rated network cable
available (Cat-6 ethernet cable as of this writing) which can
still reach its destination (generally 100 meters for gigabit
ethernet or 55 meters for 10-gigabit ethernet using Cat-6a).

The cost difference may be marginal (over Cat-5/5e, for
instance) while providing overhead in robustness in the event
that newer higher-bandwidth cameras are installed to replace
aging cameras. Ethernet extenders may be required if cable
lengths exceed cable specifications.

(ii) For Wireless Networking: 802.11g versus 802.11n versus
RF. If wireless IP cameras are used, it will likely be a
choice between 802.11g and the newer 802.11n. If the choice
is available (e.g., wireless bridges are being used to turn
an ethernet camera into a wireless camera), 802.11n from
our experience is a major upgrade from 802.11g for both
increasing network throughput and signal strength. How
much of an improvement may be influenced by congestion
in the operating frequency range due to other wireless
networks in the area. Determining a selection between analog
RF transmitters, on the other hand, can be more difficult
as the performance will vary more widely based on the
power, frequency, and data being transmitted, as well as the
environment. It is recommended to get a sample transmitter
and to test each location cameras will be installed; this goes
the same for wireless IP cameras, though wireless repeaters
can be moreeasily installed to extend ranges. In addition,
selected wireless routers should offer (at minimum) gigabit
capabilities, especially if a large number of cameras are
expected to connect to it.

(iii) Wireless Encryption. Use anything besides WEP [11].

3.3.1. Our Requirements and Implementation. Since many
IP cameras (the Axis 214 and 215 included) do not have
built-in wireless connectivity, a wireless bridge is required
to provide this functionality. As such, the wireless bridges
serve a single purpose: connect the cameras to the routers.
Since the camera locations are often situated in clusters, it
is desirable if the bridges can support multiple clients (i.e.,
have more than 1 ethernet port). This quickly narrows down
the selection. A conventional IEEE 802.11g bridge made
by Buffalo was selected due to its support of 4 ethernet
clients; IEEE 802.11n bridges were only available in 1-port
versions at the time of selection. This paper does not delve
into the pros and cons of individual wireless protocols,
though literature on this specific topic has been recently
made available [12]. Performance testing on the Buffalo
bridges revealed no outstanding issues, but prolonged testing
showed that upgrading to 802.11n provides a worthwhile
improvement for frame rates.

The wireless bridges were installed throughout the
building in the ceilings and localized in clusters where
possible to better facilitate maintenance and troubleshooting
concerns (see Figure 4(b)). In total, 19 wireless bridges are
used to provide connectivity for the 37 cameras. Though
the bridges have 4 inputs, we only use 2; we do not take
full advantage of the bridges’ connectivity capabilities for a
reason. We originally planned to optimistically use 3 cameras
per bridge, but found 2 cameras (streaming simultaneously
with maximum video settings) was the limit each bridge
could support without experiencing heavy frame loss. The



EURASIP Journal on Image and Video Processing 7

(a) (b) (c)

Figure 4: Installation of the cameras: (a) Axis 214 PTZ in an outdoor-rated enclosure; only one of these were installed (high above a large
open courtyard) due to size and appearance), (b) wireless bridges installed in the ceilings to make the IP cameras wireless, (c) flush-mounted
Axis 215 PTZ cameras in sealed indoor enclosures.

bridges are configured to communicate with the routers
using WPA-PSK encryption.

At a maximum of 2.65 MB/s per camera (or 5.3 MB/s
from each bridge), the network may be generating over
98 MB/s of data at peak performance. Gigabit routers are
used to handle the amount of expected traffic and IEEE
802.11n capabilities are chosen to facilitate future upgrades.
We use Linksys WRT350N routers for the first iteration of the
network. Routers are split into two clusters receiving from
two indoor locations. In total, 7 routers handle the traffic
generated by the 19 bridges. The routers are configured to
assign local addresses to the cameras and port forwarding is
used to address the cameras from the servers.

3.4. Building the Server Hardware. Even with on-camera
processing, it is still desirable to have external systems, either
for data processing (due to much greater processing power)
or storage. For digital networks, this system will likely be a
number of computers. Whether specifying the hardware for
these machines or building from scratch, it is useful to keep
in mind a number of factors:

(i) Gigabit Network Connectivity. When dealing with stream-
ing video data, always opt for (at minimum) gigabit network
adapters. This is especially true if a single machine is expected
to process multiple camera feeds. A gigabit network switch
(or higher) is almost a requirement when connecting the
servers together.

(ii) Hard Drives. For raw data processing, hard drive speed
or capacity does not matter (all image-processing can be
done from memory). For long-term storage, high-capacity
hard drives in a redundant configuration (e.g., RAID 5)
are recommended, though it is best to store these in a
central high-density storage server (as opposed to distributed
across several servers) in order to facilitate easier retrieval.
Depending on the expected amount of constant incoming
data, expensive high-RPM drives may or may not be
necessary.

(iii) CPU. Depending on the multithreaded capabilities of
the processing software (either your own or vendor-supplied

software), multicore processors (and even multisocket moth-
erboards) may provide a significant improvement in overall
system performance. This is especially true if servers expect
to process feeds from multiple cameras.

(iv) Memory. Images will be loaded into and read from
memory constantly. Faster memory will reduce overhead,
but more memory will likely only waste money as video
images (processed on a per-frame basis) will not occupy very
much space, even when uncompressed. There are exceptions,
however, for example, when using super high-resolution
cameras or for database applications which will cache large
quantities of images (such as a face recognition database), so
it is recommended to keep expandability in mind (i.e., 64-bit
operating systems and motherboard memory capacity).

(v) Operating System. Though cross-platform code is pre-
ferred, the choice of operating system is determined mostly
by the work/development environment the network opera-
tors and/or programmers feel most comfortable with. Server
builders may want to take into account that most vendor-
supplied software today is Windows-specific, however, but
this may be irrelevant if you plan to develop your own
processing software.

(vi) Server Location. If there are more than a few computers
or servers in the system, it is recommended that they be
moved to a dedicated server room with adequate cooling
facilities; the heat, noise, and power consumption of all the
servers can overwhelm most rooms.

(vii) Alternative Power. Uninterruptible power supplies
(UPS) are recommended for all servers; their primary
purpose is to allow the servers to gracefully shut down in
the event of a power failure (or to buy time for backup
generators to start up). This can be especially important for
storage servers to help maintain the integrity of the servers’
file systems.

3.4.1. Our Requirements and Implementation. We decided
to go with a multicore system in order to enable more



8 EURASIP Journal on Image and Video Processing

(a) (b) (c)

Figure 5: Processing hardware and mobile cameras: (a) control interface and monitors in laboratory, (b) 32-server processing backend
connected to the interface, (c) cameras mounted on 3 robots add mobility to the network.

streamlined parallel data processing of multiple cameras per
computer. Also, with our server architecture we have 3 levels
of processing. If later on this amount of processing power is
insufficient, each computer should have a second vacant CPU
socket for another processor to allow doubling the processing
power of the server farm if necessary without increasing
the physical footprint of the system. For uniformity and to
facilitate maintenance, all processing servers have the same
hardware.

An idea to use conventional desktop computers for data
processing was quickly discarded due to the difficulty in
physically scaling ATX-sized desktop computers for a large
number of cameras. Even using MicroATX cases would
require a large amount of space to store the computers
and would make moving the components/units particularly
laborious and awkward. We instead opt for 1 height unit
(1U) rack servers which can be housed in a single 42U rack
enclosure with wheels for mobility.

In order to reduce contention over resources on the same
machine from different camera processes, each processing
server was specified with multicore CPUs and fast memory
(Intel Core 2 Quad Q6600 2.4 GHz CPUs and 2 GB DDR2
800/PC 6400 memory). Though the Q6600 is not a true
quad-core processor (2 dual-cores instead of 4 true cores),
the support for additional threads is useful. Also, while we
install 2 GB for our initial setup, we also use motherboards
which are expandable to 24 GB of RAM for database applica-
tions in development. Gigabit ethernet cards are also selected
to prevent any individual networking bottlenecks. Hard disks
were given lower consideration, as most the processing nodes
do mostly CPU processing and would not be storing data
locally; the hard disks need only be sufficiently fast enough
to run the operating system and RAM disks are setup in
order to provide fast temporary storage for intermediate
data. As such, conventional 80 GB SATA hard drives are used.
Application servers such as database or recording servers, on
the other hand may emphasize larger and faster hard disks.

Thirty two identical servers were built and installed
into a server rack (Figure 5(b)) and then connected to an
interface server with a pair of control monitors as an interface
(Figure 5(a)). The building housing the servers fortunately
has a suitable server room with adequate air conditioning

and power connectivity. Electricity usage monitors were used
to measure power consumption of the servers. The servers
mentioned, for instance, peak at 198 W/1.65 A when starting
up, use 132 W/1.14 A when idle, and consume 175 W/1.54 A
under full load on all cores and hard drives. This data
was then used to specify the uninterruptible power supplies
(UPS) for the servers, which consist of four 2 U APC Smart-
UPS 2200 VA/120 V batteries. Testing showed the batteries
capable of supporting 8 servers each at full load for 5 minutes
and 45 seconds, plenty of time to safely shut down (which can
be configured automatically in software using UPS alerts) or
to withstand short power outages.

3.5. Software System. In order to implement the tiered
processing scheme of the servers, the software needs to be
both clients and servers to facilitate the sending and receiving
of video traffic and camera controls. Mid-level servers, for
instance, may need to broadcast a stream of processed data
to the high-level server for viewing by the user, while at the
same time being able to download cropped object images
from low-level servers.

The goal of the first software iteration was to control a
networked camera using a customized program without the
use of the supplied camera web interface or vendor-specific
camera-management software included with most network
cameras. One of the advantages of utilizing network cameras
is that the camera control interface can be implemented
through sending simple HTTP commands. To demonstrate
this, a 10-line Python script was written for sending manual
control commands to a camera. Once it was shown that it
was easy to control the cameras, work started on a C++
application for the actual image processing.

3.5.1. Sample Program—Head Tracking. The basic algorithm
framework used for head tracking was based on a gradient
and color-based tracker [13] with additional tweaks. The
first implementation of this was done in C++ and MATLAB
[14]. Testing showed this program to be too slow for
realtime processing, so a second iteration was written in
pure C++ using OpenCV [15]. The tracker began with
tracking synthetic object data consisting of randomly rotated
rectangles of various sizes against a white backdrop. Once



EURASIP Journal on Image and Video Processing 9

this stage was satisfactory, the next task was to grab live data
from the camera.

Instead of relying on vendor-supplied software devel-
opment kits (SDKs) which would have to be reintegrated
into the processing software for potentially every type of
camera, a generic camera controller was written. The SDK
for the Axis cameras, for instance, relied on MFC-based [16]
subroutines which would force development on Windows. In
light of the amount of customization needed to incorporate
a new SDK to do essentially the same things for different
camera models, a generic cross-platform control framework
was written from scratch. This control framework uses
Boost.Asio [17] (a cross-platform socket wrapper) to directly
send HTTP/1.1 [18] camera commands to a camera and uses
the libavcodec library [10] to decode the streaming camera
data. Using this approach, the software gains the benefit
of being able to decode a large number of potential video
streams and not just what a camera vendor has included with
their SDK.

Networking communication between the three levels of
servers is also implemented with Boost.Asio. For instance,
processed results performed by the mid-level servers is
compressed and broadcast as an M-JPEG stream, which is
then parsed and displayed by the interface server.

4. Experiments for Performance
Characterization and Optimization of
the Video Network

4.1. Measurement Software. Software that comes with most
IP cameras ranges from small camera control programs to
full surveillance station applications. However, even the most
expensive or sophisticated of these vendor applications can
be unsuitable since they are usually targeted toward security
applications and recording, playback, and camera control are
often their sole function. Evaluating performance using these
applications is subjective and raises the need for our own
statistic-recording implementation.

A custom program was written to fulfill this function.
Given an IP address and port number, the application
proceeds to

(1) establish a connection with the camera

(2) attempt to download the M-JPEG video stream

(3) parse the stream into individual JPEG frames

(4) record realtime statistics about the stream.

The program records a number of statistics and mea-
surements including bandwidth, shortest lag between two
frames, and the average, minimum, and maximum amount
of bandwidth required for each frame. The implementation
is in C++ and uses the generic control framework written
earlier.

4.2. Optimizing Camera Configuration. Depending on the
task or application, there are numerous “optimal” ways
to configure a network. For instance, maximizing video
resolution and quality may be paramount for biometrics,

particularly in face recognition where a large number of
pixels on the face is beneficial to identifying features.
Surveillance and alarm systems, on the other hand, may find
reliability more important. For instance, it may be more
important that every moment is recorded with minimal
skipping (not only for evidence in the event of an incident,
but also because security applications often employ vision-
based motion detection). Object tracking in turn, may
benefit most by sacrificing resolution in exchange for a high
sustained frame rate.

Configuring the network may consist of changing camera
parameters (e.g., resolution, compression) as well as physical
network parameters (e.g., number of cameras per bridge,
number of bridges per router, number of routers per square
foot). The later is helpful in introducing a metric for
minimizing labor and monetary cost. We define 5 metrics
for measuring camera network performance, the first two of
which are used as configuration parameters.

(1) Resolution (in pixels). This measures the size of each
video frame in pixels (the higher, the better). This
parameter consists of 4 levels on the Axis cameras
(704 × 480, 704 × 240, 352 × 240, and 176 × 120).

(2) Video Compression. This parameter represents the
amount of lossy video compression applied to the
video by the camera. For M-JPEG streams on the
Axis cameras, this represents JPEG compression and
ranges from 0 to 100 (the lower, the better). In our
experiments, we test 5 of these levels (0, 20, 30, 60,
and 100).

(3) Average Frame Rate (in frames per second). This
measures the number of complete frames received per
second, averaged over the duration of a measurement
trial (the higher, the better). The frame rate may
range from 0 to a maximum frame rate of 30 on the
Axis cameras.

(4) Standard Deviation of Frame Rate: This measures the
consistency of the video. For instance, there may be
two video streams both 20 frames per second each,
but the first may output a constant 20 frames per
second while the second video may be sporadic and
go from 30 to 0 to 10, back to 30 and so forth (but
still average to 20 in the end). This metric is useful
in evaluating the stability of the video (the lower the
deviation, the better) and is measured by recording
the delay between every two frames (in seconds with
millisecond resolution) and calculating the standard
deviation.

(5) Longest Lag Time between Two Complete Frames
(in milliseconds). This metric records the longest
amount of time taken between any two consecutive
frames (the lower, the better). This is insightful
for evaluating a video stream’s reliability (that is,
it measures the longest amount of time a camera
is “blind”). In addition to a depressed frame rate,
this may be attributed to dropped/partial frames
by the camera or data corruption/dropped packets
undergone during transit.



10 EURASIP Journal on Image and Video Processing

4.3. Multiobjective Optimization Using Pareto Efficiency. We
use the concept of Pareto efficiency to define which configu-
ration of parameters is “better” than another. While this does
not always tell a user which configuration should be used for
a particular application, it serves to reduce the large number
of possible configurations by showing which of those are
usually “inferior”; a user only has to consider a configuration
from the (potentially) much smaller Pareto set rather than
every possible combination.

4.3.1. Inferiority and Noninferiority. Let M1 be a vector of
measurements of certain metrics for a camera and let M2

be another trial of measurements on the same camera, but
under a different parameter configuration. M1 is said to be
inferior to M2 if and only if

(i) every measurement in M2 is equal to or outperforms
the corresponding measurement in M1,

(ii) one or more measurements in M2 outperform the
corresponding measurements in M1.

“Outperforms” is metric specific and means “greater than”
or “less than” depending on how the metric is defined (e.g., a
higher frame rate outperforms a lower frame rate and a lower
lag outperforms a longer lag). M2 is said to be superior to or
dominatesM1 if M1 is inferior to M2. Finally, M1 and M2 are
both said to be non-inferior if neither is superior nor inferior
to one another.

In order for a measurement Mi to be Pareto-efficient
(amongst a set), it must be non-inferior to every other
measurement in that set. That is, it possesses at least one
advantage over every other measurement when compared
one-on-one (e.g., M1 has higher frame rate against M2,
lower lag against M3, . . . , higher resolution than Mn). The
Pareto set is the set of all Pareto-efficient measurements and
ideally, allows a user to discard a large percentage of inferior
parameter configurations from consideration when setting
the cameras.

4.3.2. Data Collection. Data collection consists of varying the
resolution and compression parameters and recording the
measurements from 37 cameras. In total, we iterate through
4 resolutions (704 × 480, 704 × 240, 352 × 240, and 176
× 120) and 5 levels of compression (0, 20, 30, 60, and 100)
each. Five measurement trials are captured for each of the 37
cameras per configuration (100 trials total per camera). Each
trial consists of streaming from the camera for 600 frames or
up to 2 minutes (whichever comes first).

Camera footage is tested at 5 various points in the day
across all cameras. This exposes the data to a variety of video
footage ranging from bright open areas with upwards of 20
moving people in the scene, to dark and grainy footage of
cameras monitoring lonely halls.

After data collection is completed, each camera is
optimized individually to minimize camera, bridge, or router
bias. This is done in O(n2) via exhaustive search (where
n is the number of trials to compare), comparing each
measurement to every other measurement on the same cam-
era. With 20 configurations and 5 trials per configuration,

each camera produces a symmetric 100 × 100 matrix. The
resolution/compression pairs which result in the Pareto-
efficient measurements for each camera are later aggregated
against the entire network.

4.4. Evaluation Results. After over 100 hours of data collec-
tion at varying times of day across two weeks, the Pareto
sets for all 37 cameras are calculated (see Figure 6 for sample
matrices of 8 cameras). Considering only configurations in
the Pareto sets eliminates (on average) approximately half of
the tested configurations as inferior and redundant.

After aggregating the resolution/compression parameters
of the Pareto sets for the entire camera network, we
found that, surprisingly, every configuration tested was in
the Pareto set for at least one camera. This suggests that
there is no global network-wide consensus that any camera
configuration is inferior to any other; every (tested) setting
was Pareto efficient for at least some camera. Calculating
the percentages of the Pareto set memberships, however,
reveals that the cameras tend to exhibit a “preference” for
certain configurations over others (see Figure 7). This is in
line with the previous observation that roughly half of the
tested configurations are not preferred (less than a majority
agreement between the cameras). It is not surprising to
see higher percentages on configurations with either the
maximum resolution or minimal compression since they
already optimize at least one metric by definition. However,
configurations such as 176 × 120/60% and 704 × 240/20%
reveal local optimum which is potentially very useful for
some practical applications of the video network. Using a
more fine-tuned set of compression levels, we would likely
be able to find more such points, aiding in the creation of a
useful set of presets for specialized applications.

In order to evaluate the relative performance of the
configurations, the measurements for each camera are
normalized across all measurements on the same camera
and then averaged on a per-configuration basis across all
cameras using the same configuration. Figure 8 shows the
relative performance of the top 8 configurations for the
entire network. Intuitively, increasing either the resolution or
decreasing the compression (resulting in higher bandwidth)
has the effect of a reducing the frame rate, producing a
more discontinuous video stream, and increasing maximum
lag time. These top configurations can then be considered
as candidates for a number of applications or environ-
ments. The max resolution/0 compression configuration in
Figure 8(a), for instance, may be a good candidate for face
recognition (so long as fast frame rate is not required),
while face reconstruction may favor the max resolution/20%
compression in Figure 8(c) due to its substantial increase in
frame rate. An alternative approach to this general network
optimization, however, is to optimize specifically for certain
tasks.

4.5. Task-Based Optimization. Instead of conducting exhaus-
tive tests to find Pareto-efficient configurations, the pre-
sented multiobjective approach can also be used to optimize
network parameters for specific applications or tasks. This



EURASIP Journal on Image and Video Processing 11

Figure 6: Measurement comparison matrices for 8 cameras. While cameras may exhibit variable performance even when using the same
configurations, some configurations may be inherently better than others and exhibit similar performance across the network. To discover
these configurations, 100 trials are performed on each camera under a variety of parameter configurations (i.e., resolution and compression)
and each recorded measurement is compared for Pareto efficiency against the other 99 trials. This results in a symmetric matrix where
vertical and horizontal axes indicate the measurements Mi and Mj , respectively (i.e., the top-leftmost square in each matrix indicates the
relationship of M1 against M100). Red indicates that a particular Mi is inferior to a particular Mj , green indicates superiority, and a solid
horizontal yellow line denotes rows which are completely Pareto-efficient (i.e., either superior or non-inferior against all other 99 trials).

Compression
resolution\
176× 120

352× 240

704× 240

704× 480

100 60 30 20 0

46%

34%

51%

34%

66%

46%

29%

31%

46%

26%

17%

63%

51%

34%

54%

94%

74%

91%

97%

100%

Figure 7: Probability of configuration membership in any given
camera’s Pareto set.

can be done in much the same way as with the other perfor-
mance metrics quantifying application-specific performance
(e.g., face detection rate, smoothness of tracked objects
trajectories) and adding them to the multiobjective metrics.
Optimizing the network for face recognition at an airport,
for instance, may be done by performing the same Pareto-
efficiency tests on the precision and recall rates returned by
a face recognition algorithm. In order to take advantage of
the video produced across all the network configurations, it
is recommended to record the streams during testing so that
tasks which can be performed off-line can be optimized with
greater flexibility (e.g., a face recognition algorithm can be
continuously tuned and repeatedly tested against the dataset
without actually having to reconfigure the network). Tasks
such as continuous PTZ tracking on the other hand, would
have to be performed alongside the live data streaming.

5. Conclusions

We have designed an softwarereconfigurable architecture for
a wireless network of a large number of video cameras
and implemented a working system by building the servers,
installing the cameras, writing the software, and configuring
the network to support it. Further, we gained insight into
configuring the network’s cameras by defining a set of
metrics and discovering Pareto-efficient camera configura-
tions by performing multiobjective optimization on a large
volume of real data recorded by the system.

The idea persists that if one has a camera network with 30
FPS cameras, one will be able to obtain the said 30 frames per
second regardless of network configuration or parameters.
Though this may be true in a controlled test environment,
the performance expectation should not be so optimistic for
real-world wireless implementations. Even using the most
preferred Pareto-efficient configurations on a non-congested
network, it is shown that frame rates will most certainly
suffer and that trade-offs must be made.

During a large workshop hosted in the building, however,
it was observed that frame rates of the cameras would
periodically drop and we later found that these drops
coincided with breaks given during the workshop. Suspicious
that a number of open and local 802.11g networks may be
congesting our network, a cluster of bridges were upgraded
from 802.11g to 802.11n. In daily usage, frame rates were
seen to reach up to 20 FPS for even the most bandwidth-
intensive configurations (such as 704 × 480 resolution with



12 EURASIP Journal on Image and Video Processing

Resolution
1

0.8
0.6
0.4
0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

frame rate)

(a) 100% of cameras: 704× 480 pixels, 0% compression

Resolution
1

0.8
0.6
0.4
0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

frame rate)

(b) 97% of cameras: 704× 240 pixels, 0% compression

Resolution
1

0.8
0.6
0.4
0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

frame rate)

(c) 94% of cameras: 704× 480 pixels, 20% compression

Resolution
1

0.8
0.6
0.4

0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

frame rate)

(d) 91% of cameras: 352× 240 pixels, 0% compression

Resolution

1

0.8
0.6
0.4
0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

frame rate)

(e) 74% of cameras: 176× 120 pixels, 0% compression

Resolution

1

0.8
0.6
0.4
0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

frame rate)

(f) 66% of cameras: 176× 120 pixels, 60% compression

Resolution

1

0.8

0.6
0.4
0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

f rame rate)

(g) 63% of cameras: 704× 480 pixels, 30% compression

Resolution

1

0.8
0.6
0.4
0.2

0

Frame rate

Video quality
(compression)

Video smoothness 2
(inverse of longest
recorded frame lag)

Video smoothness 1
(inverse of STD of

frame rate)

(h) 54% of cameras: 704× 240 pixels, 20% compression

Figure 8: The top 8 dominating camera configurations as chosen by 37 cameras. Graphs are ordered by the percentage of cameras in which
the particular configuration was Pareto-efficient and all metrics are normalized to 1.0 across all cameras. Clockwise from the top: resolution
ranges from 176 × 120 to 704 × 480 (higher is better), JPEG compression settings range from 0 to 100 (lower is better, so inverse is shown),
and frame rates range from 0 to 30 FPS (higher is better). For measuring the “smoothness” of outputted video, the standard deviation of the
frame rate (recorded at 1-second intervals) and maximum lag time between any two sequential frames is recorded (lower is better, so inverse
is shown).



EURASIP Journal on Image and Video Processing 13

0% compression) where they were previously achieving
typically only 3 FPS (even when other bridges in the network
were not in use). While this makes a case for upgrading
to 802.11n, this also suggests that network congestion from
other networks may play a large role in frame rates and that
networks may wish to operate in a dedicated frequency range.

In situations when even hardware upgrades can still
not achieve sufficient performance, however, we would like
to emphasize that partial data is still important. Rather
than having algorithms which assume that the data consists
entirely of complete video frames (and are only capable
of processing such frames), realtime computer vision algo-
rithms should take advantage of as much information as is
available to them; the constant stream of partial frames which
may only be missing the last few rows of data can still be
tremendously useful for a number of applications.

Acknowledgments

This work was supported in part by NSF grants 0551741,
0622176, 0905671, and ONR grants N00014-07-0311,
N00014-07-1-0931.

References

[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey
on wireless multimedia sensor networks,” Computer Networks,
vol. 51, no. 4, pp. 921–960, 2007.

[2] W.-T. Chen, P.-Y. Chen, W.-S. Lee, and C.-F. Huang, “Design
and implementation of a real time video surveillance system
with wireless sensor networks,” in Proceedings of the 67th IEEE
Vehicular Technology Conference (VTC ’08), pp. 218–222, May
2008.

[3] H. Park, J. Burke, and M. B. Srivastava, “Design and imple-
mentation of a wireless sensor network for intelligent light
control,” in Proceedings of the 6th International Symposium on
Information Processing in Sensor Networks (IPSN ’07), pp. 370–
379, ACM, New York, NY, USA, April 2007.

[4] P. Chen, P. Ahammad, C. Boyer et al., “Citric: a low-bandwidth
wireless camera network platform,” in Proceedings of the
2nd ACM/IEEE International Conference on Distributed Smart
Cameras (ICDSC ’08), pp. 1–10, September 2008.

[5] C. Park and P. H. Chou, “eCAM: ultra compact, high data-rate
wireless sensor node with a miniature camera,” in Proceedings
of the 4th International Conference on Embedded Networked
Sensor Systems (SenSys ’06), pp. 359–360, ACM, New York, NY,
USA, November 2006.

[6] T. Teixeira, D. Lymberopoulos, E. Culurciello, Y. Aloimonos,
and A. Savvides, “A lightweight camera sensor network
operating on symbolic information,” in Proceedings of the 1st
Workshop on Distributed Smart Cameras, November 2006.

[7] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin, “Camera
mote with a high-performance parallel processor for real-
time frame-based video processing,” in Proceedings of the IEEE
Conference on Advanced Video and Signal Based Surveillance
(AVSS ’07), pp. 69–74, September 2007.

[8] M. Quinn, R. Mudumbai, T. Kuo, Z. Ni, C. D. Leo, and
B. S. Manjunath, “VISNET: a distributed vision testbed,” in
Proceedings of the 2nd ACM/IEEE International Conference
on Distributed Smart Cameras (ICDSC ’08), pp. 364–371,
September 2008.

[9] H. T. Nguyen, B. Bhanu, A. Patel, and R. Diaz, “VideoWeb:
Design of a wireless camera network for real-time monitoring
of activities,” in Proceedings of the 3rd ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC ’09), August
2009.

[10] FFmpeg Team, “libavcodec: audio/video codec library,” 2010,
http://ffmpeg.mplayerhq.hu/.

[11] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key
scheduling algorithm of rc4,” in Proceedings of the 4th Annual
Workshop on Selected Areas of Cryptography, pp. 1–24, 2001.

[12] N. Li, B. Yan, and G. Chen, “A measurement study on wireless
camera networks,” in Proceedings of the 2nd ACM/IEEE Inter-
national Conference on Distributed Smart Cameras (ICDSC
’08), pp. 1–10, September 2008.

[13] S. Birchfield, “Elliptical head tracking using intensity gradients
and color histograms,” in Proceedings of the 1998 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 232–237, June 1998.

[14] The MathWorks, “MATLAB,” 1994–2010, http://www.math-
works.com/products/matlab/.

[15] G. Bradski, “Open computer vision library (OpenCV),” 1999–
2010, http://opencv.willowgarage.com/.

[16] I. Microsoft, “Microsoft foundation classes (MFC),” 1992–
2008, http://msdn2.microsoft.com/en-us/library/d06h2x6e
(VS.80).aspx.

[17] C. M. Kohlhoff, “Boost.Asio: a cross-platform c++ library for
network and low-level I/O programming,” 2010, http://www
.boost.org/doc/libs/1410/doc/html/boost asio.html.

[18] Network Working Group, “RFC 2616: hypertext transfer
protocol—HTTP/1.1,” 1999, http://www.ietf.org/rfcrfc2616/
.txt.


	1. Introduction
	2.Related Work and Contributions
	3. Building a Camera Network
	3.1. Choosing the Type of Network.
	3.1.1. Our Requirements and Implementation.

	3.2. Choosing the Right Camera.
	3.2.1. Our Requirements and Implementation.

	3.3. Choosing and Configuring the Network Hardware.
	3.3.1. Our Requirements and Implementation.

	3.4. Building the Server Hardware.
	3.4.1. Our Requirements and Implementation.

	3.5. Software System.
	3.5.1. Sample Program—Head Tracking.


	4. Experiments for Performance Characterization and Optimization of the Video Network
	4.1. Measurement Software.
	4.2. Optimizing Camera Configuration.
	4.3. Multiobjective Optimization Using Pareto Efficiency.
	4.3.1. Inferiority and Noninferiority.
	4.3.2. Data Collection.

	4.4. Evaluation Results.
	4.5. Task-Based Optimization.

	5. Conclusions
	Acknowledgments
	References

