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This paper presents a method that jointly performs synthesis and object segmentation of free-viewpoint video using multiview
video as the input. This method is designed to achieve robust segmentation from online video input without per-frame user
interaction and precomputations. This method shares a calculation process between the synthesis and segmentation steps; the
matching costs calculated through the synthesis step are adaptively fused with other cues depending on the reliability in the
segmentation step. Since the segmentation is performed for arbitrary viewpoints directly, the extracted object can be superimposed
onto another 3D scene with geometric consistency. We can observe that the object and new background move naturally along with
the viewpoint change as if they existed together in the same space. In the experiments, our method can process online video input
captured by a 25-camera array and show the result image at 4.55 fps.

1. Introduction

As a powerful tool for representing 3D visual information
of the real world, a technology called image-based rendering
has attracted many researchers [1, 2]. This technology can
synthesize new images which are observed from arbitrary
viewpoints, using multiview images as the input. It can
provide realistic 3D experiences thanks to the arbitrary
control of the viewpoint (Figure 1). In addition to the
viewpoint control, image editing methods such as object
segmentation are desired to extend the capacity of image-
based rendering.

In this paper, we focus on object segmentation task
for image-based rendering. Our method jointly performs
synthesis of free-viewpoint images and object segmentation
in a combined scheme and aims to achieve real-time
processing of online video inputs. The method enables to
extract a 3D object from one real scene and to superimpose it
onto another 3D (real or CG) scene. Since this composition
is achieved in a view-dependent manner, we can observe
that both the object and new background move naturally
along with the viewpoint change as if they existed together
in the same space. Experimental results using our camera

array system are presented to show the effectiveness of our
method.

The problem to solve in this paper consists of two
parts: (a) synthesis of free-viewpoint images, and (b) object
segmentation. We perform (a) and (b) in this order for the
computational efficiency. If (a) and (b) are executed in the
reversed order as in [3], (b) should be applied to each of the
input images. Meanwhile, if (a) and (b) are executed in this
order, (b) can be restricted to the image resulting from (a),
which saves much calculation cost. Moreover, we found that
the matching costs calculated through (a) are useful also for
(b). Therefore, these values are shared between (a) and (b) in
our algorithm. Consequently, (a) and (b) are not conducted
individually but are jointly performed in a combined scheme.

The features of the proposed method are as follows. First,
matching costs (mentioned later in Section 3) calculated
through the free-viewpoint image synthesis process are
reused for the following segmentation process. Thereby,
we can increase useful cues for the segmentation without
additional calculations. Second, in the segmentation process,
we adaptively combine the matching cost with the color
likelihood depending on the reliability of the matching cost
for each pixel. Finally, we adopt the graph cut algorithm [4]
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Figure 1: Overview of free-viewpoint image synthesis. The inputs are multiview images captured through a camera array. The outputs are
free-viewpoint images, that is, images which are observed from new viewpoints. Depthmaps are also calculated behind this process, however,
they are unreliable in the less textured regions.

for the segmentation process to obtain globally optimized
results.

The remainder of this paper is organized as follows.
In Section 2, we describe backgrounds of our work. In
Section 3, we present our method which jointly performs
synthesis and object segmentation of free-viewpoint images.
An overview and results of the experiments are shown
in Section 4. Finally, we conclude this paper in Section 5.
A preliminary version of this work was presented in
[5].

2. Backgrounds

As mentioned in Section 1, the goal of this work is real-time
and online segmentation of free-viewpoint video. One may
think that depth-keying like methods are straightforward
for this goal because multiview images are given as the
input. In fact, depth maps are calculated behind the free-
viewpoint image synthesis, as shown in Figure 1. However,
these depths are unreliable in less textured regions. Although
this unreliability is not a significant problem for the purpose
of free-viewpoint image synthesis (because the resulting
colors of such regions are still correct even if the estimated
depths are incorrect to some extent), it is unacceptable
for object segmentation. Our method also adopts a depth-
related value (matching cost, mentioned later) but fuses
it with other information in a probabilistic framework to
obtain sufficient results.

In the context of object segmentation, probabilistic
approaches are successfully applied to combine multiple
cues. Boykov and Jolly [4] introduced an optimization
technique using graph cut, which is capable of combining
color and contrast cues effectively. For more stable and
accurate segmentation, other types of information have
been appended to the graph cut algorithm. Criminisi et al.
[7] adopted motion cue and temporal prior. Kolmogorov
et al. [8] used stereo matching information obtained from
stereo cameras. Thermal vision information is used in [9]
for extraction of human regions. Our method also uses
graph cut algorithm to fuse the matching cost with other
information.

The most similar works to ours are found in [8, 10–13].
These works use multiview images as input and combine
depth-related cues with object segmentation or matting. The
features of our work are as follows.

(1) Object segmentation is obtained directly from an
arbitrary viewpoint. In other words, the viewpoint
for the segmentation is not restricted to the input
viewpoints.

(2) Instead of the explicit depth value, a depth-related
evaluation value (referred to as matching cost in this
paper) is used for a segmentation cue. Explicit depth
estimation is unnecessary in this scheme.

The first feature is common to the methods in [13], the
second feature is common to the methods in [8, 10].
However, to our knowledge, there are no works except ours
that has both features simultaneously.

The first feature is suitable for online video processing
because we need to perform segmentation only once to
achieve object segmentation from an arbitrary viewpoint.
This is the direct approach to our goal as mentioned
in Section 1. Otherwise, we have to iterate segmentation
for each of the multiviewpoint images, which will greatly
increase the computational cost. The second feature is
preferable because accurate depth estimation in real time
is far beyond the capability of the current state-of-the-
art stereo technologies. However, depth-related values can
be easily obtained and used successfully to increase the
robustness of the segmentation. Thereby, combining these
two features is a reasonable choice to increase the speed
and robustness in object segmentation of free-viewpoint
video.

3. Algorithm

The input to our algorithm is a set of images captured from
a 2D array of cameras. The purpose is to extract a target
object from the scene and simultaneously to see the object
from arbitrary viewpoints. Our algorithm jointly performs



EURASIP Journal on Image and Video Processing 3

Target light-ray

i = (x, y)

Dn: depth layer

Pn
c (i)

Camera array

Virtual viewpoint

Arran
ge de

pth la
yers

Figure 2: Configuration with a certain depth layer for free-
viewpoint image synthesis.

synthesis and segmentation of free-viewpoint images. The
algorithm consists of the following two steps.

(i) We synthesize an image from an arbitrarily given
viewpoint. The matching costs (mentioned later)
calculated here are stored for the next step.

(ii) We extract the target object with graph cut. The
likelihoods are calculated from the matching cost,
pixel color, and temporal coherency. The reliability of
the matching cost is evaluated from the local texture
and considered in the calculation.

The remainder of this section describes each of the steps.

3.1. Free-Viewpoint Image Synthesis. For synthesis of free-
viewpoint images, we adopt the view-dependent rendering
algorithm presented in [6].

The configuration is illustrated in Figure 2. The camera
array captures input images. The target viewpoint represents
the position where we want to synthesize an image. The
method locates a set of depth layers over the target scene. Let
Dn denote the nth depth layer (n = 1 · · ·N), and let i be the
index of the pixel position (x, y) on the target image.

For each depth layer Dn, we compute the color In(i) and
the matching costMn(i) as follows:

In(i) =
∑

c∈Ci

acvc
(
Pn
c (i)

)
,

Mn(i) = smooth
(
variance

(
vc
(
Pn
c (i)

)∣∣
c∈Ci

))
.

(1)

Pn
c represents a matrix transforming a pixel position on the

virtual viewpoint into corresponding pixel position on the
cth input camera. To perform this transform, we first trace
back the light ray associated with each of the pixels on
the target image (target light ray in Figure 2) and find the
intersection with the nth depth layer. Then we project the
intersection point onto the cth input camera to obtain the
corresponding pixel position on it. vc represents the cth input
camera, and ac is its nonnegative weight. Ci denotes a set
of cameras referred to for the ith pixel. Those cameras are
determined according to the vicinity to the target light ray. In

order to reduce the calculation cost, the vicinity is evaluated
per triangle mesh as shown in Figure 2. The number of the
referred cameras is set to 3 in this paper. smooth(∗) is a
smoothing filter applied on each depth layer, and 15 × 15
square kernel is used in this paper.

Let I(i) be the resulting free-viewpoint image. In(i) can be
regarded as the pixel color of I(i) if there is an object point at
the depth Dn, and its confidence can be measured by Mn(i).
Therefore, we can synthesize the target image by searching
for the minimum ofMn(i) over n for each i and coloring I(i)
accordingly as follows:

I(i) = In∗(i)(i), (2)

where

n∗(i) = arg min
n∈[1,N]

Mn(i). (3)

In the above, n∗(i) can be regarded as a depth map as shown
in Figure 1. In the original algorithm [6], the minimum
search is performed all over the depth range of the target
scene, resulting in an all-in-focus image (Figure 3(a)). By
contrast, in this work, the range can be limited to the volume
of the target object. We can reduce the calculation cost by
reducing the number of depth layers. The resulting image is
visually correct only around the target object (Figure 3(b)),
but that is not a problem because we aim to extract that
object from the scene and discard the remains. Here, we
assume that we know the depth of the target object. We
also assume that there is nothing but the target object
in that depth, because if there is another object around
the depth of the target object, the matching cost may be
useless to discriminate them. To specify the target object, we
implement a user interface using synthetic focusing method
similarly to [10], which also provides an approximate depth
of the focused object.

Through the minimum search in (3), the minimum of
Mn(i) is calculated necessarily as follows:

M(i) =Mn∗(i)(i). (4)

As shown in Figure 3(c), M(i) takes relatively small values
for the target object. Meanwhile, M(i) is more likely to
take larger values for the background except textureless
regions. Although M(i) alone is insufficient for the object
segmentation, it surely bears useful information. Shown in
Figure 4 are the histograms ofM(i) for two different frames.
The distributions of the object and background are obviously
different although they have large overlaps. Consequently, we
keep M(i) in order to use it in the following segmentation
step.M(i) is referred to as the matching cost in the remainder
of this paper.

3.2. Segmentation. The inputs to the segmentation step are
the target image viewed from the virtual viewpoint and the
corresponding matching costs, both of which are obtained
from the first step. In this step, each pixel of the target image
is categorized into either “object” or “background”. For
this purpose, the matching costs are successfully fused with
other information in the graph cut algorithm [4]. Figure 5
illustrates the overview of this step.
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(a) (b) (c)

Figure 3: Example images of the free-viewpoint synthesis step. (a) is an all-in-focus free-viewpoint image obtained by [6]. (b) and (c) are
object-focused free-viewpoint image (I(i) in (2)) and visualized matching cost map (M(i) in (4)) obtained by our method.
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Figure 4: The histograms of the matching cost values. Mmax is a
positive constant mentioned in (14).

3.2.1. Segmentation Using Graph Cut. First, we make a
trimap T = {T(i)} from the segmentation result of the
previous frame S∗ = {S∗(i)}. Each pixel of a trimap takes
either “object”, “background”, or “unknown” as follows:

T(i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

“object” if smooth
(
Ŝ∗(i)

)
= 255,

“background” if smooth
(
Ŝ∗(i)

)
= 0,

“unknown” otherwise,

(5)

where

Ŝ∗(i) =
⎧
⎨
⎩
255 if S∗(i) = “object”,

0 if S∗(i) = “background”.
(6)

Gaussian kernel is used for the smoothing filter in (5).
T(i) takes “unknown” near the boundary of the object

and background in the previous frame, but the labels
(“object”/“background”) for the other regions are retained
from the previous frame (Figure 6). It implies that the
object does not move or deform significantly between the
temporally-consecutive two frames. We apply the graph cut
process only to the “unknown” regions and their boundaries
to reduce the calculation cost as well as to obtain temporally
stable segmentations.

Let S = {S(i)} be a binary segmentation of the image,
where S(i) is the label for the ith pixel taking either “object”
or “background”. The graph cut algorithm minimizes the
Energy as follows:

E(S) =
∑

i

Data(i, S(i)) + λ ·
∑

(i, j)∈Np ,S(i) /= S( j)

Smth
(
i, j
)
,

(7)

where Data(i, S(i)) represents the data term which evaluates
pixel-wise costs, Np denotes a set of 8-neighboring pixel
pairs, and Smth(i, S(i)), referred to as the smoothing term,
evaluates interpixel costs. λ is a nonnegative weighting
coefficient and was set to 20 in this paper.

The data term is calculated from the object/background
likelihoods. The likelihoods can be estimated from various
types of cues such as color, motion, and temporal coherency.
In this paper, temporal coherency, color, and the matching
cost information are fused, which is detailed in Section 3.2.2.

As a typical form of the smoothing term, we use

Smth
(
i, j
) = e−‖I(i)−I( j)‖

2/(2σ2)
∥∥dist

(
i, j
)∥∥ , (8)

where dist(i, j) is the distance between the ith and jth pixels.
σ is a nonzero constant. This function charges a cost to each
of the label changes between the neighboring pixels. The cost
decreases as the contrast between neighboring pixel colors
increases. As a result, the segmentation boundaries tend to
go along with the high-contrast contours.

As mentioned before, only the “unknown” regions and
their boundaries are included in the graph. For the boundary
pixels, we define fixed likelihood values as follows:

Data(i, S(i)) =
⎧
⎨
⎩
0 if S(i) = T(i),

Dmax otherwise,
(9)
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Figure 5: Overview of the proposed method.

where Dmax is a sufficiently large constant. Thereby, those
pixels are classified correctly into the predefined labels.
Meanwhile, the data term for “unknown” pixels is obtained
from the procedure in Section 3.2.2.

3.2.2. Detailed Design of the Data Term. For “unknown”
pixels, we define the data term as the weighted sum of the
likelihood for temporary coherency L∗(i, S(i)) and that from
the current frame L(i, S(i)). μ ∈ [0, 1] is a weighting factor

Data(i, S(i)) = μL∗(i, S(i)) +
(
1− μ

)
L(i, S(i)). (10)

The likelihood for temporal coherency L∗(i, S(i)) is
obtained from the segmentation result of the previous frame

L∗(i, S(i)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− log

⎛
⎝
smooth

(
Ŝ∗(i)

)

255

⎞
⎠

(
S(i) = “object”

)
,

− log

⎛
⎝1−

smooth
(
Ŝ∗(i)

)

255

⎞
⎠

(
S(i) = “background”

)
.

(11)

This calculation process is common to the trimap generation
in (6).

The likelihood from the current frame, L(i, S(i)) in (10),
is calculated from the pixel color I(i) and the matching cost
M(i), obtained by (2) and (4), respectively,

L(i, S(i)) = w(i) log(P(M(i) | S(i)))
+ (1−w(i)) log(P(I(i) | S(i))),

(12)

where w(i) is a weighting coefficient and takes pixel-
dependent values, which is described later. The conditional
probabilities, P(M(i)|S(i)) and P(I(i)|S(i)), are obtained
from the object/background histograms of the matching cost
and color, respectively. The histograms are 3D for I(i) (for
RGB channels, resp.) and 1-D for M(i). Because we cannot
obtain any histograms for the first frame of the video, we
need to assume that a ground truth of the first frame is given
or to exceptionally define

L(i, S(i)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Lmax · (S(i)∧ “background”
)

(M(i) ≤ θ),

−Lmax · (S(i)∧ “object”
)

(M(i) > θ),

(13)

where Lmax is a sufficiently large positive constant and θ is
a threshold value. After the second frame, we update the
histograms based on the segmentation result of the previous
frame. We take weighted averages between the current
histograms and those constructed from the segmentation
result in the ratio of 1− α : α. With a large α, the histograms
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(a) (b) (c)

Figure 6: Trimap generation, the segmentation result of the previous frame (a) is smoothed (b) and digitalized into 3 values (c): “object”
(white), “background” (black), and “unknown” (gray). The graph cut process is applied only to “unknown” regions and their boundaries.

(a) (b)

Figure 7: Free-viewpoint image (a) and its texture intensity (b). The darker pixels are less textured, indicating that the corresponding
matching costs are less reliable.

would quickly adjust to dynamic scenes, but they would be
unstable. In this paper, α is set to 1/6. The likelihoods for
the first frame may be erroneous to some extent, but they
become increasingly accurate as the frame proceeds.

One of our main contributions is the way to determine
w(i) in (12). As mentioned before, the matching cost M(i)
surely contains useful information for the object segmenta-
tion but has some unreliability. Therefore, we consider the
reliability for each pixel using the local texture information
to determine w(i). The matching cost represents the depth
correctness for the sufficiently-textured regions, but that
is not the case for the weakly-textured regions. For such
regions, matching cost is always small regardless of the depth
correctness.

Based on the above observation, we determine w(i) as
follows:

w(i) = max

(
M(i)
Mmax

,
Vt(i)
Vmax
t

)
, (14)

where Vt(i) is the texture intensity around the ith pixel
calculated by

Vt(i) = variance(I(i))|i∈Wi
, (15)

whereWi denotes the pixels in the local region whose center
is the ith pixel in the synthesized image, and a 15× 15 square
window was used in this paper. Mmax and Vmax

t are positive
constants and were set to 255/30 and 255/10, respectively.

Equation (14) indicates that the matching cost is reliable if
eitherM(i) or Vt(i) is large; the matching cost is unreliable if
and only if bothM(i) and Vt(i) are small.

An example of Vt(i) and the corresponding I(i) is shown
in Figure 7. The texture intensities are largely different pixel
by pixel, and therefore so are the reliabilities. Determining
w(i) as in (14) brings pixel-wise adaptivity to (12). w(i)
reflects the reliability of the matching cost M(i). Conse-
quently, larger reliability results in a larger impact on the
likelihood P(M(i)|S(i)).

4. Experiments

We used a camera array that consists of 25 (5 by 5)
cameras shown in Figure 1 to capture the input images.
These cameras are arranged in a 2D grid array with intervals
of 15mm, and each camera has 640× 480 pixels. The camera
array is connected to a PC through PCI Express interfaces.
We can obtain multiview video from the camera array up to
30 fps. The PC has an Intel 2.66GHz CPU, 3.0GByte main
memory, and a graphic card with NVIDIA GeForce 8800
GT. The video sequences used for our experiments contain
motions; both the object and background are moving.

We implemented the algorithm with the above men-
tioned setup. First, multiview images are captured from the
camera array and rectified using the method presented in
[14]. Next, we perform free-viewpoint image synthesis. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Example images of an experimental result ((a) free-viewpoint image before the segmentation step, (b) matching cost M(i), (c)
texture variance Vt(i), (d) the segmentation result, (e) the likelihood for the matching cost, (f) the likelihood for the pixel color, (g) the
likelihood combining the matching cost and the pixel color, and (h) the final likelihood to which the temporal likelihood is appended).

viewpoint can be controlled by intuitive mouse operations.
The target object can be easily specified via a simple UI
we developed (We implemented the synthetic focusing
algorithm [15] with a function to control the focused depth
by the mouse operation. This interface is intuitive because
the target object is specified as the one that is sharply
focused in the displayed image. A similar interface was also
adopted by [10].) Then, we perform object segmentation
from the free-viewpoint images. We use min-cut/max-flow
software in [16] to implement the segmentation. The free-
viewpoint image synthesis is performed in 640 × 480 pixels,
but the segmentation process is in 320 × 240 pixels to reduce
calculation costs. Finally, the extracted object viewed from
the free-viewpoints can be superimposed onto another 3D
scene with geometric consistency.

Several video sequences of the experimental results are
available from http://www.nae-lab.org/project/FVVSegmen-
tation/.

4.1. Online Segmentation and Background Substitution in
3D. We performed online segmentation and background
substitution in 3D using our method. The number of depth
layers, the kernel size in (5), and μ in (10) were set to 5,
41, and 0.5, respectively, in this experiment. Equation (13)
is used for the first frame.

The total computational time of our algorithm is
128.4ms for each frame, where 45.9ms is spent for free-
viewpoint image synthesis and the remaining 82.5ms for
object segmentation. (The processing time would be greatly
increased if those two procedures were performed in the
opposite order; segmentation is applied for each of the 25
input images, and then free-viewpoint image synthesis is
performed. The estimated processing time for this scenario is
2108.4ms (82.5 × 25 + 45.9) for each frame.) An additional
93.6ms is required for the multiview image capturing and

texture uploading. Consequently, the total processing time
of our system is 222.0 ms. As a result, we can process online
multiview video input in 4.55 fps.

Figure 8 visualizes the procedure of our method for a
certain frame. Shown in Figures 8(a) and 8(b) are I(i) of (2)
and M(i) of (4). It can be observed that the toy, the target
object we specified in this experiment, appears clearly in
Figure 8(a), and the corresponding region appears in black in
Figure 8(b). The background regions with weak textures are
also black in Figure 8(b), and therefore, simple thresholding
to M(i) is insufficient for accurate segmentation. Our
algorithm estimates the reliability of the matching cost from
itself and the texture variance shown in Figure 8(c) according
to (14). Depending on the reliability, the likelihoods for color
and for matching costs are combined for each pixel adap-
tively as in (12). Thanks to this scheme, the segmentation is
successfully achieved as shown in Figure 8(d).

Figures 8(e)–8(h) show the effectiveness of our likeli-
hood design. Those figures illustrate the difference between
Data(i, “object”) and Data(i, “background”); the brighter
pixel is more likely to be labeled as “object”. Figure 8(e) is
the likelihood for the matching cost. This likelihood alone
is obviously insufficient for the object segmentation, and
the method like [10] yields awful results for this scene.
Figure 8(f) is the likelihood for the pixel color, which is also
insufficient by itself. Figure 8(g) is the likelihood in which
the matching cost and pixel colors are combined according
to (12). Finally, the temporal likelihood is added by (10) to
produce Figure 8(h), which clearly captures the silhouette of
the target object.

Figure 9 shows the experimental results for a video
sequence. Our method is capable of dealing with dynamic
scenes; motions are allowed for the target object and
background in the original scene. The extracted object from
the target scene is superimposed onto another real scene
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(a) (b) (c) (d) (e)

Figure 9: Results of background substitution over several frames in video sequences. We can extract the target object from free-viewpoints
with a dynamic background. (a) free-viewpoint images before the segmentation step, (b) likelihoods used in the graph cut process, (c)
segmentation results, (d) free-viewpoint images for the new background, and (e) composed images. The images in one row belong to the
same frame, and time passes from top to bottom.

with geometric consistency. The background scene is also
rendered by the method in Section 3.1. We can observe the
composed scenes from an arbitrary viewpoint as if both the
object and new background exist together in the same space.

4.2. Quantitative Evaluation. Our algorithm assumes that
there is no other object around the depth of the target object.
Therefore, if accurate depth information is available, object
segmentation reduces to a trivial task. However, natural
scenes usually contain complex structures and weakly-
textured parts, whose accurate depth estimation is very
hard even with the most sophisticated computer-vision
technologies. To simulate a case in which accurate per-pixel
depth information was used for the segmentation, we made a
hand-labeled object mask from a free-viewpoint video. This
ground truth mask is used as the reference in the following
evaluation.

To quantitatively evaluate the performance of our
method, we compared four scenarios with different settings
of w(i) in (12) as follows:

(i) w(i) is defined by (14). This is the proposed method,

(ii) w(i) = 0 for all i. The matching-cost likelihood is not
considered,

(iii) w(i) = 0.5 for all i. Adaptation of w(i) is turned off,

(iv) w(i) = 1 for all i. The color likelihood is not
considered.

We stored a multiview video sequence to give the same input
to the four scenarios. Figure 10 shows several free-viewpoint
video frames. Due to the limited speed of hardware access,
the algorithm cannot run in real-time for this setup. In this
experiment, we assume that a ground truth of the first frame
can be used for the first frame. The number of depth layers,
the kernel size in (5), and μ in (10) were set to 8, 21, and 0.3,
respectively.

We used F-measure to evaluate the quality of the
segmentation results as follows:

F-measure = 2 · precision · recall
precision + recall

,

precision =
∑

i

((
S(i) = “object”

)∧
(
Sg(i) = “object”

))

∑
i

(
Sg(i) = “object”

) ,

recall =
∑

i

((
S(i) = “object”

)∧
(
Sg(i) = “object”

))

∑
i

(
S(i) = “object”

) ,

(16)

where S(i) is the object/background label for ith pixel
produced by the algorithm, and Sg(i) is the ground truth
which we manually labeled. F-measure takes a real value
between 0 (worst) and 1 (best). We calculated F-measures for
every six frames over the free-viewpoint video sequence.
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Figure 10: Top: a free-viewpoint video sequence, bottom: composed sequence using ground truth mask.
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Figure 11: Comparisons of F-measures through the free-viewpoint video sequence.

Frame162 (i) (ii) (iii) (iv)

Figure 12: Examples of final likelihoods and segmentation results. Left: a free-viewpoint image, right: final likelihoods (top) and
segmentation results (bottom).

Figure 11 shows F-measures over the video sequence. We
can see that the proposedmethod (scenario (i)) keeps high F-
measures (above 0.97) over the whole sequence. Meanwhile,
scenario (iv) fails considerably because the matching cost
often becomes unreliable due to large textureless regions in
the scene. For the same reason, scenario (iii) cannot improve
the results over scenario (ii) so much, though scenario
(iii) uses both color and matching-cost cues. Scenario (ii)
produces relatively good results in this experiment but fails
around the frames between 160 and 190. Figure 12 shows
the free-viewpoint image, the final likelihoods, and the
segmentation results for the 162th frame. The proposed
method produces effective likelihoods for the segmentation.

This result supports the effectiveness of using both
color and matching-cost cues and adaptive fusion of them
according to the reliability.

5. Conclusion

In this paper, we proposed a method that jointly performs
synthesis and segmentation of free-viewpoint video. The
method consists of two steps: the synthesis step and the
segmentation step. In the synthesis step, we synthesize free-
viewpoint images using multiview images as the input and
store the matching costs which are naturally calculated
through the synthesizing process. In the segmentation step,
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we adaptively fuse the matching cost with other cues
depending on the reliability and perform the graph cut-based
algorithm for the segmentation. The reliability is calculated
from the matching cost values themselves and from the
texture intensity of local regions.

Experimental results show the effectiveness of our
method. Our method can process online multiview video
input at an interactive rate. The results indicate that the adap-
tive fusing of the cues is effective to estimate more accurate
likelihoods although each of the cues alone is insufficient for
this estimation. By superimposing the extracted object onto
other free-viewpoint images, we can observe that the object
and new background move naturally along with the view-
point change as if they existed together in the same space.

Our future work will be mainly focused on speedup
of the graph cut process as well as overall optimization
of our algorithm. In our current implementation, free-
viewpoint image synthesis is fast enough thanks to hardware
acceleration of GPU. Meanwhile, the graph cut process is not
optimized enough in speed. For real-time processing of our
algorithm, we will adopt a fast graph cut such as multilevel
banded algorithm [17] or graph cut on the GPU [18].
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