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This paper presents a robust approach to detect multiple moving targets from aerial infrared (IR) image sequences. The proposed
novel method is based on dynamic Gabor filter and dynamic Gaussian detector. First, the motion induced by the airborne platform
is modeled by parametric affine transformation and the IR video is stabilized by eliminating the background motion. A set of
feature points are extracted and they are categorized into inliers and outliers. The inliers are used to estimate affine transformation
parameters, and the outliers are used to localize moving targets. Then, a dynamic Gabor filter is employed to enhance the difference
images for more accurate detection and localization of moving targets. The Gabor filter’s orientation is dynamically changed
according to the orientation of optical flows. Next, the specular highlights generated by the dynamic Gabor filter are detected.
The outliers and specular highlights are fused to indentify the moving targets. If a specular highlight lies in an outlier cluster,
it corresponds to a target; otherwise, the dynamic Gaussian detector is employed to determine whether the specular highlight
corresponds to a target. The detection speed is approximate 2 frames per second, which meets the real-time requirement of many

target tracking systems.

1. Introduction

Detection of moving targets in infrared (IR) imagery is a
challenging research topic in computer vision. Detecting
and localizing a moving target accurately is important
for automatic tracking system initialization and recovery
from tracking failure. Although many methods have been
developed on detecting and tracking targets in visual images
(generated by daytime cameras), there exits limited amount
of work on target detection and tracking from IR imagery in
computer vision community [1]. IR images are obtained by
sensing the radiation in IR spectrum, which is either emitted
or reflected by the object in the scene. Due to this property,
IR images can provide information which is not available in
visual images. However, in comparison to the visual images,
the images obtained from an IR camera have extremely low
signal-to-noise ratio, which results in limited information
for performing detection and tracking tasks. In addition, in

airborne IR images, nonrepeatability of the target signature,
competing background clutter, lack of a priori information,
high ego-motion of the sensor, and the artifacts due to
weather conditions make detection or tracking of targets
even harder. To overcome the shortcomings of the nature of
IR imagery, different approaches impose different constrains
to provide solutions for a limited number of situations. For
instance, several detection methods require that the targets
are hot spots which appear as bright regions in the IR
images [2—4]. Similarly, some other methods assume that
target features do not drastically change over the course
of tracking [4-7] or sensor platforms are stationary [5].
However, in realistic target detection scenarios, none of these
assumptions are applicable, and a robust detection method
must successfully deal with these problems.

This paper presents an approach for robust real-time
target detection in airborne IR imagery. This approach has
the following characteristics: (1) it is robust in presence of



high global motion and significant texture in background;
(2) it does not require that targets have constant velocity or
acceleration; (3) it does not assume that target features do
not drastically change over the course of tracking. There are
two contributions in our approach. The first contribution is
the dynamic Gabor filter. In airborne IR video, the whole
background appears to be moving because of the motion
of the airborne platform. Hence, the motion of the targets
must be distinguished from the motion of the background.
To achieve this, the background motion is modeled by a
global parametric transformation and then motion image
is generated by frame differencing. However, the motion
image generated by frame differencing using an IR camera
is weaker compared to that of a daytime camera. Especially
in the presence of significant texture in background, the
small error in global motion model estimation accumulates
large errors in motion image. This makes it impossible to
detect the target from the motion image directly. To solve this
problem, we employ a Gabor filter to enhance the motion
image. The orientation of Gabor filter is changed from frame
to frame and therefore we call it dynamic Gabor filter. The
second contribution is dynamic Gaussian detector. After
applying dynamic Gabor filter, the target detection problem
becomes the detection of specular highlights. We employ
both specular highlights and clusters of outliers (the feature
points corresponding to the moving objects) to detect the
target. If a specular highlight lies in a cluster of outliers, it
is considered as a target. Otherwise, the Gaussian detector
is applied to determine if a specular highlight corresponds
to a target or not. The orientation of Gaussian detector is
determined by the principal axis of the highlight. Therefore,
we call it dynamic Gaussian detector.

The remainder of the paper is organized as follows.
Section 2 provides a literature survey on detecting moving
targets in airborne IR videos. In Section 3, the proposed
algorithm is described in detail. Section 4 presents the exper-
imental results. Section 5 gives the performance analysis of
the proposed algorithm. Conclusions and future works are
given in Section 6.

2. Related Work

For the detection of IR targets, many methods use the ithot
spot technique, which assumes that the target IR radiation
is much stronger than the radiation of the background and
the noise. The goal of these target detectors is then to detect
the center of the region with the highest intensity in image,
which is called ithot spot [1]. The hot spot detectors use
various spatial filters to detect the targets in the scene. Chen
and Reed modeled the underlying clutter and noise after
local demeaning as a whitened Gaussian random process
and developed a constant false alarm rate detector using
the generalized maximum likelihood ratio [2]. Longmire
and Takken developed a spatial filter based on least mean
square (LMS) to maximize the signal-to-clutter ratio for
a known and fixed clutter environment [3]. Morin have
presented a multistage infinite impulse response (IIR) filter
for detecting dim point targets [8]. Tzannes and Brooks
presented a generalized likelihood ratio test (GLRT) solution
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to detect small (point) targets in a cluttered background
when both the target and clutter are moving through the
image scene [9]. These methods do not work well in presence
of significant texture in background because they employ
the assumption that that the target IR radiation is much
stronger than the radiation of the background and the
noise. This assumption is not always satisfied. For instance,
Figure 1 shows two IR images with significant texture in
background, each contains three vehicles on a road. The IR
radiation from asphalt concrete road and street lights is much
stronger than that of vehicle bodies, and street lights appear
in IR images as ithot spots but vehicles do not. Yilmaz et
al. applied fuzzy clustering, edge fusion and local texture
energy techniques to the input IR image directly, to detect
the targets [1]. This method works well for IR videos with
simple texture in background such as ocean or sky. For the
IR videos as shown in Figure 1, this method will fail because
the textures are complicated and edges are across the entire
images. In addition, this algorithm requires an initialization
of the target bounding box in the frame where the target
first appears. Furthermore, this method can only detect and
track a single target. Recently, Yin and Collins developed a
method to detect and localize moving targets in IR imagery
by forward-backward motion history images (MHI) [10].
Motion history images accumulate change detection results
with a decay term over a short period of time, that is, motion
history length L. This method can accurately detect location
and shape of multiple moving objects in presence of signifi-
cant texture in background. The drawback of this method is
that it is difficult to determine the proper value for motion
history length L. Even a well-tuned motion history length
works well for one input video, it may not work for other
input videos. In airborne IR imagery, the moving objects may
be small, and intensity appearance may be camouflaged. To
guarantee that the object shape can be detected well, a large
L can be selected. But this will lengthen the lag of the target
detection system. In this paper, we present a method for
target detection in airborne IR imagery, which is motivated
by the need to overcome some of the shortcomings of existing
algorithms. Our method does not have any assumption on
target velocity and acceleration, object intensity appearance,
and camera motion. It can detect multiple moving targets
in presence of significant texture in background. Section 3
describes this algorithm in detail.

3. Algorithm Description

The extensive literature survey indicates that moving target
detection from stationary cameras has been well researched
and various algorithms have been developed. When the
camera is mounted on an airborne platform, the whole
background of the scene appears to be moving and the
actual motion of the targets must be distinguished from the
background motion without any assumption on velocity and
acceleration of the platform. Also, the algorithm must work
in real-time, that is, the time-consuming algorithms that
repeatedly employ the entire image pixels are not applicable
for this problem.
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(a)

(b)

FIGURE 1: Two sample IR images with significant textures in background. (a) Frame 98 in datasetl; (b) Frame 0 in dataset 3.

To solve these problems, we propose an approach to
perform the real-time multiple moving target detection in
airborne IR imagery. This algorithm can be formulated in
four steps as follows.

Step 1. Motion Compensation. It consists of the feature
point detection, optical flow detection, estimation of the
global transformation model parameter, and frame differ-
encing.

Step 2. Dynamic Gabor Filtering. The frame difference
image generated in Step 1 is weak, and it is difficult to detect
targets from the frame difference image directly. We employ
Gabor filter to enhance the frame difference image. The
orientation of Gabor filter is dynamically controlled by using
the orientation of the optical flows. Therefore, we call it
dynamic Gabor filter.

Step 3. Specular Highlights Detection. After the dynamic
Gabor filtering, the image changes appear as strong intensity
in the dynamic Gabor filter response. We call these strong
intensity specular highlights. The target detection problem
then becomes the specular highlight detection. The detector
employs the specular highlight point detection and clustering
techniques to identify the center and size of the specular
highlights.

Step 4. Target Localization. If a specular highlight lies in a
cluster of outliers, it is considered as a target. Otherwise, the
Gaussian detector is employed for further discrimination.
The orientation of the specular highlight is used to control
the orientation of the Gaussian detector. Therefore, we call it
dynamic Gaussian detector.

The processing flow of this algorithm is shown in
Figure 2. The following will describe above processing steps
in detail.

3.1. Motion Compensation. The motion compensation is a
technique for describing an image in terms of the trans-
formation of a reference image to the current image. The
reference image can be previous image in time. In airborne
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FIGURE 2: Processing flow of the proposed multiple moving IR
targets detection algorithm.

video, the background is moving over time due to the
moving platform. The motion of the platform therefore must
be compensated before generating the frame differencing.
Two-frame background motion estimation is achieved by
fitting a global parametric motion model based on optical
flows. To determine optical flows, it needs feature points
from two consecutive frames. The motion compensation
contains the feature point extraction, optical flow detection,
global parametric motion model estimation, and motion
detection, which are described below.



3.1.1. Feature Point Extraction. The feature point extraction
is used as the first step of many vision tasks such as tracking,
localization, image mapping, and recognition. Hence, many
feature point detectors exist in literature. Harris corner
detector, Shi-Tomasi’s corner detector, SUSAN, SIFT, SURE,
and FAST are some representative feature point detection
algorithms developed over past two decades. Harris corner
detector [11] computes an approximation to the second
derivative of the sum-of-squared-difference (SSD) between
a patch around a candidate corner and patches shifted. The

approximation is
" ({I@ (Ag))) ”

L) (L)

where angle brackets denote averaging performed over the
image patch. The corner response is defined as

C = |H| — k(trace H)?, (2)

where k is a tunable sensitivity parameter. A corner is
characterized by a large variation of C in all directions of the
vector (x, y). Shi and Tomasi [12] conclude that it is better
to use the smallest eigenvalue of H as the corner strength
function, that is,

C= min(/h,/lz). (3)

SUSAN [13] computes self-similarity by looking at the
proportion of pixels inside a disc whose intensity is within
some threshold of the center (nucleus) value. Pixels closer in
value to the nucleus receive a higher weighting. This measure
is known as (the Univalue Segment Assimilating Nucleus)
USAN. A low value for the USAN indicates a corner since the
center pixel is very different from most of its surroundings.
A set of rules is used to suppress qualitatively “bad” features,
and then local minima of the SUSANs (Smallest USAN)
are selected from the remaining candidates. SIFT (Scale
Invariant Feature Transform) [14] obtains scale invariance
by convolving the image with a Difference of Gaussians
(DoG) kernel at multiple scales, retaining locations which are
optima in scale as well as space. DoG is used because it is a
good approximation for the Laplacian of a Gaussian (LoG)
and much faster to compute. (Speed Up Robust Features)
SUREF [15] is based on the Hessian matrix, but uses a very
basic approximation, just as DoG is a very basic Laplacian-
based detector. It relies on integral images to reduce the
computation time. (Features from Accelerated Segment Test)
FAST feature detector [16] considers pixels in a Bresenham
circle of radius r around the candidate point. If #n contiguous
pixels are all brighter than the nucleus by at least ¢ or all
darker than the nucleus by #, then the pixel under the nucleus
is considered to be a feature. Although r can, in principle,
take any value, only a value of 3 is used (corresponding to a
circle of 16 pixels circumference), and tests show that the best
value of n is 9.

For our real-time IR targets detection in airborne videos,
it needs a fast and reliable feature point detection algorithm.
However, the processing time depends on image contents. To
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TaBLE 1: Feature point detectors and their processing time for the
synthesized image in Figure 3.

. Processing Number of feature

Feature point detector . .
time (ms) points

Harris corner detector 47 82
Shi and Tomasi’s 31 102
corner detector
SUSAN corner 3 250
detector
SIFT 655 714
SURF 344 355
FAST <1 1424

investigate the processing time, we employ the synthesized
test image as shown in Figure 3. The test image is 320 X 256
full color image which contains 252 (14 row, 18 column) 16X
16 rectangles.

The color of the rectangle is randomly determined. The
number of ground truth corners in this image is 285 (15 X
19). The experiments are performed on a Windows Vista
machine mounted with a 2.33 GHz Intel Core 2 CPU and
2 GB memory. The corners detected by above mentioned
algorithms are marked by small red rectangles in Figures 3(a)
to 3(f). The processing time and the detected corner number
are listed in Table 1. According to the processing time in
Table 1 and feature point detection results in Figure 3, we
obtain the following conclusions. (i) SIFT and SURF need
heavy computation, and they output many wrong corners
(refer to Figures 3(d) and 3(e)). They are not suitable for
real-time target detection algorithms. (ii) The processing
time for FAST is less than 1ms. This is really attractive.
However, it generates many redundant feature points (refer
to Figure 3(f)) in the local area of the real corner. The total
number of the corners detected is 1424, which is much bigger
than the number of the ground truth corners. And further,
we tested this algorithm by using images from airborne IR
camera. It fails to extract feature points for many images.
FAST is not proper for feature point detection in airborne
imagery. (iii) Harris corner detector is fast. But it missed
many ground truth corners. It is not candidate for our
algorithm. (iv) The processing time for SUSAN and Shi-
Tomasi’s corner detector are almost the same. SUSAN detects
more ground truth corner than Shi-Tomasi’s method for this
synthesized image. Further, to investigate the robustness of
SUSAN and Shi-Tomasi’s corner detector, another 640 x 512
full color test image is synthesized. This test image contains
252 (14 row, 18 column) randomly colored triangles, which
form 518 (37 x 13 + 18 (top) + 19 (bottom)) ground truth
corners. The experiment result is shown in Figure 4. Shi-
Tomasi’s method detected 265 corner points, as marked by
small red rectangles in Figure 4(a), which are all ground
truth corner points. SUSAN detected 598 corner points,
as depicted by small red rectangles in Figure 4(b), which
contain 80 false corner points (refer to the two close small
rectangles at the top vertex of some triangles). These false
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FIGURE 3: Feature point detection results for six algorithms; (a) Harris corner detector, (b) Shi and Tomasi’s corner detector, (c) SUSAN
corner detector, (d) SIFT feature point detector, (e) SURF feature point detector, and (f) FAST corner detector.

corner points will deteriorate the postprocessing. Further-
more, the robustness of these two detectors is investigated
by using the IR images from airborne IR camera, as shown in
Figure 1, in which (a) shows an IR image with complicated
content, and (b) relatively simple contents. The experiment
results are shown in Figure 5, in which (a) shows the corner
points detected by Shi-Tomasi’s method, and (b) by SUSAN.
Although it is difficult to tell which ones are truth corner
points in Figures 5(a) and 5(b), it is obvious that (b) contains
many false corner points. From these results, it is clear that
Shi-Tomasi’s method is more robust than SUSAN. For more

details about performance evaluation of corner detection
algorithms, readers are referred to [17].

From above results and discussion, this paper employs
Shi-Tomasi’s method to detect feature points. For two input
images, let P' = {p!,..., pi} and P' = {p!,..., p4} denote
the feature points detected from I " and I, respectively, where
v =t—Apl =,y ph = (xhy0),i=1,2,...,Mand
j=1,2,...,N. In the following, I' is called previous image,
I' is called current image or reference image. These feature
points are used for optical flow detection.
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FIGURE 5: Feature points detected by (a) Shi and Tomasi’s corner detector and, (b) SUSAN corner detector, for 640 x 512 color image.

3.1.2. Optical Flow Detection. The optical flow is the appar-
ent motion of the brightness patterns in the image [18].
In our algorithm, the feature points obtained in previous
section are used as the brightness patterns in the definition
of optical flow [18]. That is, the task for optical detection is
to find the corresponding feature point p; in frame I, for
the feature point p! in frame I', where i = 1,2,..., M, j =
1,2,...,N.

There are many optical flow detection algorithms.
Recently there are several new developments on this topic.
Black and Anandan [19] proposed a framework based on
robust estimation that addresses violations of the brightness
constancy, and spatial smoothness assumptions caused by
multiple motions. Bruhn et al. [20] developed a differential
method that combines local methods such as the Lucas-
Kanade’s technique and global methods such as the Horn-
Schunck’s approach. Zitnick et al.’s method is based on
statistical modeling of an image pair using constraints
on appearance and motion [21]. Bouguet’s method is the
pyramidal implementation of the Lucas-Kanade’s technique
[22]. The evaluation results of these four algorithms show
that Bouguet’s method is the best for the interpolation task
[23]. As measured by average rank, the best performing
algorithms for the ground truth motion are Bruhn et al. and
Black and Anandan.

In our algorithm, we employed Bouguet’s method for
optical flow detection. Figures 6(a) and 6(b) show two input
images, I * and I'. The frame interval, A, is an important
parameter that affects the quality of the optical flow. If it is
too small, the displacement between two consecutive frames
is also too small (close to zero). In this case, the optical flow
cannot be precisely detected. If it is too large, the error in
the process of finding the corresponding feature points in
the consecutive frame increases. In this case, the optical flow
also cannot be precisely detected. In our airborne videos, the
helicopter flew at very high altitude, and the displacement
between consecutive image frames is relatively small. To
speed up the algorithm, A is set at 3. The experiments
show our algorithm works well for A = 1,...,4. Figure 6(c)
shows the optical flows detected from the feature points
{pt,...,p4} and {pi,..., p&}, where the optical flow are
marked by red line segments, and the endpoints of the optical
flows are marked by green dots. Let F*'* = {Igf't, ﬁ{t,. .. ,F}Q"}
denote the detected optical flows. Note that the start point
of ith optical flow, F!'*, belongs to set P!, and the endpoint
belongs to set P!. For the feature points in set P* and P,
from which no optical flow is detected, they are filtered
out. Therefore, after this filtering operation, the number of
feature points in two sets, P!and P!, becomes the same with
the number of optical flows in optical flow set F*?, that is,
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(b)

(d)

Figure 6: Optical flow detection and frame differencing results. (a) and (b) Two input images; (c) Detected optical flows; (d) Frame

difference.

K. They are rewritten as P* = {p!,..., pk}, and P* = {p!,
..., Pk}, accordingly. In the following, in order to make
the description easier, we consider that the feature points

in P’ is sorted so that the start point and endpoint of F:”
are consequently p! € P'and p! € P!, respectively. That

is, F/'* means p! p!. Note that there is no need to perform
this sorting in the implementation because the optical flow

151-” holds the index information for the feature points in set
P!and P'.

3.1.3. Global Parametric Motion Model Estimation

(A) Transformation Model Selection. Motion compensation
requires finding the coordinate transformation between
two consecutive images. It is important to have a precise
description of the coordinate transformation between a pair
of images. By applying the appropriate transformations via a
warping operation and subtracting the warped images from
the reference image, it is possible to construct the frame
difference that contains image changes (motion image).
There exist many publications about motion parameter
estimation which can be used for motion compensation. A
coordinate transformation maps the image coordinates, x’ =
(x, y’)T, to a new set of coordinates, x = (x, y)T. Generally,
the approach to finding the coordinate transformation relies

on assuming that it will take one of the following six models,
(1) translation, (2) affine, (3) bilinear, (4) projective, (5)
pseudo perspective, and (6) biquadratic, and then estimating
the two to twelve parameters in the chosen models.

The translation model is based on the assumption
that the coordinate transformation between frames is only
translation. Although it is easy to implement, it is very
poor to handle large changes due to camera rotation,
panning, and tilting. This model is not suitable for our
purpose. On the other hand, the parameter estimation in
8-parameter projective model and 12-parameter biquadratic
model becomes complicated. Time-consuming models are
not suitable for the real-time applications. Therefore, our
algorithm does not employ these two models, neither. The
following investigates affine, bilinear, and pseudo perspective
models. Let (x', ") denote the feature point coordinates in
previous image, and (x, y) the coordinates in the current
image. Affine model is given by

G-@a)) ) o

The bilinear model is defined as

x=ax' +ay +as+ax'y,

(5)

y=asx'+asy +a;+asx'y.
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E=F

P .

(c)

(b)

FIGURE 7: Image transformation results; (a) Original image, (b) Image generated by bilinear model, (c¢) Image generated by pseudo

perspective model, and (d) Image generated by Affine model.

The pseudo perspective model is given by

2
x=a1+ax +a3y +ax'y +asx’",
(6)

y = a4y'2 +asx'y' +as +azx +agy’.

Figure 7(b) shows the transformed image for the image
in Figure 7(a), by applying the bilinear transformation with
parameters of a; = a¢ = 1.0, a, = —0.001, and others (ay, a3,
as, az, ag) equal to 0.0. For this set of parameters, if a4 is also
set to 0.0, no transformation is applied to the original image.
However, if a4 is set at —0.001, which corresponds to the
fact that a4 contains 1%o error, the output image is greatly
deformed. Similarly, Figure 7(c) shows the transformed
image for the image in (a), by applying pseudo perspective
transformation with parameters of a, = as = 1.0, as
—0.001, and others (ay, a3, as, ag, a7) equal to 0.0. For this
set of parameters, if a5 is also set to 0.0, no transformation is
applied to the original image. However, if a5 is set at —0.001,
which corresponds to the fact that as contains 1%o error, the
output image is greatly deformed. These results show that
bilinear model and pseudo perspective model are sensitive to
parameter errors. A small error in parameter estimation may
cause huge difference in the transformed images. We used the
images from airborne IR camera to test the frame difference
based on these two models, the results are poor. In contrast,
the affine transformation contains translation, rotation, and

scale although it cannot capture camera pan and tilt motion.
However, in the system to generate airborne videos, cameras
are usually mounted on the moving platform such as a
helicopter or an UAV (unmanned aerial vehicle). In this case,
there is no camera pan and tilt motion. Figure 7(d) shows the
transformed image for the image in (a), by applying affine
transformation with parameters of a; = a4 = 1.0, a, = 0.02,
as = —0.02, and as = a¢ = 1.0. This setting is corresponding
to that a, and ascontain 2% error, respectively. Comparing
the results in Figures 7(b), 7(c), and 7(d), we can say that
even the parameter estimation error in affine transformation
is 20 times larger than the error in bilinear transformation or
pseudo perspective transformation (2% in affine transform,
to 1%eo in bilinear transformation and pseudo perspective
transformation), the image deformation is still tolerable (see
Figure 7(d)). This result shows that the affine model is robust
to the parameter errors. Therefore, in our algorithm, we
employ affine model for motion detection.

(B)  Inliers/Outliers ~ Separation. The feature points
PY o= {pt,...,pk} and P' = {pi,...,pk}, obtained
in Section 3.1.2, are used to estimate six parameters in
(4). The corresponding relations for the feature points
in set P! and P! are determined by the optical flows,
F't = {FI't F{', .. F4'}. For the feature points in set P"
and P!, some of them are associated with the background,



10

and some with the moving targets. The feature points
associated with the moving targets are called outliers.
Those associated with the background are called inliers. To
detect the motion image (that is, image changes) for two
consecutive images, the previous image is wrapped to the
current image by performing affine transformation, and
then the frame difference image can be obtained by image
subtraction. This operation needs precise transformation
model. To estimate the transformation model precisely,
the outliers must be excluded. That is, the feature points
need to be categorized into outliers and inliers, and only
the inliers are used to estimate the affine transformation
parameters. The inliers/outliers are separated automatically
by the following algorithm.

Inliers/Outliers Separation Algorithm. (i) Using all feature
points in set P* and P!, 6-paramers in affine model are
primarily estimated by least-square method [24]. That is,
ai,...,ae are obtained by solving the equation below.

fo'xf’ foyf 0 0 fo 0
Sxiy Dyiyi 0 0 Dy o
PR 0 0 K 0

0 0 Daxdxl Daxylo0 DAl
0 0 Dyl Daiyi o0 D
0 o Xx >y 0 K
> xixl
ay ,
o | | 22X
% as| fo
a >yl [
@ Syt
ag

>
(7)

where the summation Y represents 3~ |, (x!', y) € P', and
(xj-, y]‘) € P!. Let A’ denote the affine model obtained from
(7).

(ii) Applying A’ to the feature points in set P*, the
transformed feature points are obtained, which are denoted
by Pt = {pY,..., p}. The error between the transformed
feature points and their corresponding feature points in P! is
defined as

5|

Py = pills (8)

where || - || means norm operation, i = 1,..., K.
(iii) Inliers/outliers are discriminated according to the
following criteria:

" inliers, if E; < Er,
pi and p! are
outliers, if E; > Er,
9)
1. K
Er =22 > En
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where A is the weighting coefficient. The value of Ag depends
on the size of the moving target. The larger the moving
target is, the smaller the value of Ag needs to be. In airborne
IR videos, the moving target is relatively small because
the observer is at high altitude, Ag can be relatively large.
Experiments show that the value of Az can be in the range
of 1.0 to 1.4, currently is set at 1.3.

The algorithm described above is based on the fact
that for the feature points belonging to the moving target,
the error defined in (8) is large because the corresponding
feature points are moving accompanied with the moving
target. Figure 6(c) shows the inliers/outliers separation for
the feature points detected from the input images in Figures
6(a) and 6(b). The outliers are marked by blue dots.
After this operation, P! is separated to inliers set Pi =
{p{’,...,p%n}, and outliers set P!, = {p{’,...,pfém}, pt
is separated to inliers set P, = {pi,..., pk. } and outliers
set P, = {pl,...,pk,}> and F'! is separated to optical
flows Ft = {FI'', ', ... ,15,2'“} corresponding to inliers, and
optical flows Fil, = {Ff/t,Fft,...,ﬁ}é(fm} corresponding to
outliers. And the following relations hold

P" =Pl + P!,

out?
P' = Pi, + Py (10)

Fi't = Fitr’lt + Fi't

out*

That is, the first and second formula in (10) show that
the total feature points detected from the previous image
frame and current image frame are separated into inliers and
outliers, respectively. Correspondingly, the optical flows are
also separated into two classes, optical flows belonging to
inliers and those belonging to outliers, as indicated by the
third formula in (10).

Again, in the following, to make the description easier,
let us assume p! € P! corresponds to pi € P!, and p! €
P! to pi € PL, and so on. The actual implementation does
not need this assumption because the optical flows hold the
feature point correspondence (refer to Section 3.1.2). Inliers
are used in the affine model parameter estimation below, and
in dynamic Gabor filter (refer to Section 3.2.2). Outliers are
used in target localization (refer to Section 3.4.2).

(C) Affine Transformation Parameter Estimation. There are
the six parameters in affine transformation. It needs three
pairs of feature points in P!, and P to estimate these
six parameters. However, affine model determined only by
using three pairs of feature points might not be accurate.
To determine these parameters efficiently and precisely, our
method employs the following algorithm.

Affine Model Estimation Algorithm. (1) Randomly choose L

triplet inliers pairs from P!, and P!, respectively. For a triplet

mn
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inliers pair (pi', pfi1, piiz) € Piy and (pf, piy, pisa) € Py an
affine model determined by solving the following equation:

¢

t' t
Xi i 0

oy 0 10\ /g !

xf/ﬂ yflﬂ 0 0 10||a Xii)

X Ve 00 10|]as _ Xii (11)
0 0 x y o01||a i |

0 0 xby yiy 0 1](4s Yisi

0 0 xfy, yi, 0 1) \a6 Vira

where (x{,y/) € Pj, and (x,y}) € P}, and i =
1,3,6,...,3L. Let A = (Aj,A,,...,AL) represent these L
Affine models. They are used to determine the best affine
model below.

(2) Apply A; € A to the previous image I “and feature
points in P! . It generates the transformed image I and
transformed feature points PY, = {p!,..., p% }. The local
area correlation coefficient (LACC) is used to determine
whether two feature points are matched. The LACC is given
by

Cij = i ﬁ x[12<%f,+k’;"tl+l>_lf\< i
ij =
)

k==ni=—m  (2n+1)2m+1),/o; (I}

[1'(xf 4k, s+ 1) =T (!, 50 |

@n+ 1Dam+ 1, foi(15) x oy(11)

where I, and I* are the intensities of the two images, (¥ , )
and (x{, y{) the ith and jth feature points to be matched,
m and n the half-width and half-length of the matching

window,

Sk=n 2ie-mI(x+ Ky +1)]

1o y) = S G Dam+ 1 (13)
is the average intensity of the window, and
Qn+1)2m+1) )

is the standard variance of the image in matching window. c;;
ranges from —1 to 1, indicating the similarity from smallest
to largest. Once again, as mentioned in Section 3.1.3.(B), the
optical flows keep the corresponding relation for ith feature
point in Pf, and jth feature point in P! . For simplifying
description, we just say the feature points in }N’fn are matched
to those in P!, one to one, starting from 1 to Kj,. Therefore,
cij can be rewritten as c;. The evaluation function for affine
model A is defined by

Kin
Eo=> ci (15)
i=1

wheres =1,2,...,L.
(3) The affine model A, € A, whose evaluation value
is maximal, that is, E, = max(E1, Es,...,Ep), is selected as
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the best affine model in our algorithm. A, is used for image
change detection below.

In above framework, there are two affine transforma-
tion estimations. The first one is to choose L sets of
affine transformations by employing the inliers detected in
Section 3.1.3.(B). The second one is to estimate the best
affine transformation by calculating the matching measure
according to (15). In this framework, the influence of outliers
can be determined as follows [25]. The probability p that
at least one data set of three points belongs to the inliers, is
derived from,

L
plegl) =1-{1-[1-2ql’}, (16)
where £(<0.5) is the ratio of moving target regions to the
whole image, g is the probability that the corresponding
points are inliers. The probability that this algorithm picks
up the outliers is 1 — p. For example, p =~ 0.993 when
e =039 =07 and L = 40, then 1 — p = 0.007. That
is, the probability that the outliers will influence the affine
transformation estimation is very low, if the moving targets
constitute a small area (i.e., less than 50%). In airborne video
camera, this requirement can be easily satisfied.

(D) Image Changes Detection. Here, in airborne imagery, the
image changes mean changes caused by the moving targets.
We call image changes motion images. The previous image is
transformed by the best affine model A;, and subtract from
the current image. That is, the frame difference is generated
as follows:

L = |I' = Ay x I' (17)

where I' and I' is previous image and current image,
respectively. Figure 8(d) shows the frame difference image
generated by (17) from two input images in Figures 6(a) and

6(b).

3.2. Dynamic Gabor Filter

3.2.1. Problems of the Thresholding Algorithms. To detect the
targets, the motion image needs to be binarized. Figure 8
shows the binarization results for the frame difference image
in Figure 6(d) by employing three binarization algorithms.
Figures 8(a) and 8(b) show the results for a fixed threshold
at 10 and 30, respectively. Figure 8(c) shows the output
of the adaptive thresholding algorithm based on mean C,
where the window size is 5 X 5 and the constant C is set
at 5.0. Figure 8(d) shows the output of Gaussian adaptive
thresholding algorithm, where the window size is 5 X 5
and the constant C is set at 10.0. From these binary
images, it is difficult to detect targets. Although by applying
some morphological operations such as dilation and erosion
techniques, it is possible to detect targets from some frame
difference images. However for video sequence processing,
this method is not stable. To solve this problem, we need
some technique to enhance the frame difference image.
Image enhancement is the improvement of digital image
quality (e.g., for visual inspection or for machine analysis),
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(a)

(c)

(d)

F1GURE 8: Binary images generated by applying different thresholding algorithms to frame difference image in Figure 6(d); (a) Fixed threshold
= 10; (b) Fixed threshold = 30; (c) Adaptive thresholding by using mean-C with a 5 X 5 window and C is set at 5.0; (d) Gaussian adaptive

thresholding with a 5 x 5 window and C is set at 10.0.

without knowledge about the source of degradation. Many
different, often elementary and heuristic methods are used
to improve images in some sense. A literature survey is given
n [26]. Advanced image enhancement algorithms employ
spatial filter, neural network, cellular neural network, and
fuzzy filter. However, these methods are computationally
heavy. They are not suitable for real-time target detection.
In our algorithm, we employ dynamic Gabor filter.

3.2.2. Dynamic Gabor Filter. Gabor function has been rec-
ognized as a very useful tool in computer vision and image
processing, especially for texture analysis, due to its optimal
localization properties in both spatial and frequency domain.
There are many publications on its applications since Gabor
proposed the 1D Gabor function [27]. The family of 2D
Gabor filters was originally presented by Daugman [28]
as a framework for understanding the orientation-selective
and spatial-frequency-selective receptive field properties of
neurons in the brain’s visual cortex, and then was further
mathematically elaborated [29]. The 2D Gabor function is
a harmonic oscillator, composed of a sinusoidal plane wave
of a particular frequency and orientation, within a Gaus-
sian envelope. Gabor wavelets are hierarchically arranged,
Gaussian-modulated sinusoids. The Gabor-wavelet trans-
form of a two-dimensional visual field generates a four-

dimensional field: two of the dimensions are spatial, the
other two represent spatial frequency and orientation. A
Gabor wavelet is defined as

[

o2

2

‘//w(z) _ e—nkwuzxuzuz/zaz [eikﬂ,vz _ 6—02/2], (18)
where z = (x, y) is the point with the horizontal coordinate x
and the vertical coordinate y. The parameters y and v define
the orientation and scale of the Gabor kernel, || - || denotes the
norm operator, and o is related to the standard derivation of
the Gaussian window in the kernel and determines the ratio
of the Gaussian window width to the wavelength. The wave
vector k,, , is defined as follows

ky,v = kvei%, (19)

where k, = kmao/f” and ¢, = mu/8, kmax the maximum
frequency, and f” is the spatial frequency between kernels in
frequency domain.

The Gabor kernels in (18) are all self-similar since they
can be generated from one kernel (a mother wavelet) by
dilation and rotation via the wave vector k. Each kernel is a
product of a Gaussian envelope and a complex plane wave.
The first term e™«? in the square bracket in (18) controls
the oscillatory part of the kernel and the second term e~7"/2
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(a)
()
(e)
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FIGURE 9: Gabor kernels and Gabor filter responses. (a) Input image; (b) 4 Gabor kernels with v = 3 and ¢ = 27; (¢), (d), (e), and (f) Gabor
filter response with a Gabor kernel at orientation y = 0, /4, 7/2, and 37/4, respectively.

compensates for the DC value, thus making the kernel DC-
free, that is, the integral [ y,,(z)d*z vanishes. Therefore, it is
not necessary to consider the DC effect, when the parameter
o is large enough.

The Gabor filtering of an image I is the convolution of
the image I with a Gabor kernel as defined by (18). The
convolution image is defined as

Op.,v(z) =1I(z) * Wy,v(z)~ (20)

The response O,,(z) to the Gabor kernel v,,(z) is a
complex function with a real part Re{O,,,(z)} and an imagi-
nary part Im{O,,,(2z)}. The magnitude response [|O,,,(2)ll is

expressed as

2 2

|0us(2)]| = \/Re {0} +mio,}. @
Figure 9(a) shows a synthesized binary image.
Figure 9(b) shows four Gabor kernels with v = 3 and ¢ = 27,
at orientation y = 0, /4, n/2, and 3m/4, respectively. The
Gabor filter responses are shown in (c), (d), (e), and (f),
corresponding to the Gabor kernel at orientation 0, 7/4, /2,
and 37/4, accordingly. Here, the interesting result is shown
in (c), where the disconnected blobs in (a) are merged into
one blob after Gabor filtering. The similar phenomenon
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(a) (b)

FiGurg 10: (a) Dynamic Gabor kernel determined by the optical
flow in Figure 6(c); (b) Gabor filter response for the frame
difference image in Figure 6(d).

happens in target detection by frame differencing technique.
If the interval between two consecutive frames is too large
or if the targets move too fast, the moving targets appear
as separate blobs in frame difference image. By carefully
choosing the orientation of Gabor filter, separated blobs can
be detected as a connected blob from Gabor response. Our
algorithm employs this experiment result.

In our algorithm, we fix the following parameters, kmax =
n/2, 0 = 2m, f = /2, and v = 3. The orientation y is
dynamically changed according to optical flows from inliers.
We call it dynamic Gabor filter. The orientation u is defined
as

Kin

u= > 0(F"), (22)

i j—)

where O(F!") is the orientation of the optical flow F/'* € F!!,
and is given by

-, y?' — y?
G(Ff t) = arctan ~—=. (23)

i i

Figure 10(a) shows the dynamic Gabor kernel deter-
mined by the optical flows in F.! as shown in Figure 6(c).
Figure 10(b) shows the Gabor filter response by performing
convolution for the frame difference image in Figure 6(d)
and the dynamic Gabor kernel in Figure 10(a).

3.3. Specular Highlights Detection. As can be seen in
Figure 10(b), the image changes appear as high intensity in
the dynamic Gabor filter response. They look like spotlights.
The center of the spotlight is brightest, and the brightness on
the circular points around the center becomes dim gradually
when the circle becomes larger. We call these high intensity
specular highlights. Therefore, the target detection problem
becomes the specular highlight detection problem. Because
the intensity of highlights changes for the moving targets
(some specular highlights are dimmer than others), the
thresholding algorithms cannot detect all specular highlights
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FIGURE 11: Specular highlight detector.

successfully. Here, we employ the specular highlight detector
as shown in Figure 11. The C; is the pixel under examination.
This detector compares the intensity at Cy and the intensity
of pixels on the circular circles Cy, C,, and Cs, with radius Ry,
R,, and Rs, respectively. C;, C,, and Cs are sampled at 7/6
interval, hence the detector will only compare the intensity
at Cy and 12 sample points, Cj 1, Cj,...,Cj 12, from each
circular circle. Let G(z) denote the dynamic Gabor filter
response at z, the discrimination of specular highlights is as
follows

a specular highlight,

iff G(Co) = G(C14) and G(Cj) = G(Cjr),
C() is
not a specular highlight,

otherwise,
(24)

where j = 1,2,and i = 1,2,...,12.

The specular highlight points detected from the dynamic
Gabor filter response in Figure 10(b) are shown in
Figure 12(a) by red dots. Note that red dots form several red
regions in Figure 12(a). This is caused by the loose condition,
“if and only if G(Cy) = G(Cy;) and G(C;;) = G(Cj11,) in
(24). The loose condition is chosen in attempt not to miss the
possible specular highlights. These specular highlight points
are denoted by ph = {pi‘, s p,h<h }, where Kj, is the number of
specular highlight points. In our algorithm, it is convenient
to use the center and radius to represent the location and
size of the specular highlights. To obtain the location and
the size of specular highlights, { p{’,. c plhgl} are clustered. Let
H;(c, r) denote ith specular highlight, where r is the radius, ¢
the center, and ¢ contains x-coordinate, x., and y-coordinate,
Ve

The specular highlights generated above need to be
clustered to determine the precise center of the specular
spot. Among the clustering algorithms, k-NN (k nearest
neighbor) algorithm needs a user predetermined constant
k the number of the clusters [30]. It is not applicable to
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(b)

FIGURE 12: (a) Specular highlight points; (b) Specular highlight clustering.

our problem. On the other hand, the mean shift algorithm
is a nonparametric clustering technique which does not
require prior knowledge of the number of clusters, and
does not constrain the shape of the clusters [31]. However,
the computation is complicated. Similarly, (support vector
machine) SVM is another powerful clustering algorithm
[32], but it is computationally heavy. In this work, H;(c,r)
is obtained according to the following algorithm.

Specular Highlight Point Clustering Algorithm. The summary
of this algorithm is as follows. For a specular highlight
point, create a new cluster and consider this point is the
center of the newly created cluster. Then, check whether
there are other specular highlight points that are close to
the current one, according to the predetermined threshold
Ty. If yes, those points are also added to the newly created
cluster, and the center of the cluster is updated after adding
a specular highlight point to the newly created cluster. This
process is repeated for all specular highlight points. After
this processing, it forms a cluster. Then it chooses the next
specular highlight point that is not clustered so far, and
repeats the above processing. This processing is repeated
until all specular highlight points are clustered. The details
are given below.

(1) For p;’ € P it is considered as the center of Hi(c,r)
and it is removed from P", added to H;(c, r), and set
c = p? and M; = 1, where M; is the number of the
specular highlight points in H;(c, r), and both i and j
begin from 0, and H;(c, r) is an empty set initially.

(2) For p,i’ e Ph(k # ), if IIPZ —cll < Ty, pZ is removed
from P, added to Hi(c,r), and update M; and the
center ¢ according to

1 &
MiZM,'-I-l, Xe = Mimzlxm,
(25)
1 &
Ve = M mzzll YVm>

where Tj is a predetermined threshold value,
(Xm> ym) € Hi(c,r), (x¢, ye) is the coordinates of the

center ¢, and || pZ — ¢|| means the Fuclidean distance
between the specular highlight point, p}, and the
center c.

(3) Repeat step (2) for all specular highlight points in P".
When this step finishes, H;(c, r) is obtained, and the
radius r is given by

) (26)

r= mapr,}j -

where k = 1,2,..., M;,

(4) Update i, and repeat steps (1) to (3) for the left
specular highlight points in P to search for the next
cluster.

(5) Repeat steps (1) to (4) until P becomes an empty set.

Let Hs = {H,(c,1),Hy(c,1),...,Hks(c, )} represent the
detected specular highlights, where K is the number of
specular highlights. Figure 12(b) shows the clustering result
for the specular highlight points in Figure 12(a), where each
cluster means a specular highlight. The specular highlights
are numbered from 0 to 4, and the centers are marked by a

«_»

small “x”.

3.4. Moving Target Localization

3.4.1. Outlier Clustering. Because outliers are caused by the
moving targets, they can be used for moving target localiza-
tion. Here we employ the observation result that if outliers
belong to the same moving targets, they are located closely,
in optical flow field. Therefore, the outliers are clustered
first. The clustering algorithm for outliers is the same one
as described in Section 3.3, but with different clustering
threshold T,. Let Coue = {Ci(c,7),Calc,1),...,Cx,(c,7)}
represent the outliers clusters, where K, is the number of
the clusters. The outlier clustering result for the outliers
detected from input images in Figures 6(a) and 6(b) is shown
in Figure 6(c) by the purple circles, and the center of each
cluster is marked by small “+” in purple. If all outliers are
separated correctly, we can say that each cluster corresponds
to one or multiple targets. However, this assumption is not
always correct. Some moving target may not generate outliers
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because outlier separation algorithm may fail or because
the displacement of moving target is too small. This case is
indicated in Figure 6(c) by the dotted circle in red, where
a moving target exists. In the following, we combine both
outlier clustering result and specular highlight detection
result for moving target localization.

3.4.2. Moving Target Localization Based on Outlier Clustering
and Specular Highlights. The discrimination rule for moving
target localization based on outlier clustering and specular
highlight detection is as follows. For a specular highlight
H;i(c,r) € Hg, if its center lies in a outlier cluster Cx(c,r) €
Cout (i = 1,....,Ks,k = 1,...,K,), it is considered as a
target. If its center does not lie in any outlier cluster, the
dynamic Gaussian detector is employed, which is described
in Section 3.4.3. According to this rule, the specular highlight
numbers 0, 1, 3, and 4 in Figure 12(b) are identified as
moving targets, and are marked by red circles in Figure 13.
The localized targets are represented by its center and radius
which is set at T, (the thresholding for outliers clustering).

3.4.3. Moving Target Localization Based on Dynamic Gaussian
Detector. As shown in Figure 12(b), a specular highlight
is similar to a two-dimensional (2-D) Gaussian distribu-
tion. The moving target localization method described in
Section 3.4.2 may fail if the feature point detector, described
in Section 3.1.1, does not detect the enough outliers belong-
ing to a moving target. To make the moving target local-
ization robust, we further employ 2-D Gaussian function
as a target detector to conduct the secondary moving
target localization. (Correspondingly, the method used in
Section 3.4.2 is called primary moving target localization.) A
general 2-D Gaussian function is given by

G(x,y) = Ae—[u(x—xo)2+b(x—x0)()/—)/0)JFC()’—)’O)Z]) (27)

where

(c059>2 (sin6>2
a= - ,
Ox oy

sin20  sin260
b = - ) 2 (28)
02 oy

(sin0>2 (cos@>2

c= +

Oy oy

and the coefficient A is the amplitude, (xo, yo) is the center,
0x, 0y are the x and y spreads of the Gaussian function, and
0 is the orientation. Figure 14 shows 2D Gaussian function
distribution at orientation 6 = 0, /6, n/3, n/2, 27/3, 51/6,
respectively.

In our algorithm, the detector compares the specular
highlight with 2D Gaussian kernel generated according to
(27) and (28), and calculates the similarity. The orientation
0 of 2-D Gaussian function is determined by the orientation
of the specular highlight. Here we call it dynamic Gaussian
detector. This detector algorithm is as follows.
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F1GURE 13: Target localization result.

A

FIGURE 14: Gaussian kernel at orientation 8 = 0, n/6, n/3, n/2,
27/3, and 571/6, respectively.

Target Localization Algorithm based on Dynamic Gaussian
Detector. (1) For Hi(c,r) € Hg which does not lie in any
outlier cluster in Coyut, extract W X W image Iy centered
at ¢ for this specular highlight, where W is determined by r,
and currently is setat 2 X 1.2 X r + 1.

(2) L is binarized by fixed threshold, 0.7vpay, where
Vmax 1s the maximal intensity in Igp.

(3) The first principal axis of the binarized image Ly is
calculated according to

a= 1 arctan A, (29)
2 Mo — Moy
where
wow
Mpq = Z Z L (x’ )/) (x - xc)P (}/ - }’c)q
x=1y=1 (30)

(prg=1,1; 2,05 0,2)

is the moment around the centroid (x., y.). x. and y. are
given by
mio Mo

Xe = —> = > (31)
‘ Mmoo Je Mmoo

where

w w
myg = > > L (6 )2 yT (p',q" = 0,05 1,0; 0,12).
x=1y=1

(32)

Note that m,, and m, are the moment of order (p + q)
for the image Iy, around the center ¢ and origin, respec-
tively. Equations (30) and (31) are the digital expression
of the moment. Generally, for a 2D continuous function
f(x,y) the moment (sometimes called “raw moment”) of
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TaBLE 2: Correct detection rate, miss detection rate, and hit rate for the 4 datasets.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
Total number of targets 381 266 287 297
Detected targets 326 221 249 270
Missed targets 55 45 38 27
Correct detection rate 85.6% 83.1% 86.8% 90.90%
Miss detection rate 14.4% 16.9% 13.2% 9.10%
Hit rate 85.9% 81.3% 70.7% 76.60%

D

(a) (b) (c)

Ficure 15: (a) A specular highlight; (b) Principal axis for the
specular highlight in (a); (c) Generated Gaussian pattern.

order (p + q) is defined by myy = [[Z xPy1f(x, y)dxdy,
where p,q =0,1,2,....

(4) a is used as the orientation to generate Gaussian
kernel I, according to (27), where the Gaussian pattern size
is W.

(5) The similarity between Iy, and Ig is calculated
according to (12) [33], which is rewritten as

1w
(33)
k

w-1
=3
k=0

Z_l [Isub(k) l) - jsub] X [IG(k) l) - TG]
o W2yo (L) X a(I)

If s =Tg, Hi(c, r) is considered as a target, where Tg is the
predetermined threshold.

(6) Repeat steps (1) to (5) for all specular highlights in
Hs, which do not lie in any cluster in Coys.

Figure 15(a) shows the image Iy, for the specular
highlight number 2 in Figure 12(b), which does not lie in
any outlier cluster in Figure 6(c). Figure 15(b) shows the
binarized specular highlight and the first principal axis by
a long black line segment, and the second principal axis by
short, and (c) shows the generated Gaussian kernel according
to (27).

4. Experiment Results

The entire algorithm described in Section 3 is implemented
by using C++ and OpenCV on windows platform. The input
image size is 320 X 256, A is set at 2, the outlier clustering
threshold T, at H/6 (H is the image height), the specular
highlight point clustering threshold T}, at 2T,/3, the similar-
ity threshold Tg at 0.93, and A, oy, and o, are set at 1, 25.0,
and 15.0, respectively. The IR video data from the VIVID
datasets provided by the Air Force Research Laboratory is
used. Figures 16, 17, and 18 show some experiment results.
Figures 16(a) and 16(b) show two consecutive input images,
(c) shows the detected optical flows (marked by red line

segments) and outlier clustering (marked by purple circles),
(d) the generated frame difference, (e) the detected specular
highlights, and (f) the detected moving targets marked by red
circles.

Figure 17 shows the target detection results at frame
29, 32, 37, 69, 78, and 82, for an input image sequence.
Green circles mark the ground truth target positions, labeled
manually, red circles means targets detected based on outlier
clustering and specular highlights, and purple circles marks
the output of the dynamic Gaussian detector. In frame 32,
the target number 3 in (a) is missed. In frame 37, the target
number 3 in (a) is also missed, and the dynamic Gaussian
detector mistakenly detected a specular highlight (marked
by purple circle) caused by tree leaves. In frame 69, the
system also mistakenly detected a specular highlight caused
by tree leaves. However, the system detected a moving target
(number 2 in (d)) that was not marked by the human
operator. In Frame 78, the system also detected a moving
target (number 2 in (e)) which is the ground truth target
but is not marked by the human operator. This is a human
operator’s mistake. In frame 81, the system mistakenly
detected a target (number 0 in (f)) and lost one target.

Figure 18 shows target detection results at frame 44,
50, 53, 73, 81, and 84 for another input image sequence.
Green circles mark the ground truth target positions, labeled
manually, red circles means targets detected based on outlier
clustering and specular highlights, and purple circles marks
the output of the dynamic Gaussian detector. In frame 44, the
dynamic Gaussian detector identified two targets, number 2
and 3, in (a). However, the target number 3 is a false target.
In frame 53, the target in the middle was detected as two sep-
arated targets. In frame 81 and 84, the system lost one target.

5. Performance Analysis

To evaluate the performance of this algorithm, we selected
four image sequences with the significant background as
the test data. Each sequence contains 100 frames, and each
frame contains two to four moving targets. The ground truth
targets are labelled manually. The total number of targets in
these 4 datasets is 1231. We examined the correct detection
rate, hit rate, and processing time. The hit rate is defined
as the ratio for the intersected area of detected target and
ground truth target and the area of the ground truth target.
The experiments are conducted on a Windows Vista machine
mounted with a 2.33 GHz Intel Core 2 CPU and 2 GB main
memory. The total average correct detection rate is 86.6%,
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(e)
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FI1GURE 16: (a) and (b) Two input images; (c) Detected optical flows (marked by red line segments) and outliers clustering (marked by purple
circles); (d) Frame difference; (e) Detected specular highlights; (f) Detected moving targets marked by red circles.

and hit rate is 78.6%, respectively. The detail detection
results are shown in Table 2. The average processing time
is 581 ms/frame. The detailed processing time are shown in
Figure 19.

6. Conclusions and Future Works

This paper described a method for multiple moving target
detection from airborne IR imagery. It consists of motion
compensation, dynamic Gabor filtering, specular highlights
detection, and target localization. In motion compensation,

the optical flows for two consecutive images are detected
from the feature points. The feature points are separated into
inliers and outliers, accordingly, the optical flows are also
separated into two classes, optical flows belonging to inliers
and optical flows belonging to outliers. The optical flows
belonging to inliers are used to calculate the global motion
model parameters. Here, the Affine model is employed. After
the motion model estimation, the frame difference image is
generated. Because of difficulties to detect the targets from
the frame difference image, we introduce the dynamic Gabor
filter. In this step, we use the orientation of the optical
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(e) Frame 78

(f) Frame 82

F1GURE 17: Target detection results in frame 29, 32, 37, 69, 78, and 82. Green circles mark the ground truth target positions, labeled manually.
Red circles means targets detected based on outliers clustering and specular highlights. Purple circles mark the output of the dynamic

Gaussian detector.

flows belonging to inliers to control the orientation of the
Gabor filter. We call it dynamic Gabor filter. This is the first
contribution of this paper. After the dynamic Gabor filtering,
the image changes appear as high intensity in dynamic
Gabor filter response. We call these high intensity specular
highlights. In specular highlight detection, we use a simple
but efficient detector to extract the specular highlight points.
These specular highlight points are clustered to indentify
the specular highlight center and its size. In the last step,
it employs the outlier clustering and specular highlights to

localize the targets. If a specular highlight lies in an outlier
cluster, it is considered as a target. If a specular highlight
does not lie in any outlier cluster, it employs the Gaussian
detector to identify the target. The orientation of the specular
highlight is used to control the orientation of Gaussian
kernel. We call this detector dynamic Gaussian detector. This
is the second contribution of this paper.

This algorithm was implemented in C++ and OpenCV.
We tested the algorithm by using the airborne IR videos
from AFRL VIVID datasets. The correct detection rate is
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(¢) Frame 53
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(b) Frame 50

(d) Frame 73

(e) Frame 81

(f) Frame 84

F1GURE 18: Target detection results in frame 44, 50, 53, 73, 81, and 84. Green circles mark the ground truth target positions, labeled manually.
Red circles means targets detected based on outliers clustering and specular highlights. Purple circles mark the output of the dynamic

Gaussian detector.

86.6%, and the hit rate for the correct detection is 78.6%.
The processing rate is 581 ms/frame, that is, approximate
2 frames per second. This speed meets the requirement
for many real-time target detection and tracking systems.
As seen in Figures 17 and 18, in some cases the system
fail to detect the targets or it mistakenly detects the image
changes caused by the background significant features such
as tree leaves or building corners. This can be improved by
two efforts. The first one is to improve the inliers/outliers
separation algorithm so that it maximally recognizes the

feature points belonging to the background as the inliers. The
second effort is to improve the dynamic Gaussian detector.
Currently, the threshold for the dynamic Gaussian detector
is set at a high value. This rejects some specular highlights
to be recognized as targets. However, if this threshold is set
at a low value, it will bring about false detection. And o,
and o0, in dynamic Gaussian detector are fixed. These can
be dynamically changed according to the detection results
of the dynamic Gabor filter. As shown in Section 3.1.1, six
feature point detectors have been evaluated by employing
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FIGURE 19: Processing time for multiple moving target detection.

the synthesized images and IR images. The Shi-Tomasi’s
method shows the best performance experimentally. The
detailed performance analysis of these feature point detectors
needs the theoretical investigation of these six detectors.
The theoretical comparison of them will be detailed in our
next paper. As shown in Section 3.1.3, this paper evaluated
three transformation models between image frames. The
experiment result shows the affine transformation model has
best performance. This is because that, for the airborne-
based IR image, the camera is far away from the object and
the panning and tiling are not distinguished. The further
theoretical study of these transformation models is our
future work. Furthermore, since the target detection is a part
of target tracking system, we will apply this algorithm to the
target tracking system. This is also our future works.
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