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Visual Sensor Networks (VSNs), formed by large number of low-cost, small-size visual sensor nodes, represent a new trend in
surveillance and monitoring practices. Sensor collaboration is essential to VSNs and normally performed among sensors having
similar measurements. The directional sensing characteristics of imagers and the presence of visual occlusion present unique
challenges to neighborhood formation, as geographically-close neighbors might not monitor similar scenes. In this paper, we
propose the concept of forming semantic neighbors, where collaboration is only performed among geographically-close nodes
that capture similar images, thus requiring image comparison as a necessary step. To avoid large amount of data transfer, we
propose feature-based image comparison as features provide more compact representation of the image. The paper studies several
representative feature detectors and descriptors, in order to identify a suitable feature-based image comparison system for the
resource-constrained VSN. We consider two sets of metrics from both the resource consumption and accuracy perspectives to
evaluate various combinations of feature detectors and descriptors. Based on experimental results obtained from the Oxford
dataset and theMSP dataset, we conclude that the combination of Harris detector andmoment invariants presents the best balance
between resource consumption and accuracy for semantic neighbor formation in VSNs.

1. Introduction

At the convergence of advances in computer vision, imaging,
embedded computing, and sensor networks, Visual Sensor
Networks (VSNs) emerge as a cross-disciplinary research
field and are attracting more and more attention. A VSN
is a group of networked visual sensors with image/video
capturing, computing, and wireless communication capa-
bilities powered by on-board batteries [1, 2]. From the
perspective of a single node, it is built at low cost, resulting in
limited sensing, processing, and communication capabilities.
However, the low cost of single sensor nodes makes it
possible to randomly deploy a large number of them, and
through collaboration, some challenging high-level vision
tasks can be achieved. The application of VSNs has spanned a
wide spectrum of domains, including environmental surveil-
lance, human behavior monitoring, and object tracking and
recognition [3, 4].

Generally speaking, collaboration among sensors is
achieved through sensing the same area from similar or

different perspectives as well as exchanging/fusing their mea-
surements, based on which amore panoramic understanding
toward the sensing area can be built. In order to collaborate,
sensors should firstly form clusters such that within each
cluster, they would have similar measurements for the same
scene. This cluster formation process is relatively easy for
wireless sensor networks using scalar sensors, whose sensing
range is normally omnidirectional, and the geographical
closeness of scalar sensors implies the similarities among
their measurements. However, for visual sensors, this process
is a lot different. On one hand, the sensing range of a
visual sensor, that is, the Field of View (FOV), is directional.
On the other hand, visual occlusions ubiquitously exist.
Hence, geographical closeness can no longer guarantee
measurement similarity.

Figure 1 illustrates how directional sensing and visual
occlusion can affect sensor clustering in a VSN. Four visual
sensors, A, B, C, and D, are geographically close but have
different orientations. The FOV of each visual sensor is
indicated by the area spanned by the two radials originated
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Figure 1: Illustration of how (a) directional sensing and (b)
visual occlusion can affect sensor collaboration in a VSN and the
formation of semantic neighborhood.

from the sensor. The rectangles indicate different objects
with the object of dash rectangle occluding the view of the
object of solid rectangle for sensor D. From Figure 1(a), we
observe that although sensor A is geographically close to
sensors B, C, and D, because it points to a different direction,
the scene captured by A is completely different from those
of B, C, and D. Therefore, for collaboration purpose, only
sensors B, C, and D should form a neighborhood or cluster.
From Figure 1(b), we further observe that although sensor
D points to the same direction as sensors B and C, because
of visual occlusion, the “content” of the image from sensor
D would be completely different from that of B and C.
Therefore, in this scenario, only B and C would have similar
measurements to be able to form a cluster. We refer to the
nodes with only geographical closeness as “g-neighbors” and
“g-neighbors” who also possess similar measurements as “s-
neighbors”.

In this paper, we propose to form the semantic neighbor-
hood for collaboration purpose based on image comparison
among g-neighbors. Direct image comparison using raw
image data is almost prohibited in VSNs due to their
resource-constrained nature. The communication band-
width in VSNs is typically low and is not equipped for fre-
quent large amount of data transfer. In addition, due to the
fact that the radio transceiver accounts for most of the energy
consumption in all activities (e.g., sensing, processing, etc.)
on a typical sensor node [5], the limited on-board battery
could not support large amount of data transfer. Therefore,
we propose feature-based image comparison for s-neighbor
formation as image features can be more compact than the
raw image in terms of data volume but still provide good
representation of the image content. And we will examine 10
combinations of feature detectors and descriptors, including
the detectors used in SIFT and SURF, wavelet-based detector,
Harris detector and the descriptors used in SIFT and
SURF, and moment invariants, to identify a suitable feature-
based image comparison system for the resource-constrained
VSN.

The organization of this paper is as follows. Section 2
reviews the related work in feature-based image compari-
son algorithms and neighbor selection for Wireless Sensor
Networks; Section 3 explains the proposed feature-based
image comparison method; Section 4 provides performance
comparison based on two datasets and examines how image
overlap affects the performance of the feature-based image
comparison method; Section 5 concludes this paper.

2. RelatedWorks

This paper studies the feature-based image comparison
method for s-neighbor selection in visual sensor networks.
Hence, this section reviews literatures from two perspectives,
image comparison using features and neighbor selection in
sensor networks in general. We also describe the difference
between this paper and our previously published work.
Moreover, we compare the feature detection/description
techniques used for image comparison in VSNs and
those developed for general Content-Based Image Retrieval
(CBIR) systems.

2.1. Feature-Based Image Comparison. In computer vision
terminologies, image feature is a mathematical description
of the raw image. Generally speaking, comparing the image
features is more effective and accurate than comparing
raw images. Three steps are involved for feature-based
image comparison: feature detection, feature description,
and feature matching.

Feature detection is to detect feature points such as
corner points, from the image. Harris and Stephens defined
image corner points as pixels with large autocorrelation.
They formulated the Harris matrix [6], H , to calculate the
autocorrelation, which is in turn used to derive the corner
strength measure, R,

H =
⎡
⎣ Î2x ÎxIy

ÎxIy Î2y

⎤
⎦,

R = det(H)− κTrace(H),

(1)

where ·̂ denotes the average intensity within a window sur-
rounding the pixel. Harris and Stephens used a circular
Gaussian averaging window, so that the corner strength
measure can suppress the noise and the calculation is
isotropic.

Fauqueur et al. proposed a keypoint detection method
that applies Dual Tree Complex Wavelet Transform
(DTCWT) [7]. They built a “Keypoint Energy Map” for
localizing keypoints from decimated DTCWT coefficients,
and the keypoint scale parameter is determined by the
gradient minima of the keypoint energy map in its vicinity.
However, the DTCWT analysis is redundant, that is, the data
volume of the decomposition structure is more than that of
the original image and thus incurs additional computational
cost and data storage.

In Scale Invariant Feature Transform (SIFT), Lowe
proposed to use the Difference of Gaussian (DoG) operator
to detect keypoints (blob-like features) in multiscale space
[8]. DoG is an approximation of Laplacian of Gaussian
(LoG) intending to speed up the computation, and the latter
was used to detect edges in images. To filter out the edge
responses from DoG, Lowe added a postprocessing step that
relies on analyzing eigenvalues of the Hessian matrix in a
similar way as Harris did in his detector. To speed up image
feature detection, Bay et al. proposed the Speeded-Up Robust
Feature (SURF) [9]. SURF relies on the Hessian matrix
for interest point detection and approximates it by a series
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of predefined templates suitable for fast convolution using
integral images [10].

The second step in image comparison is to describe the
detected feature points. The descriptor should be distinctive
and invariant to noise, geometric, and photometric defor-
mations. In SIFT, the feature descriptor is a histogram of
the oriented local gradients around the keypoint. The bins
of the histogram are stored in a vector typically with 128
entries. In SURF, the descriptor is composed of the Haar
wavelet responses with typically 64 entries. Compared to
the 128-entry or 64-entry feature descriptors, there is also
the moment invariants feature descriptor which is of much
lower dimension [11]. The “moment invariants” is a vector
containing 7 entries and is invariant to translation, scale, and
rotation changes.

The third step in image comparison is feature matching,
both SIFT and SURF use Euclidean distance as a similarity
measure because all entries in the feature descriptor have
comparable magnitudes and thus can be properly normal-
ized. For moment invariants, Mahalanobis distance is used.

2.2. Neighbor Selection in Sensor Networks. In sensor net-
works, a neighborhood is defined as a group of nearby
sensors taking the same or similar measurements. Depending
on the characteristics of sensing devices, the neighbor
selection algorithms can be very different. In traditional
sensor networks where scalar sensing is used, the sensors
are generally omnidirectional, and their measurements are
mostly related to the distance between the event point
and the sensor, which implies that the closer two sensors
stand, the more similar their measurements are. That is,
the neighborhood is determined based on distances between
sensors.

The concept of neighbor selection originated from sensor
networks under the name “cooperative strategies” and was
used to prolong the network lifetime by arranging an efficient
sleep-wakeup selection among neighbor nodes [12]. This
method puts some nodes within the neighborhood into
the sleep mode for energy conservation purpose when its
neighbors are capable of taking measurements. Chen et al.
introduced a power-saving technique named SPAN which
assumes that every node is aware of its active neighbors
within a 2-hop distance and exchanges this active-neighbor
information with its peers [13]. All nodes can thus use
this information to decide which node to turn off. Ye et al.
proposed a Probing Environment and Adaptive Sleeping
(PEAS) protocol that puts the node into the sleep mode as
long as possible if there is a nearby active node within its
neighborhood [14]. Younis and Fahmy presented a Hybrid
Energy-Efficient Distributed (HEED) clustering protocol to
organize the ad hoc network in clusters and select cluster
head based on node’s power level and proximity to its
neighbors [15]. Among all these studies, the neighborhood
information is regarded as trivial since it is only determined
by the geographical distance between node pairs.

On the other hand, visual sensors are usually directional
sensing devices. Therefore, their measurement similarity
depends not only on their distances, but also on the content

of the images captured. For example, two surveillance cam-
eras on the two sides of a wall pointing at opposite directions
are geographically close, but they are not capturing the same
scene and hence should not be defined as neighbors. In this
paper, we use feature-based image comparison method for
s-neighbor selection where the s-neighbors should satisfy
two conditions, geographically close and having similar
measurements. The second condition essentially imposes the
orientation and occlusion-free constraints.

Medeiros et al. distinguished the differences between
scalar sensor networks and camera networks and proposed
a light-weight event-driven sensor clustering protocol for a
wireless camera network [16]. But the focus of their work is
in clustering protocol design, and a simple color histogram
feature is used to find semantic neighbors.

2.3. Comparison to Our Previous Work. The feature-based
image comparison framework in VSNs was first proposed
as a conference publication by the authors [17]. In that
work, we focused on the design of a feature description
algorithm, Extended-SURF, for better representation of the
feature points, which uses a 128-element vector to describe a
feature point.

In this paper, we focus more on the comprehensive
performance evaluation regarding various combinations of
feature detectors and descriptors, in order to arrive at
an appropriate design option suitable for the resource-
constrained VSN.

2.4. Comparison to Features Used in Content-Based Image
Retrieval. Content-Based Image Retrieval (CBIR) is a tech-
nique that uses the visual content of an image as the query
to retrieve similar images from an image database. The visual
content of each image is represented by image signatures built
from various image features [18]. A group of local features,
such as color-based features, texture features, shape features,
and local invariant-based features are broadly adopted in
CBIR systems, among which the local invariant-based fea-
tures, including SIFT and SURF, are receivingmuch attention
because of their robustness to scale and affine variances.

Although both a CBIR system and a VSN adopt image
feature detection/description algorithms, their selection cri-
teria are different. For a CBIR system, the feature detection
and description can be performed offline, leaving less
concern on the computational cost of the algorithms. For a
VSN, all feature detection and description processes need to
be carried out in real time within the network, demanding
feature detectors/descriptors with low computational cost
and the resulting image features to be compact and effective.

3. Feature-Based Image Comparison

In this section, we detail the three steps, that is, feature
detection, feature description, and feature matching, in
feature-based image comparison.

3.1. Feature Detection. We evaluate the performance of four
feature detectors, including the feature detectors used in SIFT
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and SURF, Harris corner detector, and an improved DWT-
based detector.

The feature detection method in SIFT involves two steps
[8]. The first step is to calculate the Difference of Gaussian
of the image and find local extremes in scale space. This
step is to detect all possible keypoints that bear blob-like
patterns. The second step is to calculate the Hessian matrix
at each keypoint location from step one and reject those
keypoints if their Hessian matrices have two significantly
different eigenvalues. Essentially this operation excludes the
keypoints detected on edges.

The feature detection method in SURF detects the inter-
est points by finding the local extremes of the determinant of
Hessian matrix at each pixel. SURF utilizes integral images
for fast convolution, and the Hessian matrix at each pixel is
approximated by a series of predefined templates. Compared
to SIFT, the computational efficiency of feature detection in
SURF has been improved to a great extent. However, they still
cannot compete with the Harris detector or the improved
DWT-based detector.

The Harris matrix H contains only the first-order
derivatives of each pixel, and the corner strength measure
requires only the calculations of the determinant and the
trace of a 2× 2 Harris matrix.

Here, we propose a computationally light-weight corner
detector based on Discrete Wavelet Transform (DWT) that
is robust to both scale change and noise. The algorithm
includes two steps, with the first step localizing the corner
points and the second step determining the scale parameter
for each corner detected. In the first step, the DWT
coefficients computed through Fast Wavelet Transform are
used to build a corner strength map at each decomposition
level and these maps are upsampled by Gaussian kernel
interpolation to the original image size. These interpolated
corner strength maps are then summed to build the corner
strength measure. The local maxima of the corner strength
measure are detected as corners. In the second step, the
scale of the corner point is calculated to eliminate small-
scale corners on discrete edges. The scale of a corner point is
defined as a function of the corner distribution in its vicinity.
We provide a fast calculation of the scale parameters utilizing
a Gaussian kernel convolution.

3.2. Feature Description. As discussed in Section 2.1, SIFT
uses a 128-element vector to describe each feature calculated
from the image, and SURF uses a 64-element vector. When
there are many feature points detected, transmission of the
feature vectors is nontrivial. At the extreme case, the amount
of data transferred in feature-based image comparison can
be larger than that in raw data-based comparison. To further
improve the transmission efficiency, we resort to themoment
invariants, that is, a 7-element vector, to represent each
corner point detected.

The 7-element feature descriptor is invariant to rotation,
translation, and scale, making it a good candidate to
overcome the two shortcomings of Harris detector, that
is, corner point displacement and variant to rotation. It is
calculated based on the texture-based statistical descriptor

moment. For a detailed definition and calculation of the
invariant moments, please refer to [19].

3.3. Feature Matching. The feature-based image comparison
is based on the assumption that if two feature points in
different images are corresponding to the same real-world
point, then the two feature descriptors should be “close”
enough and they form a pair of matching features. If two
images have enough number of matching features, we claim
the two images are similar, implying they capture a similar
scene.

There have been two popular distance metrics used,
Euclidean distance and Mahalanobis distance. Mahalanobis
distance is generally more accurate since it takes into account
the covariance among the variables and is scale invariant.
However, the calculation of the covariance matrix does incur
additional cost. The closeness between the SIFT and SURF
descriptors is evaluated using the Euclidean distance since
all entries in the feature descriptor have similar scale and
thus can be properly normalized. However, the Mahalanobis
distance has to be adopted when evaluating the closeness
among moment invariant descriptors as the scale of the 7
entries in the descriptor tends to vary a lot.

4. Performance Evaluation

In this section, we perform thorough comparative study on
feature-based image comparison with various combinations
of the four feature detectors (i.e., SIFT detector, SURF detec-
tor, Harris detector, and the improved DWT-based detector)
and the three feature descriptors (i.e., SIFT descriptor, SURF
descriptor, and the moment invariants).

4.1. Datasets. The performance is evaluated on two image
datasets. The Oxford dataset contains images from different
scenes and is for general image feature evaluation purpose
[20]. The same dataset was used in [21] to provide a
performance evaluation of local descriptors. The second
dataset is gathered from a small-size VSN testbed constructed
in the Advanced Imaging and Collaborative Information
Processing (AICIP) lab at the University of Tennessee. The
images from the second dataset are taken in an office setup.
Unlike the Oxford dataset, where images from different
groups bear distinctive differences, all images taken from
the small-size VSN have similarity to some degree, making
feature-based image comparison more challenging.

To further investigate into how the degree of overlap bet-
ween images affect the performance of feature-based image
comparison, we adopt another dataset, the Columbia Object
Image Library (COIL-100) set. The COIL-100 is a dataset
containing images of 100 objects. Each object was placed
on a motorized turntable against a black background, and
the turntable rotated 360◦ to vary the object’s pose with
respect to a fixed camera. An image was taken every time the
turntable rotated 5◦ (separation angle), generating 72 images
for each object with different poses. The image overlap can
be evaluated by the separation angle between two images, the
smaller the separation angle, the more overlap they have.
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4.2. Metrics. We use five metrics for performance evaluation
purpose, that is, number of feature points detected, number
of bytes transferred, computation time, recall, and precision.
The first three metrics are straightforward and used to
evaluate resource consumption of the algorithm. The latter
two reflect algorithm performance compared to the ground
truth.

Let True Positive (TP) represent the detected correct
matching image pairs, False Positive (FP) the unmatching
image pairs but have been detected as matching, and the
False Negative (FN) the matching image pairs but have been
detected as unmatching. Then Recall is defined as the ratio
between the number of TPs and the total number of TPs and
FNs. Precision is defined as the ratio between the number of
TPs and the total number of TPs and FPs as follows:

Recall = TP
TP + FN

,

Precision = TP
TP + FP

.

(2)

The higher the recall, the less “misses” compared to the true
match; and the higher the precision, the less “false alarms”.

We also propose a so-called rank-based score function,
where the performance of each detector/descriptor com-
bination is ranked in terms of data volume, recall, and
precision. Since there are altogether 10 combinations of
detector/descriptor, the rank for each of the three metrics
is a number within the (1, 10) range with 1 being the
best and 10 the worst. By taking the summation of the
three ranks (i.e., data volume, recall, and precision) for
each detector/descriptor combination, a single score (in the
(3, 30) range) can be obtained, making it more convenient
to evaluate detector/descriptor combinations across different
performance metrics.

4.3. Window Size. A free parameter in the feature-based
image comparison system is the size of local area (or window
size) used to calculate local statistics around a detected
feature point. We use the default window size from the
SIFT and SURF descriptors, which is 16 × 16 and 20 × 20,
respectively. The window size for calculating the invariant
moments is determined through empirical study. We use 6
“graffiti” images from the Oxford dataset, formed into 15
image pairs whose perspective change can be represented
by a homography matrix. The homography matrices are
provided as the ground truth, so that we can calculate
the correspondence between feature points. The recalls and
precisions are averaged over resutls from the 15 image pairs.

Figure 2 shows the recall and precision as functions of the
half window size for calculating the invariant moments in
feature description. We observe the consistent trend between
“recall versus window size” and “precision versus window
size” and that different window size does affect both the
recall and precision. We choose to use 23 as the half window
size because it provides a good enough recall/precision rate.
While increasing the window size to, for example, 38, it
would improve the performance to some extent, it would also
incur more computational cost.
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Figure 2: Precision and recall as functions of the half window size
for calculating the invariant moments in feature description.

4.4. Finding Correspondence between Feature Points. When
comparing the similarity between two images, the first step
is to find the correspondence of detected feature points (or
features) across the two images. The second step is to count
the number of corresponding feature pairs. If this number is
large enough, the two images are claimed to be “similar”.

Given two sets of feature descriptors generated by
analyzing two images, for each feature descriptor in the
first image, the distances between this descriptor and all
feature descriptors in the second image are calculated. If the
ratio between the smallest distance and the second smallest
distance is below a threshold, the feature pair with the
smallest distance is claimed to be a matching feature pair
or that the two feature points that these two descriptors are
describing correspond to each other. The threshold has been
experimentally determined to be 0.3. Both SIFT and SURF
use this threshold in their implementations.

4.5. Feature-Based Image Comparison on the Oxford Dataset.
TheOxford image dataset contains 8 groups of images from 8
totally different surroundings. Each group has 6 images taken
from the same scene but under some variations. Figure 3
shows examples of the Oxford dataset, where six image
transformations are presented, including blur (Figures 3(a)
and 3(b)), viewpoint change (Figures 3(c) and 3(d)), scale
and rotation changes (Figures 3(e) and 3(f)), illumination
change (Figure 3(g)), and JPEG compression (Figure 3(h)).

We apply various combinations of feature detector and
descriptor on the Oxford dataset. Firstly, image features are
detected and descriptors are calculated from the 48 images,
out of which one set is selected as a query. Secondly, the
query feature set is compared to other 47 record feature sets
and records that have large enough number of matching
features with the query set will be returned as retrievals.
Assume themaximum number of matching features between
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Figure 3: The Oxford dataset. Examples of images from each group: (a) and (b) blur; (c) and (d) viewpoint change; (e) and (f) zoom plus
rotation; (g) illumination change and (h) JPEG compression.

the query and the record is N , then we set up the threshold
as N × 0.85, such that any record having matching features
more than this threshold will be “claimed” as a retrieval.
Thirdly, we compare the retrieved feature set(s), or image(s),
to the ground truth and compute the TP, FP, FN, TN, recall,
and precision. The ground truth is based on the fact that all
images from the same group are similar but not otherwise.
We apply a 48-fold cross validation such that every image
from the dataset will be used as the query once, and we
average out all the results, which are presented in Table 1.

From the aspect of computational speed, Harris detector
takes 0.2346 seconds to detect 442 corners on each image;
the improved DWT-based detector takes 0.3727 seconds
to detect 1145 corners on each image; SIFT takes 3.5855
seconds to detect 5938 keypoints on each image; SURF takes
0.8211 seconds to detect 1478 interest points on each image.
Note that the Harris detector and the improved DWT-based
detector are implemented in Matlab while the SIFT [22] and
SURF [23] implementations are in C code. Considering the
difference in implementation efficiency between Matlab and
C, the speed between the Harris detector and the others
would differ even more.

From Table 1, we observe that in terms of resource
consumption, SIFT is the worst, considering it actually

creates even larger volume of data than the raw image, with
the slowest computational speed. Except for the combination
of the DWT-based detector and the SIFT descriptor, which
generates comparable data volume as the raw image, all other
combinations of feature detector/descriptor provide savings
in data volume and therefore data transmission, especially
those using moment invariants.

In terms of performance accuracy, SIFT and SURF
provide highest precision although the recalls are low. Harris
detector performs well when used together with SIFT or
SURF descriptor, generating better balance between recall
and precision. The DWT-based corner detector does not
perform as well as the Harris detector when used with SIFT
or SURF descriptor. This is because the DWT-based detector
is more sensitive to discretization noise caused by image
rotations which happen to be very common in the Oxford
dataset (4 out of the 8 groups contain strong rotational
variations, another 3 contain weak rotational variations).

In addition, by observing the fourth to seventh rows,
we find out that the SIFT descriptor is superior to the
SURF descriptor in terms of the precision. And from the
eighth to eleventh rows, we observe that the moment
invariants-based feature descriptors are all inferior to SIFT
or SURF descriptors in terms of precision. Considering the
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Table 1: Recall and precision of each feature detector/descriptor combination. The test run on the Oxford dataset and results in the 4th
through 6th columns are for each image on average. For reference, the average raw image volume is 574.2 KB. Assume that a float type
number takes 4 Bytes in storage. (The number in the parentheses in columns 4, 5, and 6 indicates the “rank” of the detector/descriptor
combination in terms of the corresponding performance metric in that column. The “rank-based score” in the last column is the summation
of the three ranks along the row.)

Descr. length No. of feature points Feature data vol. (KB) Recall Precision Rank-based score

SIFT 128 5938 3040.3(10) 0.3542(10) 1.0000(1) 21

SURF 64 1478 378.4(8) 0.3958(8) 1.0000(1) 17

Harris + SIFT descr. 128 442 226.3(6) 0.4583(4) 0.9375(3) 13

Harris + SURF descr. 64 442 113.2(4) 0.7083(3) 0.6970(5) 12

DWT + SIFT descr. 128 1145 586.2(9) 0.4375(5) 0.9063(4) 18

DWT + SURF descr. 64 1145 293.1(7) 0.4375(5) 0.5758(6) 18

SIFT detec.+ M. I. 7 5938 166.3(5) 0.4167(7) 0.5084(7) 19

SURF detec.+ M. I. 7 1478 41.4(3) 0.3958(8) 0.4029(8) 19

Harris + M. I. 7 442 12.4(1) 0.7292(2) 0.2014(9) 12

DWT +M.I. 7 1145 32.1(2) 0.8958(1) 0.1566(10) 13

Figure 4: The mobile sensor platform (MSP).

definitions of recall and precision, a comparable recall value
but extremely low precision value implies that there are too
many False Positives (or false alarms).

Using the rank-based overall score, four combinations
perform noticeably better than the others, including Harris
+ SIFT, Harris + SURF, Harris + Moment Invariants, and
DWT-based + Moment Invariants. We see that 3 out of the
4 best combinations involve Harris detector, and moment
invariants, as a descriptor, appear twice in the top 4.

4.6. Feature-Based Image Comparison on the MSP Image
Dataset. This section reports the performance evaluation on
the image dataset from a small size Visual Sensor Network.
This VSN is composed of 12 Mobile Sensor Platforms
(MSPs) built at the AICIP lab [24]. The structure of MSP is
based on two 12×12 inch PVC sheets. The parts mounted on
the platform include a Mini-ITX motherboard with 1.5GHz
processor, 1 GB RAM, 40GB hard drive, 802.11 g wireless
card, two 12VDC gearhead motors, and H-Bridge circuit to
control the motors. The on-board sensing devices include
a Logitech Quickcam 4000 Pro webcam and an ultrasonic
range sensor, connected via USB and the parallel port,
respectively. A complete assembledMSP is shown in Figure 4.
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Figure 5: 12 MSPs in a 10-by-10 grid map. The letter within each
circle indicates the image label in Figure 6.

In this experiment, we deploy 12MSPs within a 10-by-10
grid area in an office setup. The deployment map is shown
in Figure 5. The position and orientation of every MSP is
randomly assigned.

Figure 6 shows the 12 images in this dataset. Different
from the Oxford image dataset which contains images from
totally different surroundings, the images in this dataset are
all taken from the same office but from different viewpoints.
Therefore, there are many common subregions (like the
floor, the wall, and the ceiling) in images even when the
cameras are not shooting at the same direction. This would
result in a higher False Positive rate compared to the Oxford
dataset. Another noteworthy problem is that for some MSPs,
even they are shooting the similar scene, the overlapped
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Figure 6: 12 images taken from 12 MSPs.

Table 2: Recall and precision of each feature detector/descriptor combination. The test run on theMSP dataset and results in the 4th through
6th columns are for each image on average. For reference, the average raw image volume is 19.2 KB. Assume a float type number takes 4 Bytes
in storage. (The numbers in the parentheses in columns 4, 5, and 6 indicate the “rank” of the detector/descriptor combination in terms of
the corresponding performance metric in that column. The “rank-based score” in the last column is the summation of the three ranks along
the row.)

Descr. length No. of feature points Feature data vol. (KB) Recall Precision Rank-based score

SIFT 128 139 71.2(10) 0.4000(3) 0.3077(4) 17

SURF 64 72 18.4(6) 0.4500(1) 0.5294(1) 8

Harris + SIFT descr. 128 39 20.0(7) 0.3500(6) 0.3043(5) 18

Harris + SURF descr. 64 39 10.0(5) 0.4500(1) 0.1915(9) 15

DWT + SIFT descr. 128 87 44.5(9) 0.4000(3) 0.3636(3) 15

DWT + SURF descr. 64 87 22.2(8) 0.2500(8) 0.2000(7) 23

SIFT detec.+ M. I. 7 139 3.9(4) 0.1500(9) 0.2000(7) 20

SURF detec.+ M. I. 7 72 2.0(2) 0.1500(9) 0.1071(10) 21

Harris + M. I. 7 39 1.1(1) 0.4000(3) 0.4211(2) 6

DWT +M. I. 7 87 2.4(3) 0.3000(7) 0.2609(6) 16

scene region among their images is quite small, due to the
differences in viewpoints. This would result in a higher False
Negative rate compared to the Oxford dataset.

We apply the 10 combinations of feature detec-
tor/descriptor on the 12 images, and every feature set will
be selected as the query to be compared with the others. The
ground truth is found from the knowledge of the deployment
map, through which we would know which MSP is shooting
at the same scene as other MSPs and therefore build the
image matching relations.

Table 2 lists the results of resource consumption and
performance accuracy. In terms of resource consumption,
SIFT and DWT-based detector plus SIFT descriptor give us
the worst result by generating larger data volume than the

raw image. On the other hand, the moment invariants-based
descriptor generates the most compact feature sets.

In terms of performance accuracy, as we expected, all
combinations of feature detector/descriptor give us worse
results compared to those generated from the Oxford dataset.
As a reference, the most mature image features, SIFT and
SURF, could only provide a very low precision of 0.3077
and 0.5294, respectively, with SURF providing the highest
recall. By observing rows 4 through 7, we find out that
SIFT descriptors are superior to SURF descriptors in terms
of precision, which is consistent with the Oxford dataset.
According to the eighth to eleventh rows, the moment
invariants-based descriptors are still inferior to SIFT or SURF
descriptors, but for this dataset, the margin is much smaller.
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Figure 7: Images of object 5 from the COIL-100 dataset, at view
angles 0◦, 10◦, . . . , and 170◦, respectively.

For detectors, Harris detector and DWT-based detector
are comparable in terms of recall and precision. This
conclusion is different from that of the Oxford dataset,
because in the MSP dataset, all images are taken with MSPs
laying down on the ground, and there is little rotational
variation in images.

Measured from the rank-based overall score, Harris de-
tector plus Moment Invariants prevails and SURF ranks the
second.

4.7. Feature-Based Image Comparison on the COIL-100
Dataset. By comparing Tables 1 and 2, the recall and
precision rates for the MSP dataset are severely worse than
those for the Oxford dataset. Although both datasets contain
image pairs having similar scenes, the degree of overlap
in the similar image is different. The similar images in
Oxford dataset have much more overlap than those in the
MSP dataset. The third experiment is designed to reveal the
relationship between the amount of image overlap and the
algorithm performance in terms of recall and precision rates.

We select the first 10 objects from the COIL-100 dataset,
one of which at different view angles is shown in Figure 7.
For each object, we use two images: the first image is the
one taken at angle 0◦ and the second is the one taken at
angle θ. For the first object, we use its image taken at angle
0◦ as a reference and compare it to the rest 19 images
using feature-based image comparison, recording the recall
and precision rates. The Harris detector plus the SIFT
descriptor combination is used in this experiment because it
demonstrated good performance in the Oxford dataset. This
process is repeated for all 10 objects and the average is taken.
Then we vary the θ value from 10◦ to 180◦ with a step size of
10◦ and plot the results in Figure 8.

The recall and precision, as well as their summations,
are plotted separately in Figure 8. Recall and precision are
two contradictory indices in that when other conditions are
the same, lower recall rate would result in higher precision
rate and vice versa. Therefore, their summation is used to
illustrate the general trend of the performance degradation.
We use the summation instead of the average of recall and
precision to provide an offset, so that the curve can be better
visualized. The summation curve stays stable when there is
a 10◦ separation angle between the two images of the same
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Figure 8: Recall and precision as a function of image overlap
(measured by separation angle).

object; when the separation angle increases to 40◦, the curve
drops to 11%. The curve drops to its minimum when the
separation angle is 90◦, with a performance degradation of
34%, after which the performance starts to improve with the
curve climbing back up.

We conclude from Figure 8 that the feature-based image
comparison method (specifically, using Harris detector plus
SIFT descriptor) can perform well (within 11% degradation)
as long as the similar images have a certain degree of overlap
that corresponds to a 40◦ separation angle in viewpoints. But
as the amount of overlap decreases, the performance drops
to 34%. Note that these measurements have not considered
the factor of distance variations between the camera and the
object, which would further reduce the performance. The
performance improvements beyond the separation angle of
90◦ are due to the fact that the objects used in our experiment
all show circular symmetry.

5. Discussions

A Visual Sensor Network environment is a more challenging
setup for feature-based image comparison algorithms. First
of all, it poses difficulties for image comparison itself by
having to differentiate images of much similarity. Second, it
requires the algorithms to be computationally of light weight,
so that the low-end processor can afford running it. Finally,
it requires the feature set to be compact enough, so that the
transmission overhead is low.

From our experiments, although mature image features,
SIFT or SURF, could perform well on general image com-
parison problems, such as the Oxford dataset, their per-
formances degrade severely in the VSN environment, where
images have high similarity. Moreover, their computational
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burden and large volume of feature sets are strictly pro-
hibitive for the VSN. On the other hand, simple feature
detectors, like the Harris detector or the proposed improved
DWT-based detector, combined with the compact moment
invariants-based feature descriptor, show their advantages
in terms of low resource consumption and comparable
performance over the mature image features.

The low performance accuracy for feature-based image
comparison in VSNs is due to the fact that the images
have high similarities as the common background exists in
all images. Therefore, one way to increase the performance
accuracy is to perform background removal techniques prior
to image feature detection.

6. Conclusion

The paper studied the feature-based image comparison
methods for Visual Sensor Networks where the resources
are stringent. The purpose of this study is to cluster
visual sensors into different semantic neighborhoods to
facilitate collaboration. Four image feature detectors, Harris
detector, the improved DWT-based corner detector, SIFT
detector, and SURF detector, as well as three image feature
descriptors, SIFT descriptor, SURF feature descriptor, and
moment invariants-based feature descriptor were examined,
and different detector/descriptor combinations were tested
on two image datasets. Although for general image compar-
ison problems SIFT and SURF provide better performance
in terms of accuracy, our experiment showed that for
VSNs, where all images have high similarity, simple feature
detectors, like Harris detector, DWT-based detector, and
compact feature descriptors, like the moment invariants-
based descriptor, can provide comparable performance in
terms of accuracy but much superiority in terms of resource
consumption. Overall, the Harris detector plus the moment
invariant provides the best balance between resource con-
sumption and performance accuracy.
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