Hindawi Publishing Corporation

EURASIP Journal on Image and Video Processing
Volume 2010, Article ID 837237, 22 pages
doi:10.1155/2010/837237

Research Article

Perceptually Motivated Automatic Color Contrast Enhancement
Based on Color Constancy Estimation

Anustup Choudhury and Gérard Medioni

Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA

Correspondence should be addressed to Gérard Medioni, medioni@usc.edu

Received 30 March 2010; Revised 20 August 2010; Accepted 1 October 2010

Academic Editor: Zhou Wang

Copyright © 2010 A. Choudhury and G. Medioni. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We address the problem of contrast enhancement for color images. Our method to enhance images is inspired from the retinex
theory. We try to estimate the illumination and separate it from the reflectance component of an image. We use denoising
techniques to estimate the illumination and while doing so achieve color constancy. We enhance only the illumination component
of the image. The parameters for enhancement are estimated automatically. This enhanced illumination is then multiplied with
the reflectance to obtain enhanced images with better contrast. We provide validation of our color constancy approach and show
performance better than state-of-the-art approaches. We also show “visually better” results while comparing our enhancement
results with those from other enhancement techniques and from commercial software packages. We perform statistical analysis
of our results and quantitatively show that our approach produces effective image enhancement. This is validated by ratings from

human observers.

1. Introduction

The human visual system (HVS) is a sophisticated mecha-
nism capable of capturing a scene with very precise repre-
sentation of detail and color. In the HVS, while individual
sensing elements can only distinguish limited quantized
levels, the entire system handles large dynamic range through
various biological actions. Current capture or display devices
cannot faithfully represent the entire dynamic range of the
scene, therefore images taken from a camera or displayed on
monitors/display devices suffer from certain limitations. As a
result, bright regions of the image may appear overexposed
and dark regions may appear underexposed. The objective
of contrast enhancement is to improve the visual quality of
images.

One of the most common techniques to enhance the
contrast of images is to perform histogram equalization. The
advantage of this technique is that it works very well for
grayscale images; however, when histogram equalization is
used to enhance color images, it may cause a shift in the
color scale, resulting in artifacts and an imbalance in image
color as shown in Figure 1. These unwanted artifacts are not

desirable, as it is critical to maintain the color properties of
the image while enhancing them.

A high-level overview of our approach can be seen in
Figure 2. We assume any image to be a pixel-by-pixel product
of the illumination (light that falls on the scene) and the
reflectance component of the scene. This can be expressed
as

I(x) = L(x)R(x), (1)

where L(x) is the illumination component and R(x) is
the reflectance component of the image I(x) with spatial
coordinate x. In this paper, we deal with color images. So,
I(x), L(x), and R(x) have 3 components—one for each color
channel. For instance, for the illumination image, L(x), we
denote the red color channel by Lyq(x), the green channel by
Lgreen(x), and the blue color channel by Lyjue (x). Similarly, we
can denote the color channels for other images. The capital
bold font denotes multiband. The presence of a bar above
the capital bold font denotes singleband. Similarly, the spatial
coordinate, x = (x, y) € R2.



(a) Original
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(b) Histogram Equalized

FiGuUrek 1: Histogram Equalization of color images. We can see artifacts in the sky and color shift along the edges of trees.
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We first try to estimate the illumination component of
the image, L(x), and thereby separate illumination from
reflectance. The reason why we try to separate L(x) and R(x)
is because experimentally Land [1] showed that the HVS can
recognize the color in a scene irrespective of the illumination.
This property of HVS is termed as color constancy and the
theory is referred to as retinex theory. Our method also tries
to mimic this human ability by removing the effects of the
color of illumination from the image after estimating the
illumination.

Trying to recover L(x) from an image and separate
L(x) from R(x) is a mathematically ill-posed problem, so
recovering L(x) needs further assumptions. We make the
assumption that L(x) is smooth. In order to estimate L(x),
based on this assumption, we smooth the image using
denoising algorithms. Though this does not give us the true
illumination of the scene, it gives us a good estimate of
the illumination color. However, as a result of smoothing,
strong halo effects can be seen along certain boundaries
of the image. Therefore, before smoothing the image to
estimate L(x), we preprocess the image and segment it.
Smoothing can then be performed adaptively, and reduced
around boundaries.

Enhanced
image

F1GURE 2: High-level overview of our method.

Once the color cast has been removed from the image
(this is equivalent to achieving White Balance), we only
process the L(x) component of the image. The motivation
behind modifying only the illumination of the scene is to
preserve the original properties of the scene—the reflectance
of the scene. Also, the dynamic range of the illumination can
be very large and hence we compress the dynamic range of
the illumination. We modify the illumination of the image
depending on the distribution of the intensity pixels, using
logarithmic functions to estimate the enhanced illumination
and then multiply it by the reflectance component to produce
the enhanced image. This also helps in improving the local
contrast of the image, which is another property of the
human visual system. Our results show that even in complex
nonuniform lighting conditions, the enhanced results look
visually better.

The rest of the paper is organized as follows. In Section 2,
we review previous work done in color constancy and in
image enhancement. In Section 3, we describe our approach
to achieve color constancy along with its evaluation on
widely used large datasets of images. In Section 4, we describe
the details of our algorithm with respect to separation of
the illumination from reflectance and then processing of the
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FIGURE 3: Summary of previous work in color constancy.

illumination component. In Section 5, we show the results
of our proposed enhancement method and compare our
results with other enhancement techniques including some
state-of-the-art approaches, and results from commercial
image processing packages. Finally, we conclude our paper
in Section 6.

2. Previous Work

2.1. Color Constancy. Most color constancy algorithms make
the assumption that only one light source is used to
illuminate the scene. Given the image pixel values I(x), the
goal of color constancy is to estimate the color of light source,
assuming there is a single constant source for the entire
image. Alternatively, as shown in [2], the illumination is
considered to be a spectrum and assuming that the color
of illuminant 1 depends on the illuminant spectral power
distribution L(A) and camera sensitivity c(A), 1 is estimated
as

1- L L)e(VdA, 2)

where 1 is the estimated color of the illuminant, w is
the visible spectrum and A is the wavelength. Therefore,
estimating 1 is equivalent to estimating its color coordinates,
where 1 has 3 components—one value for each color channel.

Many color constancy algorithms have been proposed
to estimate the color of illumination of a scene. These
methods can be broadly classified into 4 categories: (1)
gamut-based/learning methods, (2) probabilistic methods,
(3) methods based on low-level features, and (4) methods
based on combination of different methods. The literature of
these methods can be summarized as shown in Figure 3.

The gamut mapping method proposed by Forsyth [3]
is based on the observation that given an illuminant, the
range of RGB values present in a scene is limited. Under a
known illuminant (typically, white), the set of all RGB colors
is inscribed inside a convex hull and is called the canonical
gamut. This method tries to estimate the illuminant color
by finding an appropriate mapping from an image gamut
to the canonical gamut. Since this method could result in
infeasible solutions, Finlayson et al. [4] improve the above
algorithm by constraining the transformations so that the
illuminant estimation corresponds to a predefined set of
illuminants. Finlayson et al. [5] use the knowledge about
appearance of colors under a certain illumination as a prior
to estimate the probability of an illuminant from a set of
illuminations. The disadvantage of this method is that the

estimation of the illuminant depends on a good model of the
lights and surfaces, which is not easily available. Chakrabarti
et al. [6] consider the spatial dependencies between pixels
to estimate the illuminant color. Another learning-based
approach by Cardei et al. [7] use a neural network to learn
the illumination of a scene from a large number of training
data. The disadvantage with neural networks is that the
choice of training dataset heavily influences the estimation
of the illuminant color. A nonparametric linear regression
tool called kernel regression has also been used to estimate
the illuminant chromaticity [8].

Probabilistic methods include Bayesian approaches [9]
that estimate the illuminant color depending on the posterior
distribution of the image data. These methods first model
the relation between the illuminants and surfaces in a scene.
They create a prior distribution depending on the probability
of the existence of a particular illuminant or surface in a
scene, and then using Bayes’s rule, compute the posterior
distribution. Rosenberg et al. [10] combine the information
about neighboring pixels being correlated [5] within the
Bayesian framework.

A disadvantage of the above-mentioned algorithms is
that they are quite complex and all the methods require
large datasets of images with known values of illumination
for training or as a prior. Also, the performance may be
influenced by the choice of training dataset.

Another set of methods uses low level features of
the image. The white-patch assumption [1] is a simple
method that estimates the illuminant value by measuring the
maximum value in each of the color channels. The grey-
world algorithm [11] assumes that the average pixel value
of a scene is grey. The grey-edge algorithm [2] measures
the derivative of the image and assumes the average edge
difference to be achromatic. As shown in [2], all the above
low level color constancy methods can be expressed as

(J T ‘de> "’ = kI™P?, (3)

ox"

where n is the order of derivative, p is the Minkowski
norm and ¢ is the parameter for smoothing the image I(x)
with a Gaussian filter. The original formulation of (3) for
the white-patch assumption and the grey-world algorithm
can be found in [12]. As expressed in (3), the white-
patch assumption can be expressed as 1%*0, the grey-world
algorithm can be expressed as 1!? and the n-order grey-edge
algorithm can be expressed as I7?. Van de Weijer et al. [2]
have shown results using values of n = 1 and n = 2.
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(a) Original

(b) Enhanced

FiGure 4: Halo effect caused during retinex enhancement can be observed around the edge of the body and the background.

More recent techniques to achieve color constancy use
higher-level information and also use combinations of
different existing color constancy methods. Reference [13]
estimates the illuminant by taking a weighted average of
different methods. The weights are predetermined depend-
ing on the choice of dataset. Gijsenij and Gevers [14] use
Weibull parameterization to get the characteristics of the
image and depending on those values, divide the image
space into clusters using k-means algorithm and then use
the best color constancy algorithm corresponding to that
cluster. The best algorithm for a cluster is learnt from the
training dataset. Van de Weijer et al. [15] model an image as
a combination of various semantic classes such as sky, grass,
road and buildings. Depending on the likelihood of semantic
content, the illuminant color is estimated corresponding to
the different classes. Similarly, information about images
being indoor or outdoor are also used to select a color
constancy algorithm and consequently estimate the color
of illuminant [16]. More recently, 3D scene geometry is
used to classify images and a color constancy algorithm is
chosen according to the classification results to estimate the
illuminant color [17].

2.2. Enhancement Techniques. The most common technique
to enhance images is to equalize the global histogram or to
perform a global stretch [18]. Since this does not always gives
us good results, local approaches to histogram equalization
have been proposed. One such technique uses adaptive
histogram equalization [18] that computes the intensity
value for a pixel based on the local histogram for a local
window. Another technique to obtain image enhancement is
by using curvelet transformations [19]. A recent technique
has been proposed by Palma-Amestoy et al. [20] that uses
a variational framework based on human perception for
achieving enhancement. This method also removes the color
cast from the images during image enhancement unlike most

other methods and achieves the same goal as our algorithm.
Inspired by the grey-world algorithm [11], Rizzi et al. [21]
introduced a technique called automatic color equalization
(ACE) that uses an odd function of differences between pixel
intensities to enhance an image. This is a two step process—
the first step computes the chromatic spatial adjustment by
considering the difference in the pixels and weighted by a
distance function. The second step maximizes the dynamic
range of the image. A technique inspired from the retinex
theory [1] is the random spray retinex (RSR) by Provenzi
et al. [22] that uses local information within the retinex
theory framework by replacing paths with a random 2-D
pixel spray around a given pixel under consideration. The
previous two techniques were fused by Provenzi et al. [23]
and called RACE that account for the defects of those two
algorithms (RSR has good saturation properties but cannot
recover detail in dark regions whereas ACE has good detail
recovery in dark regions but tends to wash out images).
Another recent technique based on the retinex theory is the
Kernel-based retinex (KBR) [24] that is based on computing
a kernel function that represents the probability density of
picking a pixel y in the neighborhood of another pixel x
where x is fixed and y could be any pixel in the image.

Other methods that can enhance images under difficult
lighting conditions have been inspired from the retinex
theory. One such popular technique was proposed by
Jobson et al. [25] called multi scale retinex with color
restoration (MSRCR) where the color value of a pixel is
computated by taking the ratio of the pixel to the weighted
average of the neighboring pixels. One disadvantage of this
technique is that there could be abnormal color shifts because
three color channels are treated independently. An inherent
problem in most retinex implementation is the strong halo
effect in regions having strong contrast. The halo effects
are shown in Figure4. The halo effects are reduced in
another variation of the retinex theory that is proposed by
Kimmel et al. [26] where the illumination component is
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removed from the reflectance component of the image using
a variational approach. While enhancing the illumination
channel, the technique uses only gamma-correction and
the method is not automated. The user has to manually
modify the value of gamma depending on the exposure
conditions of the image—the value of gamma for enhancing
underexposed images is very different from the value of
gamma for enhancing overexposed images. A disadvantage
of the techniques that are purely based on the retinex theory
is that these techniques cannot enhance overexposed images
because of the inherent nature of the retinex theory to always
increase the pixel intensities as shown in [27]. However, this
modification is tackled in both [20, 24].

A recent method to obtain automated image enhance-
ment is the technique proposed by Tao et al. [28] that uses
an inverse sigmoid function. Due to lack of flexibility of
the inverse sigmoid curve, this technique does not always
result in achieving good dynamic range compression. There
are other techniques that have been designed in the field
of computer graphics for high dynamic range images to
obtain improved color contrast enhancement. Pattanaik et
al. [29] use a tone-mapping function that tries to mimic
the processing of the human visual system. It applies a
local filtering procedure and uses a multiscale mechanism.
This technique is a local approach and it may result in
halo effects. Another technique proposed by Larson et
al. [30] does tone-mapping based on iterative histogram
modification. Ashikhmin [31] has also proposed a tone-
mapping algorithm for enhancement and is based on a
Gaussian pyramid framework.

3. Our Approach to Achieve Color Constancy

As stated earlier, color constancy is the human ability to
perceive the color of a scene irrespective of the illumination
conditions. Therefore, to achieve color constancy, we should
estimate the color of illumination. In order to estimate the
color of the illumination of an image, we first process the
image to estimate the illumination component, L(x). We
make the assumption that L(x) is smooth. Based on this
assumption, we use denoising techniques to process the
image and smooth it. Denoising techniques are traditionally
used in image processing to remove noise from the image.
This involves smoothing of the images and hence removal of
the noise. Because of our smoothness assumption of L(x), the
smooth image that is obtained by denoising, is our estimate
of the illumination image, L(x). Once we have estimated
L(x), we apply the white-patch Assumption (maximum in
each color channel), as described in Section 3.2 on L(x) to
estimate the color of the illumination.

In the most simple filtering example, the smoothing
operation calculates the average of a region around every
pixel of the image. As the size of the region increases (limited
by the size of the image), the estimate of the maximum
value in each color channel tends towards the average value
in each color channel. Therefore, in a way that Minkowski
norm works as mentioned in Section 2, the smoothing
operation unifies the White Patch Assumption [1] and the

grey-world algorithm [11] in one approach. Hence, similar
to (3), we also assume the true color of illumination to be
somewhere between the maximum and the mean of the color
channels. These trends in the estimate of the illumination
color while filtering using different parameters are explained
in Section 3.3.2.

3.1. Denoising Techniques. We study 4 different existing
denoising techniques to smooth the image: (1) Gaussian
filter, (2) median filter, (3) bilateral filter, and (4) nonLocal
means filter. These filters have different levels of complexity
and vary in their smoothness mechanism. We consider the
input image I(x) to be defined on a bounded domain Q C >
and let x € Q. The description of these filters is given below.

3.1.1. Gaussian Filter. Blurring the image removes noise.
This filter can be expressed as

L exrnen
Glx) = 5 el D), @)
where ¢ is the smoothing parameter. This is a 2D Gaussian
radially symmetric kernel where |x| = (x2 + y2)"/.

Gijsenij and Gevers [32] have explored iterated local
averaging and can be considered similar to the Gaussian filter
approach. The edge information is lost during Gaussian filter
and this introduces error while estimating the illuminant. We
apply this filter across all 3 color channels (red, green and
blue) of the image.

3.1.2. Median Filter. For every pixel in an image, the median
filter [33] chooses the median color value amongst the
neighborhood pixels in a window W for that pixel—every
pixel has same number of color values above and below it.
Smoothing using median filter may result in the loss of fine
details of the image though boundaries may be preserved. We
apply this filter on all 3 color channels (red, green and blue)
of the image.

3.1.3. Bilateral Filter. In case of bilateral filter [34], every
pixel of the image is replaced by a weighted sum of its
neighbors. The neighboring pixels are chosen from a window
(W) around a given pixel. The weights depend on two
parameters: (1) Proximity of the neighboring pixels to the
current pixel (Closeness function) and (2) similarity of the
neighboring pixels to the current pixel (similarity function).
The closer and the more similar pixels are given higher
weights. The two parameters can be combined to describe
the bilateral filter as follows:

L(x) = k' (x) jw( elpx)sUy) 1))y, (5)

where y is the neighboring pixel and the normalization term
k can be given by:

k(x) = jw( €l x)s(1(y), 100)dy. (6)
The closeness function is
clyx) = eV, @)



where d(y,x) = ||y — x|l is the Euclidean distance between a
given pixel, x and its neighbor y. The similarity function is

s(I(y),1(x)) =

where §(I(y), I(x)) is the pixel value difference between x and
y. The closeness function from (7) having standard deviation
o. and the similarity function from (8) having standard
deviation o; are Gaussian functions of the Euclidean distance
between their parameters. In the original implementation of
the bilateral filter, Tomasi and Manduchi [34] have used the
CIELAB color space. We present results by applying this filter
on all 3 channels of the CIELAB color space of the image.
Applying this filter on the RGB colorspace instead does not
result in a significant difference.

—(1/2)(6(X(y), I(X))/O-S) (8)

3.1.4. Nonlocal Means Filter. The hypothesis behind nonlocal
means (NL-means) technique [35] is that for any image,
the most similar pixels to a given pixel need not be
close to it. They could lie anywhere in the image. For
comparing how similar the pixels are, instead of checking the
difference between the pixel values (which is used in bilateral
filtering), the neighborhood of the pixel is considered—that
is, comparison of a window around the pixel is done. This
technique uses self-similarity in an image to reduce the noise.
The formulation of the NL-means filter is:

NL(I(x)) = L(x)
9)

~(Gp# |T(xt-)=I(y+-) ) (0)/h2

"N (x) J ' ’ 1)y,
where y € Q, I(x) is the observed intensity at pixel x,
G, is a Gaussian kernel with standard deviation p, h is the
filtering parameter that controls the amount of smoothing
and N(x) is the normalizing factor. Equation (9) means that
an image pixel value I(x) is replaced by the weighted average
of other pixel values in the image I(y). The weights are
significant only if a window around pixel x looks like the
corresponding window around pixel y. While comparing the
windows, we consider the Euclidean distance between the 2
windows. However, we weigh this distance by a Gaussian-
like kernel decaying from the center of the window to its
boundaries. This is because closer pixels are more related,
and so pixels closer to the reference pixel are given more
importance. Ideally, we should search the entire image to find
a similar neighborhood. But for efficient computation, we
consider a smaller local search area, S. The numerator of the
exponential accounts for the neighborhood of a pixel which
we denote by W. Please refer to [35] for a more detailed
explanation of the NL-means filter. For discrete images, the
integral over ) can be replaced by a summation over all pixels
of the image. We apply this filter on all 3 color channels (red,
green and blue) of the image.

3.2. Illuminant Color Estimation. Once we have obtained
the illumination image L(x), by smoothing the original
color image I(x), in order to estimate the color of the
illumination 1, we use the white-patch assumption [1]. This
method computes the maximum values of each of the 3 color
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channels—red, green and blue. The proposed formulation
forlis

1= [max( red (X) ) (igreen (X)) > mxax(tblue (x) ) :| , (10)

where Lred(x), Lgreen(x) and Lpjue(x) are the red, green, and
blue color channels of the denoised image (illumination
image) and the max operation is performed on the separate
color channels. The maximum value of these color channels
need not lie at the same pixel of the image. This estimation is
based on the hypothesis that since a white patch of the image
reflects all the light that is incident on it, its position can be
found by searching for the maximum values of the red, green
and blue channels. The 1 vector thus estimated is normalized
and is denoted byl which has 3 components: 1(1) 1(2) and

T(S) for red, green, and blue respectively.

Once the color of the illumination is estimated as
described above, we remove the effect of color cast from the
image. This is equivalent to adding white light to the scene.
This can be represented as

color-corrected (X) - 73 /\( )
'gre€Ncolor-corrected (X) - 7 7g/\() ( )
luecolor-corrected (X) = ﬁ E/\lu( € ) X

where the factor /3 is the normalization constant based on
the diagonal model to preserve the intensity of pixels. Com-
bining all 3 color channels—Lreq_,;,, coreced (X)> Lareencoror comecea (X)
and Lbjueqorcomecea (X)> shown in (11)—gives us the color
corrected image. This is how we obtain the images illustrated
in Figure 12.

3.3. Evaluation and Discussion. In order to evaluate our
approach, we conduct experiments on two widely used
datasets. The ground-truth values of the illuminant of
the scenes are provided for both datasets. For quantitative
evaluation of the approaches, the error difference between
the estimated illumination color 1 and the ground truth
illumination color Iy is computed. We use the angular error
as a measure and it can be computed as

angular error, € = cos ™! (T - igt>, (12)

where (*) stands for normalized values. In order to measure
the overall performance across each of the datasets, the
median of the angular errors is considered as a suitable
measure [36].

3.3.1. Controlled Indoor Environment Dataset. This dataset
[37] consists of a controlled indoor environment with
30 different scenes taken under 11 different illuminant
conditions. All the images are illuminated by only one
illuminant. Some of these images were deemed unusable
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FIGURE 5: Images from the controlled indoor environment [37].

TasBLE 1: Error for the controlled indoor environment using various color constancy methods. The parameters of our approach have been

described in Section 3.1. The best result is reported in bold.

Method Parameters Median € (°) RMS,,
White-patch — 6.4 0.053
Grey-world — 6.9 —
Ist-order grey edge p=7 3.2 —
2nd-order grey edge p=7 2.8 —
Color by correlation — 3.1 0.061
Gamut mapping — 29 —
Neural networks — 7.7 0.071
GCIE version 3, 11 lights — 1.3 —
GCIE version 3, 87 lights — 2.6 —
Kernel regression — — 0.052
Support vector machines — — 0.066
Gaussian filter o=3,x=30 2.9 0.043
Median filter W =20 2.4 0.044
Bilateral filter o.=2,0,=5W=5 2.8 0.044
NL-means filter h=02S=3W=2 2.5 0.043

by the original authors and therefore, this dataset has 321
images. Some sample images from this dataset can be seen
in Figure 5. All images have resolution of 637 x 468 pixels.

The results of existing color constancy algorithms on this
dataset are summarized in Table 1. These results are available
in [2, 4, 36]. Some methods in the literature [8] have used
the root mean square (RMS) error between the estimated
illuminantion chromaticity, lc, and the actual illumination
chromaticity, lcg to evaluate their results although this is
not the best metric [36]. Since we do not have access to the
individual error values, we compare the results as is. The
RMS,, error can be calculated as

LN M 0\ 2

RMS;; = (NZMZ(IQ(J') ~leg, (7)) ) , o (13)
where N is the total number of images, i is the index of
images and M is the number of color channels (M = 2

for chromaticity space). We calculate error for the rg space.
The chromaticity for r and g for the estimated illuminant

can be computed as lc(1) = T(l)/(i(l) +i(2) +T(3)) and
Ic(2) = 1(2)/(1(1) + 1(2) + 1(3)). Similarly, we can compute

the chromaticity for the ground truth illuminant. The
RMS,, error for white-patch, Neural Networks and Color by
Correlation were presented in [38]. The performance of our
approach on this dataset are also presented in Table 1.

From Table 1, we can see that our approach gives the
best performance both with respect to the angular error and
the RMS,, error. On comparing the error of our approach
with that of all the approaches in [38], we can see that our
approach has the least RMS,, error. The GCIE algorithm
using 11 lights perform very well because this technique
uses the 11 illuminants as a prior knowledge. It constrains
the estimated value of the illuminant to lie in that set.
However, the performace drops if more illuminants are used
for training. We also compared our results with a recent
denoising technique by Dabov et al. [39]. However, their
technique produces a median error of 5.67° on this dataset
which is worse than our results.

3.3.2. Effects of Parameter Modification. In this section, we
discuss the effects of parameter setting for the different
methods of our approach. We use the images from controlled
indoor environment dataset and plot the median angular
error across the dataset against the parameters of the filter.
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FIGURE 6: Median angular error as a function of ¢ and kernel size
for a Gaussian filter.

The axis for the median angular error is inverted for better
visualization.

The error plot for Gaussian filter is shown in Figure 6.
Smoothing with ¢ = 0 will have no effect and therefore, for
o = 0, this method works like the white-patch assumption.
However, as ¢ — oo, the algorithm is equivalent to taking
the average of the image and therefore, the algorithm is
equivalent to the grey-world algorithm. We obtain the best
results for an intermediate value of o. Also from the plot,
we can see that for lower values of o, the median angular
error remains fairly consistent for higher values of window
size. This is because in case of a Gaussian distribution, 99.7%
pixels values lie within 3¢ of the mean and therefore higher
values of window size does not affect the calculation of a pixel
value. Also, for higher values of o, we can see that the error
value increases with increase in window size. Irrespective of
the o values, typically window size of around 5-20 pixels
gives us best results.

The error plot for median filter is shown in Figure 7. As
can be seen in the case of Gaussian filter, we can see that we
obtain best error values for window size (W) of around 5-20
pixels. For W = 0, this algorithm is once again the same as
white-patch algorithm. However when the value of W — oo,
the color estimated by this method will be the median color
value of all the pixels present in the image. Realistically, the
limiting factor for W will be the image size. For this dataset,
the median angular error when W is the image size, is 12.99°.

The error plot for Nonlocal means filter is shown in
Figure 8. In case of a Nonlocal means filter, the amount of
smoothing of the image depends on the filtering parameter,
h. A higher value of & does more smoothing of the image. As
we can see in Figure 8, the error value converges for higher
values of h. For h = 0, the algorithm will not perform any
smoothing and this method will be the same as the white-
patch algorithm.

The error plots for bilateral filter are shown in Figures 9
and 10. The left image of Figure 9 plots the median angular
error for low values of ¢ for spatial domain, o, and o
for intensity domain, o, whereas the right image plots the
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FIGURE 8: Median angular error as a function of filtering parameter
for a Nonlocal means filter.

median angular error for high values of o, and o;. As with
the Nonlocal means filter, we can see that the error value
converges for high smoothing (high values of o. and o;).
For values of ¢’s = 0, this algorithm will behave like the
White Patch algorithm. The best results are obtained from
an intermediate value of smoothing parameter.

As shown in Figure 10, given the best values of ¢, and o,
we see the effects of changing the window size on the median
errors. For low window size, since there is not enough
information, the error values are high. However, since the
individual closeness and similarity functions are Gaussian
distributions, having a very high window size does not help
much and the error value converges close to the best value.

3.3.3. Real-World Environment Dataset. This dataset [40]
consists of approximately 11000 images from 15 different
scenes taken in a real-world environment. Some sample
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FIGURE 10: Median angular error as a function of window size for a
bilateral filter.

images from this dataset can be seen in Figure 11. The images
include both indoor and outdoor scenes. All images have
360 x 240 resolution as they are all extracted from a digital
video. As a result, there is a high correlation between the
images from one scene in the database. Therefore, from each
scene we randomly select 10 images amounting to 150 images
in total on which we test our approach. Some sample images
from this dataset can be seen in Figure 11.

As can be seen in Figure 11, all the images from this
dataset have a grey ball at the bottom right corner of the
image. This grey ball was mounted on the video camera to
estimate the ground truth value of the color of the illuminant
and those values are available with the dataset. However,
while trying to estimate the illuminant color, we exclude
the bottom right quadrant as depicted by the white box in
Figure 12.

The results of existing color constancy algorithms and
our approaches on this dataset can be found in Table 2.
The selection of parameters significantly improves the results
when compared with the state-of-the-art color constancy
approaches. From Table 2, we can see that our method
have a 23% improvement over the state-of-the-art grey-edge
algorithm. We also compared our algorithm with a very
recent technique—“Beyond Bag of pixels” approach [6] and
found that our method gives us almost 26% improvement.
On comparing our results with a recent denoising technique
by Dabov et al. [39], that produces a median error of 3.96°,
we obtain an improvement of almost 14%.

3.3.4. Discussion. From the experiments that we have con-
ducted on the 2 widely used datasets and the results pre-
sented in Tables 1 and 2, we can see that our approach gives
us results that are better than state-of-the-art color constancy
approaches. On the controlled indoor environment dataset,
[2] have reported a median error of 3.2° for the 1st order
grey-edge algorithm with p = 7 and preprocessing with a
Gaussian filter of ¢ = 4. The median error for the same
dataset for the 2nd order grey-edge algorithm with p = 7
and preprocessing with a Gaussian filter of ¢ = 51is 2.7°. Our
experiments have shown that using just a Gaussian filter with
0 = 4 gives us a median error of 3.08° and with ¢ = 5 gives
us a median error of 3.12°. This makes us wonder if applying
Ist order grey-edge algorithm hurts the illuminant color
estimation. However there are benefits of using higher order
grey-edge color constancy algorithms. It will be interesting
to explore how grey-edge color constancy algorithms with
order n > 2 affect the estimation of illuminant color. It will
also be interesting to observe how complex methods such as
GCIE, neural networks and other learning methods perform
on images that are already preprocessed by our approach.
For the denoising algorithms, we observe that the win-
dow size required for the controlled indoor image dataset is
larger than the one required for the real-world environment
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FI1GURE 11: Images from the real-world environment [40].

TaBLE 2: Median angular error for the real-world environment. The
parameters of our approach have been described in Section 3.1. The
best result is reported in bold.

Method Parameters Median € (°)
White-patch — 4.85
Grey world — 7.36
Ist-order grey edge p==6 4.41
Beyond bags of pixels — 4.58
Gaussian filter g=5x=15 3.63
Median filter W=9 3.42
Bilateral filter 0. =50=7,W=3 3.4
NL-means filter h=10,S=3,W=2 3.39

TaBLE 3: Ranks of algorithm according to Wilcoxon signed rank
Test. The best results are reported in bold.

Method WSTs
White-patch 1
Grey world

Ist-order grey edge

Gaussian filter
Median filter
Bilateral filter
NL-means filter

W W N NN O

dataset. This could be because the controlled environment
dataset does not have too much variability—it consists of an
object or two with/without a background. However, for the
real-world dataset, there is a lot of variability and so more
information is available even in a small window.

As shown in [35], amongst the filters described here, NL-
means filter performs the best denoising. It best preserves the
structure of the image while denoising the image. We observe
a similar correspondence between the denoising capabilities
of the filter and its illumination color estimation. The best
illumination estimation results are obtained by using the best
denoising filters.

In order to compare the performance of different color
constancy algorithms, we use the Wilcoxon signed-rank
test [41]. For a given dataset (We choose the real-world
environment dataset), let C; and C, denote the angular
error between the illuminant estimation of two different

algorithms and the ground truth illuminant values. Let the
medians of these 2 angular errors be m, and m,,. The
Wilcoxon signed-rank test is used to test the null hypothesis
Hy : m; = mq,. In order to test this hypothesis, for each of
N images, the angular error difference is considered—(e!, —
el), (el —e),...,(e} — el). These error pairs are ranked
according to their absolute differences. If the hypothesis Hy
is correct, the sum of the ranks is 0. However, if the sum of
ranks is different from 0, we consider the alternate hypothesis
H; : m, < mg, to be true. We reject/accept the hypothesis
if the probability of observing the error differences is less
than or equal to a given significance level o. We compare
every color constancy algorithm with every other color
constancy algorithm and generate a score that tells us the
number of times a given algorithm has been considered to be
significantly better than the others. The results are presented
in Table 3.

4. Our Image Enhancement Method

Our method for image enhancement is motivated by
illuminance-reflectance modeling. It consists of 2 key steps:
(1) INlumination estimation using Nonlocal means technique
(2) Automatic enhancement of illumination. The flowchart
of our enhancement module is shown in Figure 13. For our
illumination estimation, we use the Nonlocal means(NL-
means) technique because as shown in Section 3.3.3, it
performs amongst the best while trying to estimate the color
of illumination. Also as shown in [35], NL-means filter does
a very good job at preserving the original structure of the
image while smoothing the image.

4.1. Estimating llumination Using Nonlocal Means Technique.
As shown in Section 3.1.4, we smooth the image using
Nonlocal means filter to estimate the illumination com-
ponent of the image, L(x). However, while smoothing an
image during illumination separation, a potential artifact
that may occur is the halo artifact. Existing enhancement
techniques that use illumination separation suffer from this
drawback. This happens across the edge of regions having
high contrast. In spite of the edge preserving properties
of the Nonlocal means filter, due to the high value of
filtering parameter, h = 500 while smoothing the image,
an “overflowing” occurs from the bright region to the dark
region across the edge. Processing of such illumination and
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FiGurg 12: Example of images from real-world environment corrected after estimating the illumination by different methods
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FiGure 13: Flowchart of the enhancement module.

multiplying it back with the reflectance causes strong halo
effects. In order to remove the halo effect, we presegment the
image using Mean-shift segmentation algorithm proposed
by Comaniciu and Meer [42]. Any segmentation algorithm
can be used. The boundaries of the segmented image is
used as a preliminary information for the smoothing process.
While trying to estimate the illumination, when we consider
a neighborhood for every pixel, we also consider the same
spatial neighborhood of the presegmented image and if an
edge occurs in the presegmented image, less smoothing is
done (h = 0.01). This helps in preserving high contrast
boundaries of the image and thus removes the halo effect
from the image.

Once the illumination component L(x) has been esti-
mated, the reflectance component of the image R(x) for
every pixel x can be calculated as the pixel-by-pixel ratio
of the image and the illumination component and can be
expressed as

R(x) = — > (14)

where I(x) is the original image. Alternatively, in the
logarithm domain, the difference between I(x) and L(x) can
be used to estimate R(x).

As shown in Section 3.2, once we estimate the color of
illumination, we remove the effect of color cast from L(x).
We first estimate the color of illumination as shown in (10).
Then as shown in (11), we remove the effect of color cast
from each of the 3 color channels (red, green and blue) and
then combine all 3 new color channels to get color-corrected
illumination image, Lc.(x).

4.2. Automatic Enhancement of Illumination. In order to
preserve the color properties of the image, we modify only
the brightness component of the image. The illumination
L. (x) obtained from Section 4.1 is converted from RGB
color space to HSV color space and only the luminance
(V) channel—L, (x) is modified. Alternatively, CIELAB
color space could be used and modification of the lightness
channel can be done. The chrominance channels are not

modified to preserve the color properties of the image.

09+ 1

0.7 v 1
0.6 bt ]
0.5  — Darkregion Bright region — 1

0.4 F i

Enhanced Intensity

0.3 - <— x = 0.6 controlPt 1
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F1GURE 14: The mapping function for enhancement.

Our method can be used for images that are underex-
posed, overexposed or a combination of both. Since, we have
to deal with different exposure conditions, our enhancement
method deals with those cases separately and divide the
intensity of the illumination map into 2 different regions as
shown in Figure 14.

The division of the region is determined by the position-
ing of the controlPt. The value of controlPt is computed as
follows:

2L, (x)=<05 1

controlPt = (15)

Ztﬂ’v (x)<1 1’

Intuitively, if an image is heavily underexposed, then a lot
of pixels will have very low intensity values. Using (15) we
can see that, for such images, the value of controlPt — 1.
Similarly, if an image is heavily overexposed, then a lot of
pixels will have very high intensity values causing the value of
controlPt — 0. Thus, we can see that the controlPt € [0.5, 1]
for images that are predominantly underexposed whereas
controlPt € [0,0.5] for predominantly overexposed images.

To improve the visual quality of images, if the dynamic
range of certain parts of the image is increased, some other
range must be compressed.
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For underexposed regions,

Zi“v (x)<0.1 1

dark = > T

Choose blue curve
th(x)sl 1 (16)

Choose green curve Otherwise.

If a lot of pixels lie in the dark region, then we have
to enhance the values of those pixels by a larger value. As
a result, the blue curve will be chosen. Otherwise, we will
choose the green curve to enhance the pixels that lie in
(0.1, controlPt] region.

For overexposed regions,

2L, (x)209 1 T,

Choose green curve bright =
me, (x)=1 1 (17)

Choose blue curve  Otherwise.

Similarly, if a lot of pixels lie in the bright region, then we
have to reduce the values of those pixels by a larger value.
Therefore, we will choose the green curve. Otherwise, in
order to enhance the pixels that lie in (controlPt,0.9), we
choose the blue curve.

The thresholds T} = 0.01 and T, = 0.01 are determined
experimentally and those values were chosen that gave the
best enhancement results over a wide range of images.

The curves are represented as a logarithmic function. The
blue curve can be represented as

Lenn, (x) = V1+% log((Lee, x)=v1)p+ 1) (va—v1), (18)

and the green curve can be represented as

Lenh, (x) =v2— % log((v2 = Lee, (0))p + 1) (v2=v1). (19)

where K = log(p(v; — vi) + 1 is a constant and
L., (x) € [vi,v2]. For underexposed regions of the image,
L., (x) € [0,controlPt] and for overexposed regions,
L, (x) € (controlPt,1]. The formulation of the curves in
(18) and (19) is inspired by the Weber-Fechner law that
states that the relationship between the physical magnitude
of the stimuli and the perceived intensity of the stimuli is
logarithmic. This relationship was also explored by Stock-
ham [43] and Drago et al. [44] who also recommended a
similar logarithmic relationship for tone mapping purposes.
Our formulation, inspired by the HVS, is different in flavor
from the existing formulations. It takes care of the differ-
ent exposure conditions simultaneously and automatically
estimates the parameters across a wide variety of images,
thus enhancing those images without additonal manual
intervention.

p represents the curvature of the curve, and enhances
the intensity of illumination accordingly. For instance, in
an underexposed region, due to higher value of dark, the
intensity has to be increased more and so a higher value of p
is used for the first curve. Similarly in an overexposed region,
due to higher value of bright, we decrease the intensity of
those regions by a higher value and therefore, a higher value
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FiGure 15: The effects of changing the value of p.

of p is used for the second curve. This effect is depicted in
Figure 15.

Lenhy, (x) is the enhanced luminance. This is combined
with the original chrominance to obtain the enhanced
illumination—Lepp, (X).

4.3. Combining Enhanced Illumination with Reflectance.
The enhanced illumination, L, (x) that was obtained in
Section 4.2 is multiplied with the reflectance component
R(x) that was obtained in Section4.1 to produce the
enhanced image Ienh (x) as follows:

Ienh(x) = Lenh(X)R(X)) (20)

The entire process is automated and the enhancement occurs
depending on the distribution of the pixels in the image.

5. Results and Discussion

In this section, we consider the computational costs and
discuss the results of applying the enhancement algorithm
described in Section 4 on a variety of images. We compare
our results with histogram equalization [18] and differ-
ent retinex techniques. We also compare our results with
commercial image processing software packages—Picasa,
DXO Optics Pro and PhotoFlair. PhotoFlair uses the multi-
scale retinex with color restoration (MSRCR) algorithm
proposed by Jobson et al. [25]. Although we have used
many different methods for comparison, we could not use
common benchmark image(s) to compare all the methods.
This is because, for some methods such as [20-23], and so
forth, the source code is not available or for method such

s [45], the available source code does not produce desired
results or package such as PhotoFlair needs to be purchased.
All these techniques use different images for enhancement.
So, we use results directly from the respective papers/websites
to do comparison with our enhancements. However, as
shown in Section 5.5, for a couple of images we use multiple
methods.
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FiGure 16: Enhancement according to our algorithm. Column (a) is the original images. Column (b) is enhancements according to our
implementation. Column (c) is enhancements on all 3 color channels of the illumination. Column (d) is enhancements on the intensity

channel of the illumination.

Finally, we perform statistical analysis and quantitative
evaluation followed by human validation to demonstrate the
effectiveness of our enhancement algorithm.

5.1. Computational Cost. We have implemented the algo-
rithm in MATLAB in Windows XP environment on a PC
with Xeon processor. For an image with size 360 X 240
pixels, segmentation takes 6sec., illumination estimation
takes 39sec. and the enhancement of illumination takes
<1sec. The speed can be improved by implementing the
code in C++. Also, faster and more optimized versions of
NL means filter can be used to increase the computational
efficiency.

5.2. Enhancement Results. In order to display the results
of our enhancement, we consider two different images as
shown in Figure 16(a). The top image, obtained from the
database provided by Barnard et al. [37], is taken under
strong blue illumination while the bottom image is obtained
courtesy of P. Greenspun (http://philip.greenspun.com/),
and is underexposed.

The results of our algorithm is presented in Figure 16(b).
The contrast of the enhanced images is much better than
the original images and the color cast from the images has
also been removed. For comparison, enhancement was done
on all 3 color channels of the original illumination L(x) as
shown in Figure 16(c). It helped in removing the color cast
but also resulted in a loss of color from the original image.
Enhancement was also done on only the intensity channel of
the original illumination L(x) as shown in Figure 16(d) and
it did not help in removing the color cast as shown in the top
image. Therefore, our technique produces the best of both

worlds—it enhances the color of the scene as well as it helps
in removing the color cast from the image. Further, it also
gives us a visually pleasant image.

5.3. Comparison with Other Methods. We have also com-
pared our results with existing methods such as histogram
equalization. Histogram equalization on all 3 color channels
of the original image results in color shift and loss of
color as shown in Figure 17. It also results in artifacts. The
histogram equalization on only the luminance channel as
shown in Figure 18 does not result in color shift but it also
does not improve the visual quality of images with color
cast.

We have compared with the variational approach in
retinex proposed by Kimmel et al. [26] and have used
our implementation of the proposed technique. This tech-
nique uses gamma correction to modify the illumination.
The method is not automated and the value of gamma
required for enhancing the images depends on the quality
of the original images (underexposed/overexposed) and it
is cumbersome to manually adjust it. The output from this
technique is shown in Figure 19. When we compare this
to the output that we get as shown on the top image in
Figure 16(b), we can see that our method produces better
enhancement.

We also compared with the retinex implementation by
McCann in [45] as shown in Figure 20. A disadvantage is
the possibility that a halo effect may still exist in the scene
as shown in Figure 20 in the title of the rightmost book. The
halo effect does not occur in our method because of the prior
segmentation of the method and the use of NL-means filter
which preserves the edges in a scene.
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FIGURE 17: Histogram equalization on all 3 color channels of the input image. Color shifts and artifacts are quite prominent.

(a) (b)

FiGure 18: Histogram equalization on the luminance channel of the input image. Color cast persists and does not improve the contrast of

image.
(a) (b)

FiGure 19: Enhancement using variational approach of retinex algorithm. The image on the left is enhanced using all 3 channels of the
illumination whereas the image on the right is enhanced using only the intensity value of the illumination.
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FIGURE 20: (a) is the original image. (b) is enhanced by McCann retinex and (c) is enhanced by our algorithm. More detail can be seen in

the shadows and no halo effect exists in our implementation.

We have also compared our results with a recent tech-
niques proposed by Palma-Amestoy et al. [20] and Provenzi
et al. [21-23],and observe that our methods give better
contrast and the resulting images look visually better as
shown in Figure 21.

We also compared our results with the MSRCR algorithm
and observed that our results have a better contrast than
the output of the PhotoFlair software as shown in Figure 22.
The original images and the output of MSRCR were
obtained from NASA website (http://dragon.larc.nasa.gov/
retinex/pao/news).

Finally, we compared our algorithm with the output
given by Picasa. We used the Auto Contrast feature of Picasa
and as shown in Figure 23, we can see that we obtain better
results. Other parameters can be manually modified in Picasa
to get better results but we are building an automated system
with no manual tuning of parameters. Even in our approach,
if necessary, we can also manually modify parameters to
obtain different looking results.

We also compared our algorithm with the output given
by DXO Optics Pro and the results are shown in Figure 24.

5.4. Statistical Analysis. A good way to compare an image
enhancement algorithm is to measure the change in image
quality in terms of brightness and contrast [28]. For
measuring the brightness of the image, the mean brightness
of the image is considered and for measuring the contrast of
the image, local standard deviation of the image (standard
deviation of image blocks) is considered. In Figure 25, the
mean brightness and local standard deviation of the image
blocks for the top image of Figure 16(a) (size of image block
is 50 x 50 pixels) is plotted before and after enhancement. We
can see that there is a marked difference (increase) in both the
brightness and the local contrast after image enhancement.

5.5. Quantitative Evaluation. A quantitative method to eval-
uate enhancement algorithms depending on visual repre-
sentation was devised by Jobson et al. [46] where a region
of 2D space of mean of the image and local standard
deviation of the image was defined as visually optimal, after
testing it on a large number of images. We have shown the
effects of implementing our algorithm in Figure 26. It can
be seen that some of the enhanced images (overexposed and
underexposed before enhancement) lie inside the visually
optimal region whereas other images though do not lie in
the visually optimal region have a tendency to move towards
that region. This happens because those original images are
either too dark (very underexposed) or too bright (very
overexposed).

We also visualize the effects of other enhancement algo-
rithms in Figure 26. We observe that more images enhanced
by our method lie closer/in the visually optimal region than
the images enhanced by MSRCR. For images that are heavily
overexposed, we can see that our enhancements lie closer
to the visually optimal region than the ones enhanced by
Picasa. Some images, for instance, image with y, =~ 42
and gy, =~ 5 are enhanced by multiple methods and we
can see that our enhanced images lie closer to the visually
optimal region than the other enhancement methods. On an
average, our approach results in “better” enhancement than
existing techniques. However, “better” enhancement is very
subjective so we conduct human validation of our approach,
as described in Section 5.6.

Some interesting observations are as follows—Histogram
Equalization (both on 3 color channels or the intensity
channel) results in the enhanced image being in the visually
optimal region whereas our enhanced image lies very close
to that region. This is because as can be seen in Figure 17
and Figure 18, a lot of artifacts are generated. These artifacts
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FIGURE 21: (a), (b), and (¢): Enhancements by Rizzi et al. and Provenzi et al. (a) is enhanced by RSR [22], (b) is enhanced by ACE [21] and
(¢) is enhanced by RACE [23]. The images are obtained from [23]. (d) and (e): (d) is obtained from [20] whereas (e) is using our algorithm.
Note the color contrast amongst the images. Also on zooming in the image, the prancing horse can be seen more clearly on (e).

increase the local standard deviation thus causing an increase
in the value of y, resulting in the histogram equalized image
to lie in the visually optimal region. Also for an image that
already lies in the visually optimal region, we can see that our
enhancement does not result in a significant change. In short,
our enhancement does not spoil the visual quality of good
quality images. This has also been validated by experiments
on human observers as shown in Section 5.6.

5.6. Human Validation. To know the effectiveness of our
method, we enhanced 40 images using our algorithm. The
procedure has 2 steps: (1) We presented the original and
the enhanced version simultaneously. The placement of the
original and the enhanced version were random(either the
left or the right side of the screen) to remove any bias
that may exist while selecting an image. We asked each of
the 12 human observers independently to rate the image
on the “right” side as “better”, “same” or “worse” relative
to the image on “left” side of the screen and recorded
their responses. Scores were thus assigned as 1 for Better,
0 for Same and —1 for Worse. These responses were used
to evaluate the “preference” for enhanced image. (2) The
original image was then presented on the screen and the
observers were asked to rate the “quality” of the image as

“poor”, “average” or “good” that was recorded as 1, 2 or 3
respectively. The people were unaware of the fact that the
image in Step 2 that is being presented to them is the original
image from Step 1 to remove any bias that may occur due to
knowledge of the original image.

This was repeated for all 40 images in the database.
Finally, one image that had the most perceptible difference
after enhancement was presented to the subject but with the
order flipped from the previous display and the response
was noted to check if the subjects were consistent with their
responses.

We found that observers were not biased towards select-
ing any one side of the screen. The responses of all the
subjects were also consistent when the “preference” ratings
for the last comparison was compared with that of its earlier
ratings.

Figure 27 shows the original image “quality” ratings. We
can see that around 72.5% of images were rated above Average
(quality > =2) by people.

Similarly, Figure 28 shows the “preference” ratings for the
enhancement method. We can see that in most cases, the
observers prefer our enhanced images.

As can be seen in Figure 28, for 5 images the observers
prefer the original images (preference < 0), though the
preference is not significantly lower. If we check the image
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FIGURE 22: (a) is the original images. (b) is the enhanced images by MSRCR. (c) is the images enhanced by our algorithm. Using our
algorithm, we can clearly see the red brick wall within the pillars on the left image and some colored texture on the white part of the shoe

can be clearly seen.

quality of those original images (Figure 27), we can see that
3 of those images were rated high (quality > 2.5). Also for all
the 4 cases where enhanced images were considered to be the
same as the original images (preference = 0), the quality of
the original images was rated was rated high (quality > 2.5).
For all the cases where the original images were rated Poor
(quality = 1), the observers consistently showed preference
for the enhanced images (preference > 0).

Further, using Wilcoxon signed-rank test [41], we
inferred that the enhanced images are statistically signifi-
cantly different from the original image (The null hypothesis
of zero median of the difference is rejected at 5% level) and by
comparing the ranks we conclude that the enhanced images
have a higher rank than the original images. This implies that
people prefer enhanced images over the original images.

6. Conclusion

We have proposed an automatic enhancement technique
for color images that is motivated by human perception
and can work well under nonuniform lighting conditions.
It provides an unifying framework in which any image
can be enhanced automatically irrespective of the inherent
color cast in the image or the exposure conditions—both
underexposure or overexposure. It thus helps in achieving
both color constancy and local contrast enhancement in
which the human visual system is proficient. Our method
estimates the illumination present in the scene and then
modifies the illumination to achieve good enhancement
depending on some analysis of the distribution of image
pixels although, the users can be given control over certain
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FIGURE 23: (a) is the enhanced output using Auto Contrast feature of Picasa and (b) is enhanced using our algorithm.
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FIGURE 24: (a) is enhanced using DXO Optics Pro and (b) enhanced using our algorithm.

parameters to tune them and adjust the values according to
their needs to get customized enhancements. Our method
also does not suffer from halo effects during enhancement
nor does it suffer from any color shifts or color artifacts
or noise magnification. Experimentally, we have compared
our enhancement results with results from other existing

enhancement techniques and commercial image processing
packages and show that our results look “visually” better
than the ones produced by existing techniques. Statistically
and quantitatively, we have shown that our technique indeed
results in enhanced images, and validated our argument by
conducting experiments on human observers.
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While trying to achieve color constancy, we have used
denoising techniques, Gaussian filter, median filter, bilat-
eral filter and Nonlocal means filter. While estimating
illumination using the denoising techniques, we observed
that the best results were obtained using nonlocal means
filter that also best preserves the structure of the image
whereas comparatively worse results were obtained with
the technique that least preserves the structure of the
image. Therefore, intelligent smoothing helps in better
estimation of the illuminant value. Experiments on two
widely used datasets showed that our techniques give an
improvement over existing state-of-the-art color constancy
methods.
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As future work, we would like to ensure that repeated
enhancement of the images does not degrade its visual
quality. For certain images, post-enhancement though those
images look visually better, there is still some information
present in the reflectance component that has been left
untouched. Enhancing the reflectance component may result
in boosting of the texture in the enhanced image that may
result in better visual quality of the images. We would also
like to organize focus groups to do human validation on a
larger dataset.

Regarding color constancy, future work may include
ways to combine different approaches in one framework.
It may include some amount of learning to know if a
particular filter works better for a certain category of images.
It will also be interesting to compute the parameters for
a filter automatically depending on an image characteris-
tics.
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