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Line scratches are common defects in old archived videos, but similar imperfections may occur in printed images, in most cases
by reason of improper handling or inaccurate preservation of the support. Once an image is digitized, its defects become part of
that image. Many state-of-the-art papers deal with long, thin, vertical lines in old movie frames, by exploiting both spatial and
temporal information. In this paper we aim to face with a more challenging and general problem: the analysis of line scratches in
still images, regardless of their orientation, color, and shape. We present a detection/restoration method to process this defect.

1. Introduction

Scratches are typical damages of old movie films and occur as
dark or bright vertical lines which run all over the frames of a
video. They are typically caused by the lost of the emulsion of
the film surface, due to contact with mechanical parts of film
projector or other devices in the film development process.
In our work we focused on defects of old damaged photos.
Old photographic prints may present several types of defects,
caused by inaccurate handling and/or store of the original
image, or by chemical factors, or by decomposition of the
support. If the knowledge of a degradation origin is essential
for defect analysis on the physical support, different defects
may look similar once the document is digitized and could
be described and removed by similar underlying processes.
Several works rely on the damage analysis and restoration
of digitized pictures: cracks and craquelures [1, 2], water
blotches and foxing [3], and fading [4]. For a complete
taxonomy of the defects in old photos see [5].

In this paper we deal with scratches, defects which may
be originated by several physical causes, but that share some
common features (Figure 1). In the next two sections we will
discuss the differences between scratches in videos and in
photos and the different approaches to analyze them.

2. Scratches in Videos

The restoration of old damaged videos had been widely
studied in the last two decades. When digitized, movie films
can be processed by digital postprocessing techniques in
order to reduce or remove unwanted artifacts (scratches,
spots, etc.). A typical restoration process is made of two steps:
detection and restoration.

Most of the approaches use both spatial (from the current
frame) and temporal (from adjacent frames) information to
detect the presence of line scratches into the video.

All the state-of-the-art methods for videos dealt with
a very simple kind of defect: long vertical dark (or
bright) scratches, with constant color, width and orientation.
Although some authors used a spatiotemporal point of
view to process scratches [6–8], some papers proposed
static approaches, using information from a single frame.
Therefore these methods can be used to process also
vertical scratches in still images. Kokaram [9] proposed a 2-
dimensional autoregressive model for scratch detection and
removal, without using information from adjacent frames.
Bretschneider et al. [10] proposed a technique based on
wavelet decomposition. Bruni and Vitulano [11] generalized
Kokaram’s model for scratch detection on the hypothesis that
a scratch is not purely additive on a given image. Tegolo and
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Figure 1: A comparison between three scratches, which have similar digital aspects but originated by different causes.

Isgrò [12] approach is based on the analysis of the statistics
of the image grey levels.

3. Scratches in Still Images

The problem of processing scratches is much harder to
deal in still images than in old movies, at least for two
reasons: first, scratches in still images may have any possible
orientation, color, and width while scratches in video have
very specific features (see Figure 2); second, no temporal
information can be used to process them.

The goal of our work is to find a general approach to the
problem, to detect and restore scratches regardless of their
specific features. Our general “model” of a scratch is a long
thin line which runs along all the image with any orientation
and color, but which may also have small variations in width
and direction, some little interruptions, but no branches.
In most cases, scratches in damaged photos are due to the
deterioration of the emulsion or the support of the film.
Thus, scratches cannot be considered as “digital” defects,
as they come from the digitization of printed documents.
Nevertheless, once a photo is digitized, scratches become part
of the digital photo and can be digitally processed. The first
step is to detect the orientation and the position of the scratch
into the image. Then our method labels pixels which are
part of the detected line scratch, tracing its contour. To our
knowledge, no works in literature deal with the problem of
“tracking” scratches, as they typically stop detection when
they find the position of the (vertical) line. Last, scratches
are restored and lost information recovered. Present work
expands over our previous works in quasihorizontal scratch
restoration [13] and multidirectional scratch detection [14].

4. Multidirectional Detection

The approach presented in [13] is based on a bandpass
filtering, to enhance the horizontal components of the

image, and a Hough transformation, to detect candidate line
scratches. Therefore, scratches which have slopes with more
than 30◦ cannot be detected. This is not enough to achieve
our goals. Our extended solution can be divided into three
steps: preprocessing, line detection, and contour drawing.

4.1. Preprocessing. The preprocessing step aims to enhance
image features along a set of chosen directions. First, image
is grey-scaled and filtered with a sharpening filter (we
subtract from the image its local-mean filtered version),
thus eliminating the DC component. Tests showed that this
solution makes our approach independent of the color of the
scratch, and it helps the next steps in detecting its direction.

Next step employs a bank of oriented bandpass filters.
Kass and Witkin [15] affirmed that a line is 90◦ shifted in the
frequency domain and suggest the use of a bandpass filter:

H(u, v) = 1

1 + 0.414 ·
(√

(u∗/Dh) + (v∗/Dv)
)2n , (1)

where Dh and Dv are the two cutoff frequencies while u∗ and
v∗ are the translated and rotated frequency coordinates:

tx = center · cos(θ),
ty = center · sin(θ),

u∗ = cos(θ) · (u + tx) + sin(θ)
(
u + ty

)
,

v∗ = − sin(θ) · (u + tx) + cos(θ)
(
u + ty

)
,

(2)

so that the center of the subband has tx, ty coordinates and
it is rotated with the same angle. The subbands must be
symmetric with respect to the origin; so the angle θ must be
shifted of 90◦. The filter order n can control the slope of the
subband, so that we chose n = 4 to concentrate the filtering
in a precise zone of the spectrum. This explains the use of this
bandpass filter instead of a Gabor one.



EURASIP Journal on Image and Video Processing 3

(a) (b)

(c)

Figure 2: Three examples of images with scratches: a frame of an old movie (a) and two crops from old photos ((b) and (c)).

We selected 12 not overlapping filters, to analyze 12
different directions, rotated with respect to 15◦ each other.
A homomorphic filter is then applied to enhance lines and
to produce a dark uniform background. Finally a threshold
is applied to obtain a binary mask. The threshold value is
computed as mean plus standard deviation of the image
intensity (see Figure 3(b)).

4.2. Line Direction Detection. After pre-processing, we apply
the Hough transform to the 12 output binary images, in
order to extract all the relevant lines. Hough transform
is used to represent an image in a parameter space, in
this case slope and intercept of a generic line. Usually, the
parameter space is subdivided into a number of accumulator
cells in order to reduce the computational complexity.
Each pixel is processed and a counter in the accumulator
cell is incremented. We observed that since each binary
image is the output of a directional filtering process, the
Hough transform will give relevant information only in a
neighborhood of that direction (shifted by 90◦ with respect
of the input image). Therefore, for each direction, only
this information is useful, and we saved it as columns in a
data matrix. We then search for the maximum value which
represents our first line scratch, and considered as a reference
to search for other potential scratches. We suppose that other
scratches, probably originated by the same physical causes,

(a)

(b)

Figure 3: Input image (a) and one of the output of the prefiltering
step (b) (the direction of the diagonal scratch shifted by 90◦).

have in the data matrix lower but similar values than those of
the first one. Furthermore we observed that, since the Hough
transform response depends on the number of points which
are accumulated along a specific direction, some directions
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Figure 4: The effect of resetting, in the data matrix, the values in a
neighborhood of the scratch candidate value.

(typically the diagonal ones) are advantaged with respect to
the others, because a longer line can include a greater number
of points. Therefore we consider the next maximum value in
the data matrix and we compare it with a threshold, which
depends both on the reference value, and on the length of the
longer possible line with the same direction. Whenever a new
scratch is found, its value, all the values in a neighborhood
are set to zero. This solution is applied to avoid the detection
of multiple overlapping scratches (Figure 4), which can be
revealed since the same set of points can be included in
similar but distinct lines. If the candidate value is lower than a
fixed threshold, independent of the image, the detection step
ends (see Figure 5).

4.3. Contour Drawing. Contour-drawing step requires some
user intervention. We propose to the user a set of possible
scratches, and he has to select one of the candidates for the
next steps in the scratch analysis process. Note that scratches
in old photos may be originated by heterogeneous causes, so
that they can present interruptions, irregularities in width,
slope, and color. Digitization adds a further problem: when
digitized, defects of the paper become part of the image.
During the acquisition of a printed image, typically an
interpolation technique is applied; so the intensity value of
the pixels varies according to the surrounding background.
Therefore, pixels in the same scratch can have very different
intensity values, if the scratch passes across darker and
brighter areas.

The contour drawing step can be divided into two
substeps: scratch “core” detection and region growing. The
first step aims to find the skeleton of the scratch, the second
one to find its local thickness.

4.3.1. Core Detection. The aim of the core detection is to find
the backbone of the scratch in the most accurate way. For this
step we work with lines with slope in [−45◦, 45◦]. If the line
slope is outside this interval, the image is 90◦ shifted in order
to bring the scratch line into this case.

This step needs for a starting reference point to proceed
in the analysis, since the Hough transform returns only the

(a)

(b)

Figure 5: Multiple scratch detection. Input image (a), and three
correctly detected scratches (b). Some scratches are not detected
since they are “covered” by close ones.

Figure 6: The five nearest pixels (in blue) to the reference point (in
yellow), rightward. The same procedure is repeated leftward.

direction and the position of the scratch line. The reference
point is manually chosen by the user, who decides which
is the most significant one for the selected scratch. Starting
from this initial point, our method searches for the 5 nearest
pixels (see Figure 6) to include the “most similar” ones
into the scratch core (note that the image could have been
rotated). The similarity function depends on two factors: a
“global” correlation factor, with respect to reference point,
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Figure 7: Original image, with a scratch (a); detected scratch and
starting point (b); scratch contour with default parameters: w1 =
0.75, w2 = 0.25, w′1 = 0.85, and w′2 = 0.15 (c); scratch contour with
w1 = 0.5 and w2 = 0.5 (d); scratch contour with w′1 = 0.5 and
w′2 = 0.5 (e).

and a “local” correlation factor between the candidate and
the last included pixel:

sc
(
pi, k

) = w1 · cg
(
pr , pki

)
+w2 · g

(
pi,ds

) · cl
(
pk−1s , pki

)
.

(3)

(i) sc(pi, k) is the similarity function for the core detec-
tion, evaluated in the candidate point pi of the
column k.

(ii) cg is the “global” correlation value, computed
between two windows, centered, respectively, in the
starting point pr and in the candidate point pi of the
column k;

(iii) cl is the “local” correlation value, computed between
two windows, centered, respectively, in the last
included point ps for the previous column, and in the
candidate point pi of the column k.

(iv) g(pi,ds) is a Gaussian function, evaluated in pi, with
a peak in correspondence with the detected scratch
direction ds and a constant standard deviation;

(v) w1 and w2 are fixed weights, set, respectively, to
0.75 e 0.25. The influence of these values on the
results is shown in Figure 7. If we increase the “local”
weight, we increase the probability to deviate from
the principal direction, due to possible local maxima
(note the left part of Figure 7(d)). The chosen values
give best results, within our dataset.

For each column we select the point, between the 5
candidates, with the maximum similarity value. If this value
is lower than a fixed threshold (set by experiments to 0.2), no
pixels are included into the core, but our method continues
searching for other points along the direction ds, until the
end of the image.

The global factor is used to find all the pixels, which are
similar to the reference pixel, along the scratch direction. On
the other hand, the local factor makes this method flexible
to follow little changes in slope. Moreover, points can be
included into the core in spite of possible interruptions along
the scratch main direction. It is clear that the choice of a
“good” reference point is critical: starting from a point that
is along the scratch direction, but is not part of the scratch,
makes the core detection process work incorrectly.

4.3.2. Region Growing. In this phase we search for all the
pixels which belong to the scratch, orthogonally with respect
to the core direction. The approach is similar to that used in
the core detection: we include pixels upward and downward
instead of rightward and leftward.

The similarity measure is like that in (3). The main
difference, in addition to the search direction, is the Gaussian
function, which has its peak on the pixels of the scratch core,
and a variance which depends on the last computed scratch
thickness:

st
(
pj , k

)
= w1 · cg

(
pr , pkj

)
+w2 · g

(
pj , vark

)
· cl
(
p

k

j±1, p
k
j

)
,

(4)

vark = max
(
w′1 · vark±1 +w′2

(
tk±1s

)2
, kmin

)
. (5)

(i) st(pj , k) is the similarity function for the thickness
detection, evaluated in pj in the column k.

(ii) w′1 and w′2 are two fixed weights, set by experiments
to 0.85 and 0.15. The influence of these values on the
results is shown in Figure 7. If we increase the “local”
weight, we increase the probability to include “good”
pixels into the scratch to be restored (Figure 7(e))

(iii) cg , cl, w1, and w2 are the same of (3).

(iv) pj+1 (pj−1) is the next upper (lower) pixel to be
examined in the same column of pj .

(v) g(pj , vark) is a Gaussian function, evaluated in pj ,
with a peak in correspondence with the pixel in
column k of the scratch core, and a variance which
is shown in (5).
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(a)

(b)

(c)

(d)

Figure 8: A complete detection process: the damaged image (a),
the detected line (b) and the starting point (the green), the detected
scratch with its contour (c) and the binary mask. Note that the
detected mask is interrupted in correspondence to the scratch gaps
of the input scratch.

(vi) vark and vark+1 (or vark−1) are the variances of the
Gaussian function in the column k and k + 1 (or k −
1), respectively; tk+1s (tk−1s ) is the thickness for the
column k + 1(k − 1).

(vii) kmin is the minimum admitted value for the variance.

Our method, for each column, stops when the similarity
value of the next candidate pixel (upward or downward) is
lower than a fixed threshold (set to 0.1). The global factor
makes the proposed method able to find all the pixels which
are similar to the reference pixel, along the direction that is
orthogonal to the core. The local factor and the adaptable
variance solution are useful to detect changes in the scratch
thickness. The final step of the detection phase is to create
a binary image showing the result of the labeling process.
Figure 8 shows an example of a complete scratch detection

Side 1

Side 2Sc
ra
tch

PB1

B2

R1

R2

v

−v

n1

n2

Figure 9: The estimation of the direction toward which informa-
tion is propagated.

process. Note that (Figure 8(d)) the detected mask breaks in
correspondence with the scratch interruptions in the input
image.

5. Restoration

In [13] we proposed our restoration algorithm to restore
quasihorizontal scratches. In this paper we present the
extended version for scratches with any orientation.

Our method can be divided into two substeps:

(i) direction estimation,

(ii) pixel filling.

5.1. Direction Estimation. This step takes as input the image
and the scratch mask. The scratch line divides the neighbor
area into two subareas (side 1 and side 2 in Figure 9).
Goal of this step is to estimate the direction toward which
information is propagated from one side to the other side of
the scratch.

For each pixel in the scratch mask, we select two windows
(R1 and R2), nearby the scratch, one per side. Window size
depends on the average gradient of the pixels in the area, as
described as follow. A block-matching approach is used to
test all the possible candidate vectors that link a block in one
side with a block in the other side, starting from the pixel
position. Only blocks that are symmetrical with respect to
the pixel position are compared, in order to avoid annoying
artifacts (i.e., barrel distortion) into the reconstructed area.

The vector that minimizes the Sum of Absolute Differ-
ences (SAD) of the pixels in the two end-point blocks is
chosen as the most probable direction vector toward which
information is propagated:

v̂ = argmin
∑

v∈C

∣∣∣B1

(
P + v

)
− B2

(
P − v

)∣∣∣,

B1 ∈ R1 B2 ∈ R2,

(6)
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Figure 10: Windows are resized to adapt to information inside the
area. In case of vertical lines, height is reduced and width increased,
and vice versa.

where

(i) B1 and B2 are two blocks of pixels symmetrical with
respect of P in the scratch, according to the vector v;

(ii) C is the set of possible candidate vectors, with the
restriction that B1 and B2 must be inside R1 and R2,
respectively.

For simplicity, we rotate the area nearby the scratch by an
angle opposite to the slope of the scratch, and we apply our
previous method which was specifically designed for quasi-
horizontal scratches. We look for the vector components dx
and dy :

(
dx,dy

)
= argmin

kx ,ky

Dx∑

kx=0

Dy∑

ky=−Dy

SAD
(
x, y, kx, ky

)
,

SAD() =
1∑

i=−1

1∑

j=−1

∣∣∣∣p
(
x − kx − w

2
+ i, y − ky + j

)

−p
(
x + kx +

w

2
+ i, y + ky + j

)∣∣∣∣,

(7)

where

(i) w is the scratch width at the pixel position and is
updated after each horizontal scan;

(ii) kx and ky are the candidate direction vector compo-
nents;

(iii) Dx and Dy are the vertical and the horizontal sizes of
the area into which matching is searched. Dx and Dy

depend on the mask width and on the gradient vector
as discussed above.

In fact, if horizontal gradient is higher than vertical
gradient, there are more vertical than horizontal lines in the
area. Therefore we reduce width and increase height of the
window, in order to help the reconstruction of vertical lines,
and vice versa (Figure 10).

5.2. Pixel Filling. The pixel filling step works in the three
RGB color channels. For each color channel, we consider the
center pixels of the two blocks detected in the previous step.
We assign to the pixel-to-fill the median value between these
two points and the average of the two vertically closest pixels
outside the scratch mask:

up = p
(
x − dx − w

2
, y − dy

)
,

down = p
(
x + dx +

w

2
, y + dx

)
,

v =
(
p
(
x − 1, y

)
+ p
(
x +w, y

))

2
,

p
′(x,y) = median

(
up, down, v

)
.

(8)

dx and dy are the components of the estimated direction
vector. If up and down are similar, the new pixel value will be
one of them. If they are very different, we choose the vertical
interpolated value, which is probably in the middle of the
other two. This solution introduces no artifacts but only few
blurring.

The restored area is then rerotated and replaced into the
original damaged area. Finally, a median filter is applied to
the boundary of the scratch mask, to remove some residual
artifacts. Experiments showed that the quality of the results
is independent of the rotation angle.

6. Experimental Results

We tested our method onto two different sets of images:
20 images coming from a database of aerial photos, which
present scratches more or less horizontally oriented, 20 crops
of old photos which have heterogeneous physical causes,
and present scratches with any orientation and width. Some
visual results are shown in Figure 12.

With respect to the detection method (examples in Fig-
ures 11(b), 11(e), and 11(h)), we measured some parameters
(Table 1) to evaluate our experimental results within the two
testing sets.

(i) CD is the percentage of correctly detected scratches,
with respect to the number of the real ones;
percentage of not detected (false negatives) is the
complementary value.

(ii) FP is the percentage of false positives, that is, the
number of detected scratches that are not real, with
respect to all the candidate scratches.

(iii) CP (Contour Precision) is a measurement of the
accuracy of our labeling process:

R = n(ADS ∩ ARS)
n(ARS)

, P = n(ADS ∩ ARS)
n(ADS)

CP = R · P.
(9)

(iv) R is the recall, the ratio between the number of pixels
in the intersection of the detected and the real scratch
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(a) (b) (c)

(d)
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(f)

(g)

(h)

(i)

Figure 11: Three examples of scratches ((a), (d), (g)) and the corresponding results: (a) vertical straight line with irregular color and no
breaks, from the old photo dataset horizontal, (b) diagonal bright line, with some breaks, (c) curve line with regular color and breaks, from
the aerial photo dataset; ((b), (e), (h)) corresponding detected scratches; ((c), (f), (i)) restored images. In figure (f) only the most evident
scratch is processed.

and the number of pixels in the real scratch. When
it tends to 1, the detected scratch covers the whole
real scratch, but it gives no information about pixels
outside ARS; if it tends to 0, detected and real scratch
have smaller intersection.

(v) P is the precision, that is, the ratio of the number
of pixels in the intersection of the detected scratch
ADS and the reference scratch ARS, and the number of
pixels in ADS. When P tends to 0, the whole detected
scratches has no intersection with the real one. If it

tends to 1, fewer pixels of ADS are labeled outside AR.
Nevertheless this parameter will not assure that the
real scratch has been covered.

What can be considered the “real” scratch is a critical
issue. For each image in our dataset we manually selected
the pixels which belong to a scratch and considered the
obtained masks as the “real” contour of the scratch. A
manual segmentation process is highly subjective, but it is
the only one solution to give a numerical evaluation to
our contour drawing method. As expected, we had best
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(a) (b) (c)

Figure 12: A damaged painting (a) cracks detected by [5] (b), and “scratch” detected by our method (c).

results for aerial photos since all the scratches in that dataset
have more regular features: horizontal direction, white color,
and constant width. We noted that many false positives
are real lines, which are indistinguishable, for an automatic
inspection method, from line scratches.

Table 2 shows the average execution time for each of the
steps of our processing method. Note that most of the time is
spent in the prefiltering step and in region growing.

6.1. Comparison with Other Works. The choice of a reference
method to which we compare our results was a very difficult
task. To our knowledge, there are no other approaches
which can be applied to our dataset, as none of them
deal with the “general” scratch, as we intended. A similar
problem is that discussed by Giakoumis et al. [2] which
presents a method to process cracks in damaged paintings.
Cracks typically result from mechanical/chemical causes
as nonuniform contraction in the canvas or wood-panel
support of the painting, the evaporation of volatile paint,
or external causes, for example, vibrations and impacts.
With respect to cracks, which usually have low luminance
and thus can be considered as local intensity minima
with rather elongated structural characteristics, scratches
may have different aspects (Figure 12 shows the differences
between these two types of defects in paintings).

Nevertheless, to further evaluate our experiments, we
decided to test our detection method with 5 old movie
frames and to compare results with those obtained using the
approach proposed in [12]. The reference method is chosen
as it is one of the most cited between those which use only
spatial information.

Within this dataset our results are slightly worse than
those of the state-of-the-art approach, as it had been
specifically designed for vertical dark scratches inmovies (see
Figure 13), while our method finds scratches along all the

Table 1: Quantitative evaluation of experimental results.

dataset\parameters CD FP CP

old photos 81% 28% 81%

aerial photos 85% 17% 91%

possible directions (see the horizontal line in Figure 13(c)).
If we consider only the vertical direction (in the prefiltering
step and the Hough-transform), false positives decrease, and
results improve and become similar to those of reference
approach (Figure 13(d)), spending less execution time (aver-
age execution time: 0.6 s versus 1.1 s, testing only vertical
direction). No comparison can be made using the CP
parameter, because reference method does not deal with the
contour finding problem.

7. Conclusions and FutureWorks

The problem of restoring scratches in still images is much
harder to deal with than in old movies, which are typically
affected by long vertical thin lines. Scratches in still images
can have different, and variable, orientations, thickness, and
colors. Furthermore, in still images, no temporal informa-
tion can be used for the detection. Our method introduces
several new contributions with respect to the state of the art.
First, our method can detect scratch lines regardless of their
orientation. Second, we label pixels that belong to scratch,
drawing the defect contour, detecting interruptions, changes
in width, and little changes in slope. Moreover tests showed
that our method is independent of the scratch color.

The main drawback in the detection step is that it
requires user intervention, to select true scratches between
a set of candidates, and the starting point. Actually we are
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(a) (b)

(c) (d)

Figure 13: Original old frame with vertical scratches (a). Results applying [5] (b): lines are indicated by a short black line on the top part of
the image. Results with our general method (c): it detects also the horizontal line that is not a scratch. Results with our method considering
only the vertical direction (d): one more scratch is detected.

Table 2: Average execution time of the steps of our method.

Step Average execution time (sec)

Prefiltering 6,2

Hough-transform 0,8

Core detection 1,4

Region growing 5,7

working to make our method as more automatic as possible,
to select the best starting pixel to draw the contour.

As regards restoration, we proposed a new method,
based on block matching. This method ensures the correct
reconstruction of lines across the scratch, introducing much
less blurring compared to a simple interpolation process.
Moreover, our restoration method is very fast, compared
with classical inpainting methods, which are typically time

consuming. In fact we match only symmetrical blocks,
drastically reducing the number of matches to compute.
Nevertheless, this method works well only if there a kind
of simmetry between the two sides of the scratch, that is,
in most cases, a realistic hypothesis, if the scratch thickness
is not very large. In case of highly-random textured area,
no matching can be found between blocks and vertical
interpolation is preferred, and some blurring is introduced.
Texture synthesis methods, in these cases, should perform
better.
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