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Hidden Markov Models have been employed in many vision applications to model and identify events of interest. Their use
is common in applications where HMMs are used to classify previously divided segments of video as one of a set of events
being modelled. HMMs can also simultaneously segment and classify events within a continuous video, without the need for
a separate first step to identify the start and end of the events. This is significantly less common. This paper is an exploration of the
development of HMM frameworks for such complete event recognition. A review of how HMMs have been applied to both event
classification and recognition is presented. The discussion evolves in parallel with an example of a real application in psychology for
illustration. The complete videos depict sessions where candidates perform a number of different exercises under the instruction
of a psychologist. The goal is to isolate portions of video containing just one of these exercises. The exercise involves rotating the
head of a kneeling subject to the left, back to centre, to the right, to the centre, and repeating a number of times. By designing a
HMM system to automatically isolate portions of video containing this exercise, issues such as the strategy of choice of event to
be modelled, feature design and selection, as well as training and testing are reviewed. Thus this paper shows how HMMs can be
more extensively applied in the domain of event recognition in video.
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1. HMM:s in Event Recognition

Hidden Markov Models (HMMs) offer a powerful frame-
work for temporal modelling of features extracted from time
varying signals. Over 30 years of active research in speech
recognition has yielded a core set of tools for feature extrac-
tion, training, and recognition, that are well established as
the cornerstone of successful speech recognition systems.
HMMs have been adopted by the vision community for
event recognition in a more cautious manner. Their use
gradually moved from augmentation of speech recognition
systems with visual information [1], to recognition tasks in
video where models are trained on video features alone [2].
This increasing complexity of tasks has echoed the history
of speech recognisers in their evolution from isolated word
tasks to unconstrained continuous speech recognition.

The use of HMMs in video event recognition takes two
approaches: (1) to classify presegmented portions of video
(e.g., by shot cut detection), as one of a defined number
of classes, (2) to simultaneously, jointly parse and identify
events within a continuous video stream. For clarity, this
paper will use the term Event Classification to describe

situations where events of interest are already isolated in time
and the task is to identify them as one of a fixed set. Hence,
this includes the two pass approach where one algorithm is
employed to parse the video and HMMs classify the seg-
ments. The term Event Recognition will refer to cases where
the event is parsed and classified jointly. This important
distinction is rarely made in the literature and is central
to the theme of the current work. The difference between
these two tasks is illustrated by considering the analogy
of performing isolated word recognition with HMMs and
employing HMMs in continuous speech recognition.

Much of the existing work in HMM-based modelling of
visual events involves human motion: a user’s hands making
a specific gesture in sign language; a cricket bat hit; a goal
in a soccer match. As will be discussed in later sections,
HMMs have been successfully applied in a small number
of event recognition systems, in well defined domains,
where human motion is very constrained. Whenever the
human motion in the events of interest is more natural
and unconstrained, the use of HMMs is typically confined
to simply classifying presegmented portions of video. This
seeming reluctance to use HMMs for recognition means



many potentially suitable applications miss out on the full
power of the HMM framework. A greater understanding of
the potential of the HMM can extend their application and
hence avoid more complex multipass strategies commonly
used for event recognition.

Thus, the purpose of this paper is to explore issues
involved in building a HMM-based visual event recognition
system. The intended contribution is not to further the
already extensive theory of HMMs, but rather to take a
fresh look at methods already available to visual event
recognition and demystify, even encourage, their application.
Previous systems using both event classification and event
recognition are discussed, highlighting the practical aspects.
When embarking on HMM parsing system design in video,
it can be difficult to find practical advice. This paper uses
an example from a psychology study to give such advice.
The style of the paper departs from the classic structure
whereby a complete literature review is presented up front,
followed by current work. Previous work is instead discussed
for each aspect of HMM system design under consideration,
immediately followed by how that aspect is considered for
the present HMM system. The intention is to make the
relevance more immediate for the reader. The aspects of
a HMM system considered are: choosing events to model;
feature set and HMM topology; and training and evaluation
of the system.

A basic familiarity with the use of HMMs and associated
terminology is assumed [3]. Detailed work on HMM-based
event recognition in the domain of video for psychological
assessment of children is presented. This system aims to
exploit the successful approach of speech recognition systems
in building recognisers. It is considered that the use of HMMs
as the mainstay in event recognition in video depends on a
number of issues: a feature set that accurately captures the
temporal evolution of the event of interest; availability of
suitable training data; an appreciation of how and whether
the state occupancy corresponds to tangible parts of the
event being modelled; and how to constrain the task in
terms of an event grammar. Section 2 discusses matching
HMM:s with events in a new framework and introduces the
psychology videos used in the experiments reported in the
paper. Section 3 considers the range of visual features used in
HMM recognition systems and presents the feature set used
to detect rotation events in the current work. Section 4 then
focuses on the training and evaluation of HMM recognition
systems, including choice of model topology. Results for the
psychology video event recognition system are presented in
Section 5.

2. Choosing the Event and HMM Framework

The first step in developing a HMM framework is to identify
the event to be modelled. This requires careful consideration
of all the material that will be encountered in the video
sequences. The equivalent in a speech recognition system is
identifying whether models are word or phoneme level, and
what rules govern how one word/phoneme follows the next.
Visual events that evolve in a predictable manner over time
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and lend themselves to a Markovian model can potentially
fully exploit a HMM framework. Unsurprisingly, the earliest
use of HMMs for event classification involving human
motion in video was in the sports domain [4] because, much
like speech, many sports have well established rules and
are highly structured. This inherent structure is present at
two levels. The first is within a single event of interest, for
example, the typical motion of the player during a serve in
tennis. It is also seen in the sequences of events, for example,
the serve-volley on grass tennis courts. This predictable
structure is well modelled by HMMs and the supporting
framework for Viterbi recognition. Borrowing from the
terminology of speech recognition, a lexicon and grammar
for specific sports such as tennis, basketball, snooker, and
cricket can be easily constructed. Ivanov and Bobick [5]
refer to this as the primitive components and structure of an
activity, respectively.

A wide range of visual sports events have been modelled
with HMMs to date. In one of the earliest attempts to classify
events involving body motion, Yamoto et al. [4] investigated
human action recognition using HMMs to avoid explicit
geometric modelling of the human body. HMMs were used
to classify tennis events from recorded footage into one of
6 tennis strokes. Petkovic et al. [6] use the same 6 events in
their work on tennis footage. The system presented by Kijak
et al. [7] takes the classification of events in tennis to a higher
temporal level using a hierarchical HMM approach. Four
distinct HMMs model the tennis units: missed first serve,
rally, replay, and break. The output of the Viterbi recogniser
is then used to infer structure at higher levels of point,
game, set, and match level. This represents a move towards
segmentation at a higher level. Kolonias [8] presents another
tennis highlight system which uses a hierarchical analysis of
points. A switching HMM approach is used to model first
serves, second serves, aces and rallys.

Other sports with events suited to HMM modelling
include baseball, soccer, and snooker [9-11]. Chang and
Gong [9] used HMMs to classify four types of baseball high-
lights: nice hits, nice catches, home runs, and plays within
the diamond. The system first segments a game video into
seven types of scene shots: pitch view, catch overview, catch
closeup, running overview, running closeup, audience view,
and touchbase closeup. Assfalg [10] attempted to classify
three soccer highlight events from video footage: penalties,
free kicks, and corners. In Rea [11], HMM shot classification
was performed on snooker footage. Four categories of events
were classified using HMMs: shot to nothing, break building,
conservative play, and snooker escape.

All these systems employ a HMM framework to classify
segments of video as belonging to one of a number of
possible categories of event. In all cases, the segmentation or
isolation of the portion of video under examination is either
assumed as given or incorporated as an independent prepro-
cessing stage in the overall system. Such an approach works
well in cases where the segmentation stage is inexpensive and
robust, for example, in snooker where the camera change is
a highly reliable boundary for an event. Unless events are
accurately delineated, HMM event classification will remain
prone to errors and is not as versatile as fully automated
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highlight extraction demands in reality. Event recognition
overcomes this problem.

Event recognition in video using HMMs is not new.
The American sign language recognition system presented
by Starner [12] fully exploits the HMM framework in a
manner most similar to their use in speech recognisers. A
40 word lexicon was used with a gesture corresponding to
a word. Each word was modelled with a HMM. HMMs have
also been successfully employed in handwriting recognition
[13] and lip-reading systems [14]. All these tasks lend
themselves well to HMM-based recognition. They have a
striking similarity to the speech recognition problem: there
is a finite vocabulary, which despite inter- and intra-person
variability, is reproducible; how events follow one another is
strongly predictable (i.e., the task has a grammar); each event
has an evolving temporal structure well modelled by left-to-
right HMMs. Such tasks can fully exploit the existing elegant
mathematical framework built around HMMs. The path to
take in employing HMMs in these problems is clearer—it is
not unchartered territory.

The use of HMMs in event recognition where the events
involve visual material with less structure is less common.
Morguet and Lang [15] present a system for spotting 12 hand
gestures in a continuous video stream. The problem is similar
to keyword spotting in the audio domain. Boreczky and
Wilcox [16] presented a system for video segmentation which
concentrated on the task of detecting shots, shot boundaries,
and camera movements within shots. By using a HMM
with 7 states to model shots, pan and zoom, and transition
segments between shots (i.e., cuts, fades, and dissolves), a
standard Viterbi algorithm could yield a segmentation on
unseen video. Recall of 90-97% was achieved with precision
of 79-86%. The choice of event here is interesting as it is
the transitions between the events being sought in the video
stream that are modelled with the HMM. Cuntoor et al. [17]
present a system that jointly segments and classifies events
but the number of events in an unseen trajectory needs to be
suitably controlled by a scale parameter. The current system,
as will be shown, needs no such constraints. Peursum [18]
uses the inference of missing data to segment higher level
activities into lower level actions. The activities modelled are
temporally highly structured. Ivanov and Bobick [5] present
a visual event recognition system employing HMMs with
recognition at two levels. The first level is based on low level
features and then a stochastic context-free grammar is used
to parse candidate event sequences by exploiting a priori
knowledge of the domain. This work is the most similarly
motivated in literature to the current system, the essential
difference being that the current work uses context in parallel
at the Viterbi recognition stage in a manner most similar
to continuous speech recognition systems. This is discussed
more fully in Section 3.2.

Robertson [19] recently presented a system for recog-
nition of human behaviour in video systems where HMMs
are used at the highest level to model sequences of actions
to identify certain behaviours. Thus the HMM inputs and
outputs are distributions over action types rather than low
level visual features as in the systems considered previously.
This raises the question of whether HMMs are best exploited

as part of an overall event detection scheme or whether the
HMM itself is powerful enough to parse and classify events
in a single pass. Indeed, HMMs are used in human activity
recognition in [20, 21] as part of overall systems employing
Support Vector Machines (SVMs) and multilayer perceptron
network layers, respectively.

How the HMM is best used is dependent on how defined
the task is, availability of training data, and computational
considerations. The HMM framework can be the primary
tool for modelling visual events. An initial identification
of the structure and rules, if any, of the events allows the
definition of the lexicon and grammar for the framework.
This will help decide whether HMMs are required for each
event, for example, [6] or whether states within a HMM
model each event, for example, [16].

2.1. Rotation Events in Psychology Videos. For the example
application using video material from a psychology study,
the initial step thus was to choose the events to model
with HMMs. Some background to the project is necessary
at this point. The video material in this work is from a
scientific study of the retainment of primary reflexes from
infancy in dyslexic children [22]. The hypothesis is that
certain reflexes can be triggered and observed in young
dyslexic children [23-25]. Specific exercises are performed
in order to trigger a particular reflex. One hundred and fifty
children were recorded performing fourteen exercises at each
of three sessions, with a session taking at least half an hour to
complete. The video is then analysed by psychologists. The
event recognition system designed in this study is focused
on just one of these exercises: the Asymmetrical Tonic Neck
Reflex (ATNR) exercise. This involves getting the child on all
fours and rotating the head of the child to the left, back to
centre, to the right, to the centre, and repeating four times
as shown in Figure 1. The aim of this exercise is to look for
the primary infant reflex, which in this case is a bend at
the elbow of the child during head rotation. The extent of
this bend is hypothesised to be proportional to the severity
of the dyslexia present. The full outcome of this study in
terms of assessing this hypothesis is detailed by Doyle in
[26]. The work reported in this paper was concerned with
automatically identifying portions of video containing this
exercise. The remainder of the video can contain a variety of
material such as the child waiting for the exercise to begin,
the instructor explaining what will happen, preparing the
child for the exercise, or no activity at all.

Given that there is a large amount of video material
and that children are not always the most cooperative of
subjects, the ability to automatically isolate periods of video
containing head rotation in the child would significantly
ease the task of later assessing the children in this exercise.
This requirement directs the choice of event in this system.
The main event of interest is a rotation event. The simplest
parsing of the video would thus be as rotation or nonrotation
events. This would result in two models (System 1): R
to model rotation; R to model all other events, that
is, nonrotation. Another viewpoint suggests that there are
actually at least 3 events: child pose setup; pause between
head rotations; head rotations. This gives the three model
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FIGURrE 2: Example frames representing the three possible classes of event. Motion vectors have been superimposed. The first image shows
random motion of the head of the child up and down. The middle image shows a pause where there is little or no motion. The last image

shows a clockwise head rotation.

system (System 2) with HMMs C£ 4, £, and R. Example
frames are shown in Figure 2 where the first frame shows
an example of child pose setup, the middle frame shows a
pauses between head rotations, and the last frame shows a
head rotation.

The order of events in both Systems 1 and 2 is defined by
a task grammar. This task grammar is simple and represented
diagramatically in Figure 3. The philosophy is similar to that
of Ivanov and Bobick’s Stochastic Context-Free Grammar
[5]. In that system, each HMM models a primitive event.
In the recognition phase, each of the HMMs identify the
part of the trajectory of a structured event (comprised of
the primitives) that they best match. A parser then attempts
to find the most likely interpretation of the event set. In
the current work, the system exploits the use of a task
grammar and Viterbi recognition based on a token passing
paradigm [27]. This has the advantage of integrating both the
feature evolution and event evolution in a single recognition
phase.

It is important to pause here and emphasise again that
there is a difference between states in a HMM and the
task grammar governing the temporal order of events. This
would be familiar to those with a background in HMMs for
speech processing but is nevertheless an important distinc-
tion. Systems 1 and 2 are alternate grammars constraining

different ways of thinking about the whole experiment or the
whole temporal evolution of the data itself. Thus system 1
assumes that there are only 2 events following each other
throughout the experiment. System 2 assumes that there is
an additional event possibly occurring between the two main
rotation events. It is these “grammar” models that have the
potential to provide the implicit parsing of the data stream
into events. The boxes in Figure 3 are “events” not “states”
in the sense that we use for the parameterisation of a HMM.
The HMM itself is used to model the data stream represented
as a particular event. Thus while the R event is ongoing, the
temporal evolution of the feature vectors during the R event
is modelled by HMM-1 say, while the evolution of features
duringa C £ 4 event is modelled with HMM-2 say. It is inside
HMM-1 and HMM-2 that the specification of “the number
of states to use in the HMM?” arises. Thus HMM-1 may be a
4 state model say, while HMM-2 might be a 2-state model.
It is true that the task grammar is a Markov chain, and one
is tempted to say that the grammar is like a super-HMM
which then employs other HMMs (in the event boxes, R,
CP 34, etc.) to model the actual data stream. The grammar
is not “hidden” in the strict sense, as the evolution is defined
and the events which take place before other events are also
defined. Hence “super-HMM?” is better denoted as the “task
grammar’.
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FIGURE 3: Task grammar for identifying rotation in psychological
videos. Diagrams demonstrate the sequencing of events in two
possible systems. An event is modelled by a HMM. The diagram
on the left shows System 1. The diagram on the right shows System
2.

3. Feature Set and Model Topology

Having identified the event to be modelled by HMMs, the
model topology and feature set need to be considered. In
some cases the event may have a number of distinct stages,
for example, the server body motion in a tennis serve, that
can be captured by successive states of the HMM. If the
event is always moving forward, a left to right model may
be most suitable. In other tasks, the “meaning” of the states
may not be tangible and in this case choosing a model
with sufficient number of states is important. An ergodic
(fully connected) model can be more suited to modelling
unstructured events. This has implications for the amount
of training data required.

The feature set needs to capture the essence of the event.
Cepstrum is a widely employed feature in speech recogntion
[28], which captures the spectral trajectory of speech over
time and works well over a range of speech recognition tasks.
No equivalent to cepstrum has been found for video features.
Features are chosen and developed for each application
depending on the events being modelled. As noted by Wang
[29], visual features typically fall into four categories: colour,
texture, shape, and motion. The relative importance of these
categories changes according to the event being modelled,
for example, the green court in grass tennis, the camera
motion in cricket. Features are chosen depending on how
reproducible they are over different occurrences of the same
event. In speech recognition, whether unseen data will be
from different or the same speakers as the training set
influences the system, that is, whether the system needs to
be speaker independent. Similarly, features must capture this
aspect in video event recognition.

In Yamoto et al. [4], a feature vector of size 625 was
constructed from mesh features and then vector quantised
into one of 72 codewords. The mesh features divide a
frame into subareas and measure the ratio of black pixels
to the number of pixels in each subarea. Each HMM had
36 states. Petkovic et al. [6] designed a set of 16 features
to model the same events, which characterised the shape of
the segmented player binary representation. This represented
a move towards incorporating visual features to explicitly
model shape and motion. The features captured orientation,
eccentricity, upper body information, general shape, and
sticking out parts. Discrete 8-state HMMs were employed

with a codebook of 24 symbols. A subset of these 16
features were identified which yielded the best results where
training and test sequences contained data from different
players. A 20% improvement in classification over [4] was
achieved. This demonstrates how a better choice of feature
set and models to cover the events of interest are central to
classification success. The features in Kolonias’ system [8] are
events that are tracked such as the ball bouncing out of court,
player position, and shape.

Many systems combine local features derived from a
segmented image with global features of the frame. In Kijak
et al. [7], shot features are computed for each shot and
one keyframe is extracted from the beginning of the shot.
The features were shot length, camera motion amount,
colour descriptor, and relative player position. The baseball
highlight system of Chang and Gong [9] uses a field
descriptor, an edge descriptor, grass amount, sand amount,
camera motion, and player height. A probabilistic measure is
used for the segmentation. The four types of highlights then
comprise of defined sequences of scene shots. Each HMM has
between three and five states with the transitions controlled
by what order of scene shots constitute a particular highlight.
Assfalg’s soccer highlight system [10] used a discrete 3-state
left-to-right HMM model for each highlight type, noting
that the three states correspond well to the evolution of the
highlights in terms of characteristic content. The features
used were a framing term (whether very long shot, long
shot, or medium long shot); pan and tilt quantised in 5
and 2 levels. Three extra features to reflect player position
were also investigated. In Rea’s snooker system [11], the
relative position and temporal behaviour of the white ball
was considered on the snooker table over the duration of a
clip. A colour-based particle filter was employed to robustly
track the snooker balls.

Starner [12] used 16 features output from a second
moment analysis of segmented hand blobs. Hand occlusions
were dealt with by repeating the same features for both
hands. A 4-state HMM topology with one skip transition
was found to be appropriate. More recent visual recognition
systems for sign language [30, 31] incorporate geometric and
optical flow features and fully exploit the grammars for the
respective sign languages being modelled. The recognition
rates for such systems tend to be in the high nineties.
Morguet and Lang [15] employed 25-state semicontinuous
HMMs to model the hand gestures with features based on
Hu moments. Boreczky and Wilcox [16] used a standard
histogram distance, an audio distance measure, and a
motion estimate. Leahne et al. [32] employ features at the
resolution of shots where each shot feature vector contains
% speech, % music,% silence, % quiet music, % other audio,
% static-camera frames per shot, % nonstatic-camera frames
per shot, motion intensity, and shot length. The features
were used to classify movie video into dialogues, action
sequences, and montages.

3.1. Rotation Features. The feature set for the current
application needed to reliably represent head rotation events
and distinguish them from other events in the video. The
first step was to isolate the child in each frame. Head and



arm localisation was performed using skin detection as all
the children wore short sleeved tops. The Viterbi algorithm
was then used to continuously track the child’s arms, once
located, to allow the child to be identified within each
frame. Full details of this process are available in [33]. The
features were local and related to the segmented object
of interest (the child), similar to many of the approaches
discussed in the preceding section. Intuitively, the features
needed to capture the motion of the head of the child,
distinguishing rotational movements. A block-based multi-
resolution motion estimation scheme [34] was used and
the motion vectors for each frame were calculated for each
exercise sequence. The blocksize was 9 X 9. Four levels of
resolution were used with 10 iterations, a displaced frame
difference threshold of 1.0, and 5 iterations of smoothing.

3.1.1. Rotation Centre Stability. The first feature was chosen
to capture the stability of the head. All perpendiculars to
the rotational motion vectors will intersect the centre of the
rotating head. Nonrotational motion vectors should rarely
cross the centre of rotation. Plotting the perpendicular lines
to the motion vectors in an accumulator array allows an
approximate centre of rotation to be found. This is similar
to the straight line analysis of Wong et al. for fast rotation
centre identification [35]. Using only motion vectors within
+15 pixels to the left and right of the child’s arms reduces
the vectors to those relevant to the child. During rotational
events, accumulator array maxima were stable. They were
found to be extremely unstable during nonrotational events.
Measuring the euclidean distance for accumulator maxima
for consecutive frames, Agist, was found to broadly give low
values during rotation and higher values during nonrotation.
This can be seen in Figure 6d showing the evolution of
this feature for a sample video. Errors occurred in this
observation during low motion events where there were few,
if any, contributory motion vectors, causing the centre of
rotation to be stable in the absence of rotation. Hence the
accumulator array maxima monitoring was insufficient on
its own to identify rotational events but provides useful cues.

3.1.2. Curl Related Features. When observing a rotational
motion field, it can be seen that in a row of motion vectors,
no two motion vectors have the same x and y components.
This is true for all rotation and the rate of change in these
component values is relatively constant. The curl property
C of a vector field is defined in (1). It is a combination of
the rate of change of the y velocity components in the x
direction with rate of change of the x velocity components
in y direction:

R
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However, d/dx and d/dy are horizontal and vertical

gradients respectively. Also, i, 7 and k are the orthonormal
basis for the vector space. v; and v, are the estimated
translational motion vector components in the x and y
directions at pixel x. When only one object is rotating in the
scene, the curl field will contain a peak located on the centre
of rotation, as can be seen in Figure 4 where the dominant
peak clearly shows the presence of head rotation. Three extra
features were derived from the curl field.

In order to track when rotation occurs, the position
and value of the curl field maximum are monitored.
The maximum value, Cya.y, was found to rise and fall
consistently during head rotation and vary randomly during
nonrotational events (see Figure 6a). It was also noted that
the area of the maximum peak, Cyre,, increased and decreased
consistently during rotation (see Figure 6b). Similar to the
distance measure on the accumulator array, it was observed
that the curl surface maximum position from frame to
frame, Cgist, Was stable during rotation (see Figure 6¢). The
curl surface was segmented to find the area of the main
peak. Segmentation was done using a watershed algorithm
[36] to identify the dominant peak in the surface. To
ensure that the segmentation is performed correctly, the
absolute curl surface is negated. This ensures that the peak
corresponding to head rotation is always the dominant peak
on the surface. An example is shown in Figure 5. Curl surface
peak tracking alone is not powerful enough to consistently
indicate rotation. The feature robustness is affected by the
fact that the head of the child is not perfectly circular, the
area of rotation can be irregular due to occlusions from the
hands of demonstrator guiding rotation, and time varying.

The first and second temporal derivatives of the curl
maxima values (C,.. Cma) and the curl peak areas
(Cirea  Cirea) were used to augment the feature vector. This
is a method frequently used in speech recognition where
feature trajectories can contain extra information in the
feature vector. Derivatives were calculated over a window
of +2 frames. The rate of change of these values during
rotation and nonrotation events was observed to be distinctly
different. The complete set of features is summarised in
Table 1.

The question may arise of why not use Gaussian Mixture
Models (GMMs) rather than employing a HMM framework.
Bashir et al. present a discussion of this very question in
[37]. In the current work, it is the ability of the HMM
framework to model both the temporal evolution of the
feature set and the inherent uncertainty in the unfolding of
rotational events that makes them particularly suitable. As
discussed, none of the features alone are capable of reliably
and accurately parsing rotation events, though each can be
seen to exhibit largely predictable behaviour during rotation
and nonrotation. The core emphasis of this paper is the
ability to both segment and classify events using a single pass
approach. Only the HMM framework offers that potential.

3.2. Model Choice. As explained in Section 2.1 two systems,
System 1 (two HMM approach) and System 2 (3 HMM
approach), were developed. The number of states per HMM
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FIGURE 4: The top four images show 4 frames from a sequence of head rotation. Note the motion vectors. The central four images show
the accumulator array for the same frames and the bottom four images show the curl field. All of the above images have been zoomed in to

improve clarity.

(a)

FIGURE 5: An example curl surface is shown on the left above along
with the corresponding watershed segmentation boundaries on the
right. A clear delineation is visible between the central peak and the
rest of the curl surface.

~e

(b)

and the model topology in terms of allowable transitions
needed to be chosen. In any system, restricting the state
transitions for a given amount of training data increases the
effective amount of data available for estimating individual
state transition probabilities. The data for the nonrotation
event models CL 38, P, and R is inherently unstructured,
and it is difficult to identify a temporal evolution of features
that would be suitably modelled by a left-to-right HMM.
Hence an ergodic HMM was always used for these events.
The rotation events should display more temporal struc-
ture as the child’s head is turned to each side in turn for
approximately 5 seconds. Analysis of the videos showed that
the head was not always turned in the same direction first
however. Hence a strict left, to, right model is not suitable for
the rotation events. Despite this, intuitively the rotation event

TasBLE 1: Feature set.

Feature Description
Chax Curl Surface Maxima
Carea Curl Surface Max Peak Area
Cuist Curl Maxima Distance from Frame to Frame
Adia Accumulator Maxima Distance from Frame to
Frame
e First Derivative of Graph of Curl Surface Max
area Peak Area
Clax First Derivative of Graph of Curl Surface Maxima
e Second Derivative of Graph of Curl Surface Max

area Peak Area

Second Derivative of Graph of Curl Surface

cr .
Maxima

max

could be thought of as comprising of three elements: head
moving clockwise, the head moving anticlockwise; or pauses.
A partially connected model was constructed to exploit this
temporal event composition. The partially connected model
has 3N states, where N was 2, 3, or 4. Thus these models had
6,9, or 12 states. Self transitions and left, to, right transitions
were allowed for all states but skip transitions were reduced.
The allowable skips were from state N to state 2N + 1, state
2N to state 1 and from state 3N to state 1 and N + 1. Entry
states were reduced to state 1, N+1, and 2N + 1 and exit states
reduced to states N, 2N, and 3N. The motivation for this was
to encourage the three groups of states to loosely correspond
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FIGURE 6: Sample feature evolution for video. Note manual segmentation superimposed where the high level implies head rotation is

occuring.
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FiGure 7: The partially connected model. The example shown has
N equal 3.

to clockwise rotation, anticlockwise rotation, and pauses but
not to put a strict temporal order on these three constituent
elements of a rotation event. Figure 7 demonstrates the N =
3 case. Both the use of this partially connected model and
a fully connected model were investigated for the rotation
events. The fully connected models had between two and
twelve states per HMM for all models.

4. Training and Evaluating the System

Having chosen a feature set and HMM topology to model
the events of interest, a significant effort is required to train
a HMM system. The task of acquiring sufficient labelled
training data is one of the factors that can put users off
HMMs. To develop a system, the available data set should be

divided into training and reference testing data. Generally, a
minimum of a 2 : 1 train : test ratio is advisable. The training
set needs enough examples of each event to adequately train
the number of gaussian mixtures the HMM topology has.
The examples must reflect the range of typical occurrences
of these events that the system is expected to subsequently
correctly identify. The test data should not overlap the
training data and also needs to contain sufficient occurrences
of all events, such that measured classification or recognition
rates are statistically significant. Continuous density HMMs
will require more training data than discrete models. Ergodic
models will require more training data than left-to-right
topologies to adequately train all transitions.

It is important to be aware of the symptoms of insuffi-
cient training. Indications of poorly trained models include
poor recognition performance, models not converging dur-
ing Baum-Welch reestimation, and model parameters not
moving significantly from initial values (typically from a flat
start). A poor choice of features can cause similar problems.
Hence a proper systematic evaluation of a new feature set is
essential. Training with full covariance models can uncover
problems hidden by the common assumption of diagonal
variances for the observation densities within states. Over
training must also be avoided. Thus in development, it is
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best to check classification/recognition performance on both
training and test material to assure even performance.

It is useful to examine other systems to assess the amount
of training data employed. Yamoto et al. [4] used data
from three people performing each of the 6 tennis actions
10 times. Smaller data sets were typical in earlier systems
as computational requirements were limiting. In Assfalg’s
soccer highlight system [10], both training and test data
were very limited—only 10 shots were used in training for
each highlight class and then 10 shots of each highlight type
chosen for testing. This task was very small and it is unclear
whether the high classification rates would be achievable for
alarger-scale experiment. Chang and Gong [9] used 18 hours
of footage in developing their baseball system, suggesting that
the training was adequate. Classification rates varied from 40
to 71% for the highlights. It could be argued that this system
did not fully exploit the temporal modelling capabilities of
the HMM framework. If a similar approach was taken in
speech recognition, this would be equivalent to performing
phoneme level recognition first and then using that phonetic
segmentation, inherently prone to errors, to try to infer word
level recognition. A HMM approach which jointly modelled
both the scene shots and the highlight level of segmentation
is possible and would have yielded better performance. This
demonstrates that it is not safe to assume that performance
problems should immediately be attributed to the quantity
of training data available.

The first-person-view sign language system of Starner
[12] used 400 sentences to train 4 state HMMs for each
gesture. 100 different sentences were used for recognition
and over 99% recognition accuracy was achieved. Sentences
took the form pronoun-verb-noun-adjective-pronoun
(same one), and Viterbi exploited this known grammar
structure. With six pronouns, nine verbs, twenty nouns,
and five adjective, this is effectively less test data than might
first be apparent. With greater computational power now
available a decade later, testing on larger datasets is feasible.

Alternatives to conventional HMM training approaches
may be worth investigating. Brand [2] considers that the
weakness in using HMM for visual event recognition lies
in an uninformed choice of models and topology. By
minimizing the entropy of state distributions rather than
using the traditional Baum-Welch approach to training
or individual models for each activity, the internal state
machine of the HMM can organise observed activity into
highly interpretable hidden states. These states in turn cap-
ture the dynamical regularities of the training set. Here event
segmentation and classification become a single inference
problem and the Viterbi stage alignment automatically yields
the event sequence for continuous video streams. This is a
very useful approach to the training question when a choice
of distinct models for events is unclear. This highlights the
issue of how important it is to have a good understanding
of the event being modelled and what the HMM framework
can offer when modelling image sequences. For instance, Liu
et al. further discuss the issue of training in [38] for gesture
recognition. Two hand gestures, depiction of a triangle and
depiction of a square, are chosen to aid the experiments.
They discuss the relative merits of different methods of

initialising models at the outset of Baum-Welch training. The
triangle gesture has three distinct stages of approximately
equal duration, the square gesture four. Hence a 3-stage left-
to-right model (including same state transitions) is used
to model the triangle and a 4-state left-to-right model
used for the square. They compare the transition matrices
and observation densities when the data is evenly divided
between states and all values hand computed, to the output
of Baum-Welch training. That the values are similar, with
such constrained data, should not be surprising. If the
durations of the gestures were allowed vary, the Baum-
Welch algorithm would certainly yield superior results as
it is the ability of HMMs to model temporal variability
that is their very strength. Initialising Baum-Welch training
with good initial estimates should indeed speed up the
convergence of the training. With such a small training set
(20 samples of a gesture), the fact that random initialisation
is not as good as informed initialisation suggests the models
are not converging. It is also no surprise that with a
highly temporally-structured gesture and a small training set,
and that left-to-right models will outperform fully ergodic
models.

4.1. Psychology Video System. Twenty three videos with this
rotation exercise were available for experiments totalling
approximately 20 minutes of footage. High-quality motion
vectors were essential, as all features are derived from them.
Hence the child had to be sufficiently large in the scene.
An average arm separation of approximately 200 pixels was
found to be suitable to ensure this. All 23 videos had
rotational events manually labelled to supply ground truth
data. There was a total of 29429 frames of footage, of which
10046 depicted 107 rotation events. There were 121 examples
of nonrotation. Sixteen videos were randomly selected for
training purposes, and seven selected for testing. From the
outset, there was an awareness that this amount of data might
not be enough to adequately train a system and this was kept
in mind in assessing results. A full examination of the feature
set performance was carried out.

As explained in Section 2.1 two systems, System 1 (two
HMM approach) and System 2 (3 HMM approach) were
developed. The nonrotational data used in training model
R was further subdivided for the two HMMs C£4$ and
P . The data was segmented on the basis of duration of the
nonrotation events: any event lasting longer than 100 frames
was classified as C P 8. However, C# 4§ thus included getting
the child setup after some restlessness or repositioning the
child during the exercise.

Both training and recognition were performed with the
Cambridge Hidden Markov Model Toolkit (HTK) [39]. HTK
was developed originally for speech recognition applications
but can easily be integrated into visual event recognition
systems. Standard Baum-Welch training was performed
using labelled training data. Interestingly, due to the use of
the fully ergodic model, it was possible to take all segments
for rotation in a video and join them together. This meant
that each video was divided into two subvideos of rotation
and nonrotation. The segments containing rotation tended
to be significantly shorter than the nonrotational events. The
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longer training sequences allow a larger number of state path
alignments in training. In fact, this method was found to
outperform the use of individual segments in this case since
the training data set was limited. When using the individual
segments, many were quite short in duration and did not
allow as full a training of the state transitions. Continuous
density models were used as the feature set is inherently
continuous in nature.

Recognition was performed on the test data using the
standard Viterbi algorithm. The comparison between the
HMM and manual segmentations were evaluated using
precision and recall rates defined in what follows. A tolerance
of 14 frames, roughly half a second was allowed between
the HMM output and manual segmentations. This was
to allow for human error in noting rotation events, as a
human observer can frequently interpret prerotation head
translation as rotation. The precision and recall figures
as detailed below were calculated at a frame level. The
performance figures are calculated in terms of correctly
identified frames or true positives (#pos), false positives ( fpos)s
and false negatives ( fneg):

tpos tpos
tpos + fneg) tpos + fpos.

Precision and recall can be combined into a single
measure as the F; value:

Recall = Precision = (2)

2 X Recall X Precision

F
! Recall + Precision

(3)

The Viterbi algorithm employed is based on the token
passing paradigm of Young [27]. The grammar of the
system allows syntactic constraints to be applied to identify
only allowable paths. For an unseen video, possible event
boundaries are recorded in a linked list structure as the token
propagation is performed during the Viterbi alignment.
At the end of the video, the path identifier held by the
token with the minimum alignment cost allows the best
event sequence to be traced back and the corresponding
boundaries recovered.

5. Results

5.1. Feature Set Evaluation. As discussed in Section 3.1, there
were four basic features and four associated derivative values
in the full feature set. A study of the performance of all
combinations of Cuax, Carea> Cist> and Agise was undertaken.
Table 2 shows the subset of these combinations that test set
performance is reported for in this paper. Initial tests were
performed using two ergodic HMMs, R and (R, trained with
between two and twelve states with a single mixture per state.
The performance on the test set was in line with recognition
rates for the training set in all cases. Table 3 details some test
results of note for these sets. Figure 9 shows more complete
results for these sets where the number of states was varied
between 2 and 12. A second-order polynomial line fit was
used to show trends for each data set. Note that only data
points reported in Table 3 are plotted for sets A, B, and C
as performance plateaued at the optimal number of states
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and is outside the scale of this ROC (Region of Convergence)
otherwise. These feature sets only used one feature. This
ROC graph gives a good pictorial representation of the recall-
precision tradeoff. The results showed that Cgisx and Agist
have the greatest discriminative ability when combined with
either Cpax Or Carea. It intuitively makes sense that Cgist
and Agis are good features as they relate to the stability of
the rotating centre. Both Cpax and Cure, are more prone to
error as discussed in Section 3.1.2. The use of second-order
derivatives did not improve performance, though the first-
order derivative allowed for better recall rates at the cost of
precision. Examination of these features revealed that they
were quite noisy. An increase in the window over which
the derivatives were calculated or suitable smoothing of the
feature could improve their contribution. Between 4 and
6 states were found to be an optimal number of states in
each HMM. Increasing the number of states further adversely
affected precision, even though recall could be improved.
Figure 9 clearly shows the steep drop off in precision when
the HMM has too great a number of states for the available
training data.

Figure 8 shows a manual segmentation compared to a
sample output from the HMM segmentation for a short
section of video. As can be seen in this example, all periods of
rotation were identified but the precision of the start and end
points of the events was inaccurate. This result was obtained
using feature set H. For this application, precision is less
important than recall, as false positives are less important
that missed events. The framework is intended to avoid the
psychologists having to look at all the video material to
search for rotation events. In this case, it would be acceptable
to have a solution which had a high hit rate which located
the event in time and the psychologist could then accurately
identify the start and end of the event for their evaluation.
The reported precision and recall rates in Table 3 have an
accuracy window of 1 second. If this is increased to a window
of 2 seconds, both the recall and precision rates approach 94—
95% for the feature sets H, I, ], and K in Table 3.

5.2. Amount of Training and Test Data. As mentioned in
Section 4.1, there was an initial concern that the data might
not be sufficient to train a HMM framework. This framework
is particular insofar as it is a two model system. A larger
number of models will result in a more complex system
requiring more training data. The rotation event HMM had
less training data than the nonrotation event HMM as more
of the data represented nonrotation periods. In this way, the
event with greater variance received more data as would be
desired. Careful note was taken of model convergence during
Baum-Welch re-estimation. The recognition performance
on the training data and test data was consistent both in
precision and recall. Lack of training data will typically cause
the performance of a recognition system to collapse when
the number of states exceeds the level at which all states are
adequately trained.

It is useful to compare the amount of data used to
other HMM systems. The TIMIT database is accepted in
the speech community as a standard medium vocabulary
database used in HMM-based speech recognition systems.
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TABLE 2: Subset of Feature Sets from full testing. v' denotes
individual feature included in feature vector for a set. Blank entry
implies the feature was excluded from that set.

Set Chmax  Carea Caiss  Adiss  Crax  Ciea  Cirea Crmax
A v

B v

C v v

D v v v

E v v v

F v v v v

G v v v v

H v v v v v
I v v v

J v v v v

TABLE 3: Feature Set Performance for 2-model ergodic HMM
framework.

Set States Recall Precision F,

A 4 72.2 84.0 77.6
B 4 79.9 82.7 81.2
C 12 90.1 86.4 88.2
D 6 95.8 82.8 88.8
E 7 93.1 83.4 87.98
F 8 81.5 81.7 81.6
G 4 75.1 92.5 82.9
G 6 97.2 77.3 86.1
H 4 76.4 90.8 83.0
H 6 97.5 73.1 83.5
1 7 94.5 76.2 84.3
] 4 83.4 89.8 86.5

TaBLE 4: Feature Set Performance for 3-model ergodic HMM
framework.

Set States Recall Precision F,

G 7 99.1 81.4 87.7
H 7 96.0 80.1 87.3
1 8 94.7 81.7 87.7
] 9 94.2 79.3 86.1

The common database allows for comparison of results
across research efforts. In a HMM speech recognition system
using monophone models, 3 states per model with up to
20 mixtures per state for each of 39 phoneme models is
typical. Using the specified data in TIMIT, this equates to
an average of 600 frames of training data (assuming a 10-
millisecond frame rate for feature extraction) available per
Gaussian mixture. This system would use feature vectors of
36 features. The training data is 73% of the data, the rest is
used for test.

In the psychology videos in this paper, the best results
will be seen to be for 6-9 states per model with one mixture
per state. The maximum number of features in a vector
was 8. Thus there was 776 frames per Gaussian mixture for
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FIGURE 8: Manual Segmentation (solid line) compared to HMM
output (dashed line) for sample video where nonzero values
indicate rotation.

training the rotational HMM, and 1498 frames for training
each nonrotational HMM Gaussian mixture. The most states
used was 12, giving 582 and 1123 frames per mixture. The
training data is 69% of the total data, the rest is used for test.
There are more transitions in the models for the psychology
material since it is not a simple left-right model, but the extra
data will address that. Thus the data used in both training
and testing this system compares well.

To compare with other work in video event recognition,
in the previously discussed work of Boreckzy and Wilcox
[16], only 6 minutes of training data was used to train 8
Gaussian mixtures (of the 7 HMM states, one had 2 mixtures
and all others had a single mixture). At a frame rate of 30fps,
this equates to an average of 1350 frames to train a Gaussian
mixture. Each test set was 30 minutes of data but the authors
were trying to classify 7 different events, whereas the system
reported here uses 7 minutes to demonstrate the recognition
rate of 2 and 3 events.

It is important to say that the robustness of the system
would be improved with a greater amount of training data,
especially in the case where the rotation events became less
consistent. More exhaustive testing with a larger dataset
would improve confidence in the performance of the system,
but this initial performance is very encouraging and demon-
strates how features and models can be designed to work well
in a new event recognition system which is the central tenet
of this paper.

5.3. 3-Model System. The results shown in Table 3 refer to the
two model ergodic HMM system. As discussed in Section 2.1,
the framework could also be posed as a three model system
with models corresponding to child pose setup C £ 4; pauses
between head rotations #; head rotations R. This approach
was tested using feature set G, H, I, and J as defined in
Table 2. Table 4 shows the results for the 3-model system.
This system yielded small improvements in both recall and
precision rates.
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5.4. Model Choice. The results presented have used an
ergodic model for rotation and nonrotation. The feature
sets G, H, I, and ] were tested with the partially connected
HMM for R as described in Section 3.2. An ergodic model
was still used for non rotation events. The results were not
as good as using the ergodic model. F; measures of 78.4%
and 79.7% were achieved with the 6 state model for feature
sets H and J. Checking the Viterbi recognition results from
the training data revealed a mismatch in performance for
the test data and training data, which in turn prompted a
reevaluation of the video material. An insufficient portion
of the videos displayed this definitive split of head moving
clockwise, head moving anticlockwise, and pauses within a
rotation event. Thus an ergodic model was a better choice for
this application. This allowed the Baum-Welch training full
freedom in exploring the optimal paths within the HMM for
modelling the rotation event.

6. Lessons Learned

HMMs have been successfully deployed in video applications
for both event classification and event recognition in the
past. This paper has used the development of a HMM
framework for event recognition in psychology videos to
support an exploration of the use of HMM frameworks.
The presented system can achieve recall and precision rates
of up to 95% for the recognition of the described head
rotation events. When considering the use of HMMs for such
applications, it can be difficult to find practical guidance on
how to approach the task despite the HMM theory being
well documented. The first step is to consider the events to
be recognised and whether a task grammar is identifiable.
This will help identify whether HMMs model events directly
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or whether it is more appropriate that the states within
the HMM will model the events. An appropriate choice
of model topology, whether left-to-right or fully connected
models are used, should also be a decision made with some
reasonable basis. Features can encompass both local and
global frame characteristics depending on the nature of the
event being modelled. Training data must be representative
of the range of manifestations of the events. Modelling a large
number of events with significant variation within events
requires significantly more training data than the application
presented in this paper. When using ergodic models for less
structured events, training samples may be joined to increase
precision. It is hoped that a greater understanding of such
issues will enable the use of HMM-based systems to recognise
events in less constrained tasks in video without the need to
presegment the video using another method.
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