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Since a gesture involves a dynamic and complex motion, multiview observation and recognition are desirable. For the better
representation of gestures, one needs to know, in the first place, from which views a gesture should be observed. Furthermore, it
becomes increasingly important how the recognition results are integrated when larger numbers of camera views are considered.
To investigate these problems, we propose a framework under which multiview recognition is carried out, and an integration
scheme by which the recognition results are integrated online and in realtime. For performance evaluation, we use the ViHASi
(Virtual Human Action Silhouette) public image database as a benchmark and our Japanese sign language (JSL) image database
that contains 18 kinds of hand signs. By examining the recognition rates of each gesture for each view, we found gestures that
exhibit view dependency and the gestures that do not. Also, we found that the view dependency itself could vary depending on
the target gesture sets. By integrating the recognition results of different views, our swarm-based integration provides more robust
and better recognition performance than individual fixed-view recognition agents.
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cited.

1. Introduction

For the symbiosis of humans and machines, various kinds
of sensing devices will be either implicitly or explicitly
embedded, networked, and cooperatively function in our
future living environment [1–3]. To cover wider areas
of interest, multiple cameras will have to be deployed.
In general, gesture recognizing systems that function in
real world must operate in real-time, including the time
needed for event detection, tracking, and recognition. Since
the number of cameras can be very large, distributed
processings of incoming images at each camera node are
inevitable in order to satisfy the real-time requirement. Also,
improvements in recognition performance can be expected
by integrating responses from each distributed processing
component. But it is usually not evident how the responses
should be integrated. Furthermore, since a gesture is such a
dynamic and complex motion, single-view observation does
not necessary guarantee better recognition performance.
One needs to know from which camera views a gesture

should be observed in order to quantitatively determine the
optimal camera configuration and views.

2. RelatedWork

For the visual understanding of human gestures, a number
of recognition approaches and techniques have so far been
proposed [4–10]. Vision-based approaches usually employ
a method that estimates a gesture class to which the
incoming image belongs by introducing pattern recognition
techniques. To make the recognition system more reliable
and usable in our activity spaces, many approaches that
employ multiple cameras are actively developed in recent
years. These approaches can be classified into the geometry-
based approach [11] and the appearance-based approach
[12]. Since the depth information can be computed by
using multiple camera views, the geometry-based approach
can estimate three-dimensional (3D) relationship between
the human body and its activity spaces [13]. For example,
multiple person’s actions such as walking including its path
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Figure 1: The proposed framework for multiview gesture recognition.

can be reliably estimated [2, 10]. On the other hand,
the appearance-based approach usually focuses on more
detailed understanding of human gestures. Since a gesture
is a spatiotemporal event, spatial- and temporal-domain
problems need to be considered at the same time. In [14], we
have investigated the temporal-domain problems on gesture
recognition and suggested that the recognition performance
can depend on image sampling rate. Although there are
some studies on view selection problems [15, 16], they do
not deal with human gestures, and how the recognition
results should be integrated when larger numbers of camera
views are available is not studied. This means that most
of the multiview gesture recognition system’s actual camera
configuration and views are determined empirically. There is
a fundamental need to evaluate the recognition performance
depending on camera views. To deal with the above-
mentioned problems, we propose (1) a framework under
which recognition is performed using multiple camera views
(2) an integration scheme by which the recognition results
are integrated on-line and in real-time. The effectiveness of
our framework and an integration scheme is demonstrated
by the evaluation experiments.

3. Multiview Gesture Recognition

3.1. Framework. A framework for multiview gesture recog-
nition is illustrated in Figure 1. Image acquisition agent
obtains a synthesized multiview image that is captured by
multiple cameras and stores each camera view image in the
shared memory corresponding to each recognition agent.
Each recognition agent controls its processing frame rate
autonomously and resamples the image data in the shared
memory at the specified frame rate. In this paper, we

assume a model in which each recognition agent performs
recognition and outputs the following results for each gesture
class: evaluation score matrix En and gesture class weight
matrix Wn,

En = (en1, en2, en3, . . . , eni, . . . , enM), (1)

Wn = (wn1,wn2,wn3, . . . ,wni, . . . ,wnM). (2)

Here, M denotes the maximum number of target gestures.
These results are updated in the specific data area in shared
memory B corresponding to each recognition agent. Then,
the integration agent Q0 reads out the evaluation score
matrix En and the gesture class weight matrix Wn and
computes an integrated score for each gesture class as follows.
For the ith (i = 1, 2, . . . ,M) gesture, the integrated score Si,
which represents the swarm’s response, is computed by (3)

Si =
N∏

n=1

eniwni. (3)

Here, N denotes the maximum number of recognition
agents. Finally, the integrated score matrix S is given as
following:

S = (S1, S2, . . . , Si, . . . , SM). (4)

The input image is judged to belong to the gesture class for
which the integrated score Si becomes the maximum.

3.2. Recognition Agent. In this paper, each gesture recogni-
tion agent is created by our method that is proposed in
[17] since it can perform recognition at an arbitrary frame
rate. In the following subsections, it is briefly explained
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Figure 2: Processing flow diagram of our recognition agent.

how our method performs recognition and how to obtain
the evaluation score matrix En and the gesture class weight
matrix Wn. As shown in Figure 2, our framework takes
a multilayered hierarchical approach that consists of three
stages of gestural image processing: (1) feature extraction, (2)
feature-based learning/matching, and (3) gesture protocol-
based learning/recognition. By applying three kinds of
feature extraction filters to the input image sequence, a
difference image, a silhouette image, and an edge image are
generated. Using these feature images, regions of interest are
dynamically set frame by frame. Regarding the binary image
in each dynamic region of interest, the following feature
vectors are computed based on the feature vector sε(θ) given
by (5): (1) a feature vector that depends on both scale and
rotation, (2) a feature vector that depends on scale but not
on rotation, (3) a feature vector that depends on rotation but
not on scale, and (4) a feature vector that does not depend
on both scale and rotation.

Let Pτ(r, θ) represent the given binary image in a polar
coordinate system:

sε(θ) = R

∑
r Pτ(r, θ) exp

{
−a(r − φ

)2
}

∑
r Pτ(r, θ)

, (5)

where, θ is the angle, R is the radius of the binary image, and
r is the distance from a centroid of the binary image. And a is
a gradient coefficient that determines the uniqueness of the
feature vector, and φ is a phase term that is an offset value.
In the learning phase, obtained feature vectors are stored as

a reference data set. In the matching phase, obtained feature
vectors are compared with the feature vectors in the reference
data set, and each recognition unit outputs similarity by (6)

Similarity = 1− d(ki)
l

Max
(
d

(g)
l

) , (6)

where g refers to an arbitrary number of reference data set,

and d(ki)
l is the minimum distance between the given feature

vector and the reference data set. Max() is a function that
returns the maximum value.

Then, in order to recognize human gestures with more
flexibility, protocol learning is conducted. The purpose of
protocol learning is to let the system focus on visual features
of greater significance by using a sequence of images that
is provided as belonging to the identical gesture class. In
the protocol learning, larger weights are given to the visual
features that are spatiotemporally consistent. Based on the
sequence of similarity, likelihood functions are estimated and
stored as a protocol map assuming the distribution function
to be Gaussian. Based on the protocol map for recognition
agent Qn, each component of Wn in (2) is given by (7)

wni = L
∑L

l=1 Ωnl

, (7)

where L is the maximum number of visual interest points,
and Ωnl is the weight for each visual interest point of recog-
nition agent Qn. In the recognition phase, each component



4 EURASIP Journal on Image and Video Processing

1C

2C 4C

3C

Actor

Top view

(a)

3C
2C 4C

1C ,

27 deg 27 deg

Ground

Actor

Horizontal view

(b)

1C

2C

4C 3C
135 cm 135 cm

130 cm

175 cm

Actor

Top view

(c)

3C

2C

1C

85 cm

80 cm

85 cm

4C

Ground

Actor

Horizontal view

(d)

Figure 3: Camera configuration.

Camera 1
(C )1

Camera 2
(C )2

Camera 3
(C )3

Camera 4
(C )4

Figure 4: Camera view allocation.

of En in (1) is computed, which is the sum of convolution
between the similarity and each protocol map as illustrated in
Figure 2. The input image is judged to belong to the gesture
class that returns the biggest sum of convolution.

3.3. Frame Rate Control Method. Generally, the actual frame
rate of gesture recognition systems depends on (1) duration
of each gesture, (2) number of gesture classes, and (3) perfor-
mance of the implemented system. In addition, recognition
systems must deal with slow and unstable frame rate caused
by the following factors: (1) increase in pattern matching
cost, (2) increased number of recognition agents, and (3)
load fluctuations in the third party processes under the same
operating systems environment.

In order to maintain the specified frame rate, a feedback
control system is introduced as shown in the bottom part
of Figure 2, which dynamically selects the magnitude of
processing load. The control inputs are pattern scanning
interval Sk, pattern matching interval RSk, and the number
of effective visual interest points Nvip. Here, Sk refers to the
jump interval in scanning the feature image, and RSk refers
to the loop interval in matching the current feature vector
with feature vectors in the reference data set. The controlled
variable is the frame rate x (fps), and v (fps) is the target
frame rate. The frame rate is stabilized by controlling the load
of the recognition modules. Control inputs are determined in
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Figure 5: Fluctuation of the processing frame rate.

accordance with the response from frame rate detector. The
feedback control is applied as long as the control deviation
does not fall within the minimal error range.

4. Experiments

The experiments are conducted on a personal computer
(Core 2 Duo, 2 GHz, 2 GB Memory) under the Linux
operating system environment.

4.1. Experiment I. We introduce publicly available ViHASi
(Virtual Human Action Silhouette) [18] image database in
order to evaluate the proposed approach from an objective
perspective. The ViHASi image database provides binary
silhouette images of virtual CG actor’s multiview motion
that are captured at 30 fps in the PGM (Portable Gray Map)
format. To investigate view dependency for different kinds
of gestures, 18 gestures in the ViHASi image database are
divided into three groups: Groups (A, B, and C) as shown
in Table 1. In this experiment, we use synthesized multiview
images observed from four different views although the
number of camera views is not restricted in our approach.
The camera configuration of ViHASi image database is
illustrated in Figures 3(a) and 3(b). Allocation of each
camera view is illustrated in Figure 4. For quick reference,
trace images of each gesture are shown in Figure 22.

In this experiment, the image acquisition agent reads out
the multiview image, and each view image is converted into
an 8-bit gray scale image whose resolution is 80 by 60 dots
and then stored in the shared memory area. Each recognition
agent reads out the image and performs the recognition
on-line and in real-time. The experiments are carried out
according to the following procedures.

(Procedure I-1). Launch four recognition agents (Q1, Q2, Q3,
and Q4), then perform the protocol learning on six kinds of
gestures in each group. In this experiment, the recognition
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Table 1: Target gesture sets (Part I).

Group A

Name Description

GA-A HangOnBar

GA-B JumpGetOnBar

GA-C JumpOverObject

GA-D JumpFromObject

GA-E RunPullObject

GA-F RunPushObject

Group B

Name Description

GB-A RunTurn90Left

GB-B RunTurn90Right

GB-C HeroSmash

GB-D HeroDoorSlam

GB-E KnockoutSpin

GB-F Knockout

Group C

Name Description

GC-A Granade

GC-B Collapse

GC-C StandLookAround

GC-D Punch

GC-E JumpKick

GC-F Walk

agent Q1 also plays the role of an integration agent Q0. Since
the ViHASi image database does not contain any instances
for each gesture, standard samples are also used as training
samples in the protocol learning.

(Procedure I-2). The target frame rate of each recognition
agent is set to 30 fps. Then, the frame rate control is started.

(Procedure I-3). Feed the testing samples into the recogni-
tion system. For each gesture, 10 standard samples are tested.

(Procedure I-4). The integrated score Si is computed by
recognition agent Q0 based on the evaluation scores in the
shared memory B.

The procedures I-3 and I-4 are repeatedly applied to six
kinds of gestures in each group. Typical fluctuation curves
of the processing frame rate for each recognition agent are
shown in Figure 5. As shown in Figure 5, the error of each
controlled frame rate mostly falls within 1 fps. The average
recognition rates for the gestures in group A are shown in
Figure 6, for the gestures in group B are shown in Figure 7,
and for the gestures in group C are shown in Figure 8.

4.2. Experiment II. As an original image database, we created
a Japanese sign language (JSL) image database that contains
18 gestures in total. For each gesture class, our JSL database
contains 22 similar samples, 396 samples in all. From the 22
similar samples, one standard sample and one similar sample

Table 2: Target gesture sets (Part II).

Group D

Name Description

GD-A today

GD-B night

GD-C christmas

GD-D water

GD-E dog

GD-F volley ball

Group E

Name Description

GE-A golf

GE-B son

GE-C lung

GE-D gather

GE-E sing

GE-F get angry

Group F

Name Description

GF-A live

GF-B get tired

GF-C create

GF-D drink

GF-E mistake

GF-F happy

100

90

80

70

60

50

40

30

20

10

0

A
ve

ra
ge

re
co

gn
it

io
n

ra
te

(%
)

GG-A
(GD-E)

GG-B
(GE-B)

GG-C
(GF-E)

GG-D
(GF-D)

GG-E
(GD-A)

GG-F
(GF-A)

Name of gesture

Q0

Q1

Q2

Q3

Q4

Figure 12: Group G.

are randomly selected for the learning and the remaining 20
samples are used for the test. The images from four CCD
cameras are synthesized into single image frame by using a
video signal composition device. The camera configuration
for our JSL image database is illustrated in Figures 3(c) and
3(d), and the camera view allocation shown in Figure 4 is
adopted. The synthesized multiview image is captured by
an image capture device and then recorded in the database
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Figure 15: Averaged evaluation scores when the gesture GA-A is
input to the system.

Table 3: Target gesture sets (Part III).

Group G

Name Description

GG-A (GD-E) dog

GG-B (GE-B) son

GG-C (GF-E) mistake

GG-D (GF-D) drink

GG-E (GD-A) today

GG-F (GF-A) live

Group H

Name Description

GH-A (GD-C) christmas

GH-B (GE-A) golf

GH-C (GD-F) volley ball

GH-D (GD-D) water

GH-E (GF-B) get tired

GH-F (GE-F) get angry

Group I

Name Description

GI-A (GD-B) night

GI-B (GE-C) lung

GI-C (GF-C) create

GI-D (GE-D) gather

GI-E (GF-F) happy

GI-F (GE-E) sing

Table 4: Average recognition rates for each gesture group in
Experiments I, II, and III (%).

Experiment I

Group Q0 Q1 Q2 Q3 Q4 Ave.

A 100.0 100.0 100.0 100.0 99.9 100.0

B 100.0 99.6 99.8 100.0 99.6 99.8

C 100.0 100.0 100.0 100.0 100.0 100.0

Ave. 100.0 99.9 99.9 100.0 99.8 99.9

Experiment II

Group Q0 Q1 Q2 Q3 Q4 Ave.

D 98.8 95.2 90.0 82.4 99.5 93.2

E 95.3 52.5 88.0 84.6 94.8 83.0

F 99.9 97.7 62.3 97.6 81.2 87.7

Ave. 98.0 81.8 80.1 88.2 91.8 88.0

Experiment III

Group Q0 Q1 Q2 Q3 Q4 Ave.

G 99.9 99.1 93.5 71.1 99.2 92.6

H 100.0 98.8 89.6 94.2 95.9 95.7

I 99.1 97.0 85.2 86.3 99.4 93.4

Ave. 99.7 98.3 89.4 83.9 98.2 93.9
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Figure 16: Averaged evaluation scores when the gesture GF-D is
input to the system.
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Figure 17: Averaged evaluation scores when the gesture GE-D is
input to the system.

in size of 320 by 240 pixels and by 16-bit color (R:5[bit],
G:6[bit], B:5[bit]). The actual frame rate is 30 fps since
NTSC-compliant image capture device is used. To investigate
view dependency for different kinds of gestures, 18 gestures
in our database are divided into three groups: Groups (D, E,
and F) as shown in Table 2. The trace images of each gesture
are shown in Figure 23.

In this experiment, the image acquisition agent reads
out the multiview image in the database and converts each
camera view image into an 8-bit gray scale image whose
resolution is 80 by 60 dots and then stores each gray scale
image in the shared memory area. Each recognition agent
reads out the image and performs the recognition on-line
and in real-time. The experiments are carried out according
to the following procedures.

(Procedure II-1). Launch four recognition agents (Q1, Q2,
Q3, and Q4), then perform the protocol learning on six kinds
of gestures in each group. In this experiment, the recognition
agent Q1 also plays the role of an integration agent Q0.
As training samples, one standard sample and one similar
sample are used for the learning of each gesture.
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Figure 18: Averaged evaluation scores when the gesture GF-E is
input to the system.
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Figure 19: Averaged evaluation scores when the gesture GG-D(GF-
D) is input to the system.

(Procedure II-2). The target frame rate of each recognition
agent is set to 30 fps. Then, the frame rate control is started.

(Procedure II-3). Feed the testing samples into the recogni-
tion system. For each gesture, 20 similar samples that are not
used in the training phase are tested.

(Procedure II-4). The integrated score Si is computed by
recognition agent Q0 based on the evaluation scores in the
shared memory B.

The procedures II-3 and II-4 are repeatedly applied to
six kinds of gestures in each group. The average recognition
rates for the gestures in group D are shown in Figure 9, for
the gestures in group E are shown in Figure 10, and for the
gestures in group F are shown in Figure 11.

4.3. Experiment III. As shown in Table 3, other Groups (G,
H, and I) are created by changing the combination of 18
gestures in Groups (D, E, and F). The trace images of each
gesture are shown in Figure 23. Then, another experiment is
conducted according to the same procedure in Experiment
II. The average recognition rates for the gestures in group G
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Figure 20: Averaged evaluation scores when the gesture GI-D(GE-
D) is input to the system.

Table 5: Average recognition rates for ExperimentsII and III (%).

Exp. Q0 Q1 Q2 Q3 Q4 Ave.

II 98.0 81.8 80.1 88.2 91.8 88.0

III 99.7 98.3 89.4 83.9 98.2 93.9

Ave. 98.9 90.1 84.8 86.1 95.0 91.0

are shown in Figure 12, for the gestures in group H are shown
in Figure 13, and for the gestures in group I are shown in
Figure 14.

In the above experiments, each recognition rate is
computed by dividing “the rate of correct answers” by “the
rate of correct answers” plus “the rate of wrong answers.”
“The rate of correct answers” refers to the ratio of the
number of correct recognition to the number of processed
image frames, which is calculated only for the correct gesture
class. On the other hand, “the rate of wrong answers” refers
to the ratio of the number of wrong recognition to the
number of processed image frames, which is calculated for
all gesture classes except the correct gesture class. In this way,
a recognition rate is calculated that reflects the occurrence of
incorrect recognition during the evaluation. The recognition
rates shown in the figures and tables are the averaged values
given by the above calculation about 10 testing samples
of each gesture in Experiment I and 20 testing samples in
Experiments II and III.

5. Discussion

5.1. Performance on ViHASi Database. As shown in Table 4,
each view’s average recognition rate for Groups (A, B, and
C) exceeds 99.0 (%). And the average recognition rate’s
dependency on views is very small. This suggests that the
selected 18 gestures in Groups (A, B, and C) are so distinctive
that any one of the views is enough for correct recognition. It
should be noted here that each view’s contribution can never
be evaluated without performing multiview recognition.
On the other hand, the average recognition rate for the
integration agent Q0 constantly reaches 100.0 (%). Above
results toward the public image database demonstrate the
fundamental strength of our gesture recognition method.

Table 6: Classification by view dependency.

Experiment I

Group A

Independent
GA-A, GA-B, GA-C

GA-D, GA-E, GA-F

Dependent None

Group B

Independent
GB-A, GB-B, GB-C

GB-D, GB-E, GB-F

Dependent None

Group C

Independent
GC-A GC-B, GC-C

GC-D GC-E, GC-F

Dependent None

Experiment II

Group D

Independent None

Dependent
GD-A, GD-B, GD-C

GD-D, GD-E, GD-F

Group E

Independent GE-B, GE-E

Dependent
GE-A, GE-C, GE-D

GE-F

Group F

Independent GF-C, GF-D

Dependent
GF-A, GF-B, GF-E

GF-F

Experiment III

Group G

Independent GD-A

Dependent
GD-E, GE-B, GF-E

GF-D, GF-A

Group H

Independent GD-C, GE-F

Dependent
GE-A, GD-F, GD-D

GF-B

Group I

Independent GE-D, GF-C

Dependent
GD-B, GE-C, GF-F

GE-E

5.2. Performance on Our JSL Database. As shown in Table 4,
the overall average recognition rate reaches 88.0 (%) for
Groups (D, E, and F) and 93.9 (%) for Groups (G, H, and
I). Compared with 99.9 (%) for Groups (A, B, and C), the
figure is relatively low. It should be noted that the results for
Groups (A, B, and C) are obtained by using only standard
samples, while the results for Groups (D, E, F, G, H, and
I) are obtained by using similar samples. Similar samples
are collected by letting one person repeat the same gesture
for 20 times. Since no person can perfectly replicate the
same gesture, similar samples are all different spatially and
temporally. Notwithstanding, the average recognition rate
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Figure 21: Average recognition rate and average/variance of averaged evaluation scores for each group.

GA-A (76) GA-B (64) GA-C (52) GA-D (44) GA-E (20) GA-F (20)

GB-A (44) GB-B (44) GB-C (76) GB-D (32) GB-E (72) GB-F (36)

GC-A (76) GC-B (36) GC-C (80) GC-D (52) GC-E (40) GC-F (32)

Gesture set in group C (the number in parenthesis means the number of image frames)

Gesture set in group B (the number in parenthesis means the number of image frames)

Gesture set in group A (the number in parenthesis means the number of image frames)

Figure 22: Trace images of gestures adopted in Experiment I.

for the integration agent Q0 reaches 98.0 (%) for Groups
(D, E, and F) and 99.7 (%) for Groups (G, H, and I). These
figures are comparable to the results for Groups (A, B, and
C). Considering the greater variability in the testing samples,
the integration agent Q0 performs quite well for Groups (D,
E, F, G, H, and I). Actually, the integration agent Q0 performs
best for our JSL image database as shown in Table 5. In our
view, these are the indication of swarm intelligence [19–
22] since the integration agent Q0 outperforms individual
recognition agent without any mechanisms for centralized

control. Regarding the performance of individual recogni-
tion agent, the frontal view Q1 performs best for Groups (F
and H), while the side view Q4 performs best for Groups
(D, E, G, and I) as shown in Table 4. Interestingly, best
recognition performance is not always achieved by frontal
views, suggesting that the best view can depend on target
gesture sets.

5.3. Classification by View Dependency. When the difference
between the maximal and the minimal average recognition
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Figure 23: Trace images of gestures adopted in Experiments II and III.
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rate of each gesture in Figures 6, 7, 8, 9, 10, 11, 12, 13,
and 14 does not fall within 10 (%), let us say “the gesture
exhibits view dependency.” The classification results based
on this criterion for all gesture groups are summarized in
Table 6. Regarding the Groups (A, B, and C), no gesture
exhibits view dependency. On the other hand, 14 out of
18 gestures (→ 78 (%)) in Groups (D, E, and F) exhibit
view dependency. And 13 out of 18 gestures (→ 72 (%))
exhibit view dependency regarding the Groups (G, H, and
I). There is a striking difference between the Groups (A,
B, and C) and the Groups (D, E, F, G, H, and I) with
respect to view dependency. This suggests that the gestures
in Groups (D, E, F, G, H, and I) are not so distinctive that
all views are necessary for correct recognition. By utilizing
the output of each recognition agent, the integration agent
Q0 exhibits better performance than individual recognition
agent. Moreover, the classification results on 7 out of 18
gestures (→ 39 (%)) in the Groups (D, E, and F) have
changed in the Groups (G, H, and I). This implies that view
dependency can be affected by the combination of the target
gestures.

5.4. Analysis on View Dependency. Figure 15 shows the
typical response of the averaged evaluation scores when
samples in Groups (A, B, and C) are tested. Figure 18 shows
the typical response of the averaged evaluation scores when
samples in Groups (D, E, F, G, H, and I) are tested. Averaged
evaluation scores are computed by taking an average of
evaluation scores when all testing samples are sequentially
tested. For the samples in Groups (A, B, and C), the
distinction between the correct gesture class and the wrong
gesture classes is very clear. On the other hand, for the
samples in Groups (D, E, F, G, H, and I), wrong responses
are rampant and they vary depending on the views. This can
also be confirmed in Figures 16, 17, 18, 19, and 20. Regarding
the view dependency, Figures 16 and 19 show the case in
which the view dependency increases. And Figures 17 and
20 show the case in which the view dependency decreases.
Above results imply that the change in the combination
of target gestures affects the distinctiveness from respective
views, which can cause a change in view dependency.

5.5. Quantitative Difference between ViHASi and Our JSL
Image Database. Figure 21 shows the average recognition
rate and the average/variance of averaged evaluation scores
for each group. Apparently, there is little correlation between
the average recognition rate and the average/variance of
averaged evaluation scores. But the variance of averaged
evaluation scores for Experiment I is larger than that
of Experiments II and III. And the average of averaged
evaluation scores for Experiment I is smaller than that of
Experiments II and III. Above results seem to have been
brought about by the following reasons. In Experiment I,
only standard samples in ViHASi image database are used
for both the learning and the test. On the other hand, in
Experiments II and III, only one standard sample and one
similar sample in our JSL image database are used for the
learning. And the similar samples that are evidently less

distinct and more ambiguous than the samples in ViHASi
image database are used during the test. Nevertheless, the
results of the integration agent for our JSL image database
are comparable to the results for ViHASi image database,
suggesting that our approach requires only a small amount
of samples for learning. The greatest merit of multiview
approach lies in that it can capture multiple samples from
different views at the same time. This reduces the user’s
burden before using the recognition system.

6. Summary

In this paper, a framework is proposed for multiview
recognition of human gestures by real-time distributed
image processing. In our framework, recognition agents run
in parallel for different views, and the recognition results
are integrated on-line and in real-time. In the experiments,
the proposed approach is evaluated by using two kinds of
image databases: (1) public ViHASi image database and
(2) original JSL image database. By examining recognition
rates of each gesture for each view, we found gestures that
exhibit view dependency and the gestures that do not. And
the most suitable view for recognition varied depending
on the gestures in each of nine groups. More importantly,
some gestures changed view dependency by changing the
combination of target gestures. Therefore, the prediction of
the most suitable view is difficult, especially when the target
gesture sets are not determined beforehand as in the case of
user-defined gestures. On the whole, the integration agent
demonstrated better recognition performance than individ-
ual fixed-view recognition agent. The results presented in
this paper clearly indicate the effectiveness of our swarm-
based approach in multiview gesture recognition. Future
work includes the application of our approach to many view
gesture recognition in sensor network environment.

References

[1] M. Weiser, “Hot topics-ubiquitous computing,” Computer,
vol. 26, no. 10, pp. 71–72, 1993.

[2] T. Matsuyama and N. Ukita, “Real-time multitarget tracking
by a cooperative distributed vision system,” Proceedings of the
IEEE, vol. 90, no. 7, pp. 1136–1149, 2002.

[3] R. Liu, Y. Wang, H. Yang, and W. Pan, “An evolutionary
system development approach in a pervasive computing
environment,” in Proceedings of International Conference on
Cyberworlds (CW ’04), pp. 194–199, November 2004.

[4] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action
in time-sequential images using hidden Markov model,” in
Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR ’92), pp. 379–385,
Champaign, Ill, USA, June 1992.

[5] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland,
“Pfinder: real-time tracking of the human body,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 780–785, 1997.

[6] A. Corradini, “Dynamic time warping for off-line recognition
of a small gesture vocabulary,” in Proceedings of IEEE ICCV
Workshop on Recognition, Analysis, and Tracking of Faces and
Gestures in Real-Time Systems, pp. 82–89, July 2001.



EURASIP Journal on Image and Video Processing 13

[7] P. Dreuw, T. Deselaers, D. Rybach, D. Keysers, and H. Ney,
“Tracking using dynamic programming for appearance-based
sign language recognition,” in Proceedings of the 7th Interna-
tional Conference on Automatic Face and Gesture Recognition
(FGR ’06), pp. 293–298, April 2006.

[8] Z. Hang and R. Qiuqi, “Visual gesture recognition with color
segmentation and support vector machines,” in Proceedings of
the International Conference on Signal Processing (ICSP ’04),
vol. 2, pp. 1443–1446, Beijing, China, September 2004.

[9] S.-F. Wong and R. Cipolla, “Continuous gesture recognition
using a sparse Bayesian classifier,” in Proceedings of Interna-
tional Conference on Pattern Recognition, vol. 1, pp. 1084–1087,
September 2006.

[10] U. C. Jung, H. J. Seung, D. P. Xuan, and W. J. Jae, “Multiple
objects tracking circuit using particle filters with multiple
features,” in Proceedings of International Conference on Robotics
and Automation, pp. 4639–4644, April 2007.

[11] C. Wan, B. Yuan, and Z. Miao, “Model-based markerless
human body motion capture using multiple cameras,” in
Proceedings of IEEE International Conference on Multimedia
and Expo, pp. 1099–1102, July 2007.

[12] M. Ahmad and S.-W. Lee, “HMM-based human action
recognition using multiview image sequences,” in Proceedings
of International Conference on Pattern Recognition (ICPR ’06),
vol. 1, pp. 263–266, September 2006.

[13] A. Utsumi, H. Mori, J. Ohya, and M. Yachida, “Multiple-
human tracking using multiple cameras,” in Proceedings of
the 3rd IEEE International Conference on Automatic Face and
Gesture Recognition (FGR ’98), pp. 498–503, April 1998.

[14] T. Kirishima, Y. Manabe, K. Sato, and K. Chihara, “Multi-
rate recognition of human gestures by concurrent frame rate
control,” in Proceedings of the 23rd International Conference
Image and Vision Computing New Zealand (IVCNZ ’08), pp.
1–6, November 2008.

[15] S. Abbasi and F. Mokhtarian, “Automatic view selection in
multi-view object recognition,” in Proceedings of the 15th
International Conference on Pattern Recognition (ICPR ’00), pp.
13–16, September 2000.

[16] L. E. Navarro-Serment, J. M. Dolan, and P. K. Khosla, “Opti-
mal sensor placement for cooperative distributed vision,” in
Proceedings of IEEE International Conference on Robotics and
Automation (ICRA ’04), pp. 939–944, July 2004.

[17] T. Kirishima, K. Sato, and K. Chihara, “Real-time gesture
recognition by learning and selective control of visual interest
points,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 3, pp. 351–364, 2005.

[18] H. Ragheb, S. Velastin, P. Remagnino, and T. Ellis, “ViHASi:
virtual human action silhouette data for the performance
evaluation of silhouette-based action recognition methods,” in
Proceedings of the 2nd ACM/IEEE International Conference on
Distributed Smart Cameras (ICDSC ’08), pp. 1–10, Palo Alto,
Calif, USA, September 2008.

[19] M. G. Hinchey, R. Sterritt, and C. Rouff, “Swarms and swarm
intelligence,” Computer, vol. 40, no. 4, pp. 111–113, 2007.

[20] L. M. Fernández-Carrasco, H. Terashima-Marı́n, and M.
Valenzuela-Rendón, “On the path towards autonomic com-
puting: combining swarm intelligence and excitable media
models,” in Proceedings of the 7th Mexican International
Conference on Artificial Intelligence (MICAI ’08), pp. 192–198,
October 2008.

[21] P. Saisan, S. Medasani, and Y. Owechko, “Multi-view classifier
swarms for pedestrian detection and tracking,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’05), p. 18, San Diego, Calif,
USA, June 2005.

[22] M. Scheutz, “Real-time hierarchical swarms for rapid adaptive
multi-level pattern detection and tracking,” in Proceedings of
the IEEE Swarm Intelligence Symposium (SIS ’07), pp. 234–241,
April 2007.


	1. Introduction
	2. Related Work
	3. Multiview Gesture Recognition
	3.1. Framework
	3.2. Recognition Agent
	3.3. Frame Rate Control Method

	4. Experiments
	4.1. Experiment I
	4.2. Experiment II
	4.3. Experiment III

	5. Discussion
	5.1. Performance on ViHASi Database
	5.2. Performance on Our JSL Database
	5.3. Classification by View Dependency
	5.4. Analysis on View Dependency
	5.5. Quantitative Difference between ViHASi and Our JSL Image Database

	6. Summary
	References

