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We present a supervised learning approach for object-category specific restoration, recognition, and segmentation of images
which are blurred using an unknown kernel. The novelty of this work is a multilayer graphical model which unifies the low-
level vision task of restoration and the high-level vision task of recognition in a cooperative framework. The graphical model is an
interconnected two-layer Markov random field. The restoration layer accounts for the compatibility between sharp and blurred
images and models the association between adjacent patches in the sharp image. The recognition layer encodes the entity class
and its location in the underlying scene. The potentials are represented using nonparametric kernel densities and are learnt from
training data. Inference is performed using nonparametric belief propagation. Experiments demonstrate the effectiveness of our
model for the restoration and recognition of blurred license plates as well as face images.
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1. Introduction

Restoration is a neat showcase of ill-posedness of computer
vision. Given a blurred image, there can be several sharp nat-
ural images which, when blurred, will generate the original
image. The inherent ambiguities in restoration are usually
overcome by using different regularization techniques or
the Bayesian remedy. In several important applications like
surveillance, tracking, and license plate recognition systems,
images are mostly severely blurred. But the quality of the
blur is usually application specific and hence the need for
restoration systems.

There are numerous methods for inferring the sharp
image from the blurred input. A reasonable estimate of the
high-resolution image may be obtained if we have a priori
knowledge about the blurring kernel. If no additive noise
is present, Wiener filter is the optimal filter. In the noisy
case, Wiener filter gives the MMSE solution. Restoration
can be made easier by incorporating several images as in
[1]. Further, image restoration can be thought of as a
special case of superresolution and as such image deblurring
and superresolution have been treated concurrently by
many authors. Superresolution algorithms can be classified

into many categories based on different criteria such as
frequency/image domain, single/multiple images, and so on.
Earlier works in this field utilized the band limitedness of
the images to interpolate subpixel values from a series of
aliased images. Recently, time domain methods have been the
principal research fields. Among the time domain methods,
two broad sections are iterative methods and learning-based
methods. Iterative methods [2–6] mostly use a Bayesian
framework, where an initial guess about the high-resolution
frame is refined at each iteration. The image prior is usually
assumed to be a smoothness prior.

However, it seems that machine learning and specifically,
probabilistic inference techniques are currently the most
promising line of research. The principal idea of the machine
learning approach is to use a set of high-resolution (sharp)
images and their corresponding low-resolution (blurred)
images to build a compatibility model. The images are stored
as patches or as coefficients of other feature representations.
Recently, an impressive amount of work has been reported
in this field [7–11], to name a few. In [11], PCA-based
techniques were used to capture the relationship between the
high-resolution and low-resolution patches while nonpara-
metric modeling was used to estimate the missing details.
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Figure 1: Multilayer MRF model. The restoration layer consists of
nonoverlapping hidden image patches indicated by dark gray circles
and each node has a local observation indicated by empty boxes.
The recognition layer consists of class membership nodes and are
denoted by light gray boxes.

In [9], an example-based learning method was employed
for superresolving natural images up to a zoom factor of 8.
Along the same lines, Bishop et al. [10] performed video
superresolution by considering additional priors to take into
account the temporal coherence between successive frames.
Machine learning-based restoration methods can be made
more powerful and robust if the images are restricted to be of
the same type, as in [7], where face images are hallucinated.
The spirit of our work is similar to the work of Freeman et al.
[9], with several important differences.

In our previous work [12, 13] on restoration using
MRFs over a patch image model, we introduced the ideas
of partial messages and the restoration-recognition loop.
Our algorithm was built on the notion of partial message
propagation, where any given node (patch) in an MRF is
only partially influenced by its neighbor, depending on
the spatial orientation of the two neighbors. Restoration
and recognition was performed in an iterative loop which
resulted in the localization of the search space.

The limitation of our previous work is the need
for segmented images before performing restoration and
recognition. Further, the recognition was performed as a
separate block. In this work, we suggest a unified framework
for performing restoration and recognition without prior
segmentation. We present a multilayer Markov random field
model having two interconnected layers where restoration is
performed in the bottom layer and recognition in the top
layer. The messages propagated bottom-up help in improv-
ing recognition/segmentation and the messages propagated
top-down aid in better restoration.

This paper is organized in the following order. In
Section 2, we present the image model and define the
problem statement and the notations used in the rest of
the paper. In Section 3, we illustrate the features used for
learning the potential functions for the multilayer MRF
structure. Within this section, we briefly review the belief
propagation algorithm and the nonparametric extension
to it. We illustrate the use of multilayer MRF structure

Figure 2: The neighborhood model. The node i is the black node.
The dark gray nodes are the neighbors which belong to the top
layer defined by Eti and the light gray nodes are the neighbors in
the bottom layer defined by Ebi.

for two different applications and explain the recognition
with respect to the two different applications. We propose
an analogous model in the frequency domain and show
improvement in handling compression artifacts in images
and videos in Section 5. Finally, we present experiments and
results in Section 6 and conclude in Section 7.

2. Model

We propose a multilayer architecture to perform restoration
and recognition of blurred images (Figure 1). The lower layer
(restoration layer) is an undirected graphical model over
image patches with compatibility functions represented as
nonparametric kernel densities. The top layer (recognition
layer) is an undirected graphical model with each node repre-
senting a multinomial distribution over the 10-hypothesized
digits present in the neighboring patch nodes in the lower
layer. The compatibility functions in the restoration layer
are learned using nonparametric kernel density estimation
techniques (Section 3). We use an extended version of the
nonparametric belief propagation algorithm [14, 15] in the
restoration layer, and belief propagation algorithm [16] in
the recognition layer.

2.1. Problem Statement and Notation. Consider a train-
ing set of triplets given by {(X1,Y1,W1), (X2,Y2,W2), . . . ,
(Xn,Yn,Wn)}, where Xi represents a sharp image of one
particular digit, Yi represents the blurred version, Wi ∈
{0, 1, . . . ,K} indicates the class of the ith training image and
K denotes the number of classes. Let there be an unknown
kernel f (Xi) that maps from Xi to Yi. The objective is to
learn a model which is able to infer the sharp image X (which
has more than one digit) and the classes of all m objects
W1, . . . ,Wm (digits) in it, from the blurred input image Y
consisting of digit fonts not present in the training set.
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Table 1

Interacting nodes Potential Notation

(xib , x jb ) Patch interaction ψ(xib , x jb )

(xib , yib ) Association φ(xib , yib )

(xib , cjt ) Classification ϕ(xib , cjt )

(cit , cjt ) Class interaction θ(cit , cjt )

We model the image X as an undirected graphical model
or more specifically a Markov random field (MRF) [9]. This
MRF will be referred to as the restoration field and is the
bottom layer in Figure 1. The restoration field is defined by
the bottom graph Gb = {Vb,Eb}, where each node represents
a random variable xib , ib ∈ [1, . . . ,N] (where N is the total
number of nodes in the restoration layer), corresponding to a
patch in the unknown, sharp image, which is associated with
an observation node yib which represents the corresponding
patch in the observed image. An edge between node xib and
node x jb indicates that they are spatial neighbors.

We model the class membership of the m objects
W1, . . . ,Wm as another MRF defined by the top graph Gt =
{Vt,Et}. We refer to this MRF as the recognition field and
is shown as the top layer in Figure 1. Each node in this
MRF represents a random variable cit , it ∈ [1, . . . ,L], where
cit ∈ {1, . . . ,K} and L is the total number of nodes in
the recognition layer. We note that Gt and Gb denote the
graph structure corresponding to the top layer and bottom
layer, respectively, and they do not include the interlayer
connectivity information. Further, for every node i in our
two-layer graphical model, we denote the neighborhood in
the restoration layer by Ebi and similarly we denote Eti as the
neighborhood of node i in the recognition layer. The model
is illustrated in Figure 2.

The potential functions modeling the various interac-
tions are summarized in Table 1.

The association and the patch interaction potentials can
be modeled as continuous parametric distributions that are
tractable for the belief propagation algorithm [16] (mixture
of Gaussian, etc.). However, as noted in our previous work
[17], parametric approaches introduce averaging effects
which are against the spirit of the restoration problem.
Hence, we use nonparametric kernel density estimation
techniques for learning the association, patch interaction,
and classification potentials. We elaborate the learning of
these potentials in Section 3.

During the learning phase, the potentials φ, ψ, θ, ϕ
are learned from the training data. The inference phase
involves computing the marginals of posterior distribution
p(xib |Y), for all the nodes ib ∈ Vb and the marginals
p(cjt |Y), for all the nodes jt ∈ Vt. In Section 3.1, we
discuss the application of the belief propagation algorithm
for approximate inference in the multilayer MRF model.

3. Learning Potentials

We model the association potential φ(xib , yib) as a function
over the vectorized representation of patches xib and yib and

has the form

φ
(
xib , yib

) = 1
M

M∑

m=1

N
([
xib , yib

]T
;μm,Λm

)
, (1)

where M is the number of components and
N ([xib , yib]

T ;μ,Λ) is the multivariate normal distribution
with mean μ and covariance Λ over the random vector
[xib , yib]

T . From the training set, the patch association
vectors corresponding to the image and its blurred version
are constructed. The patch association vectors are pruned
to avoid redundancy. The potential is constructed by
considering a Gaussian kernel with the mean chosen as the
patch association vector and the covariances are chosen
using the leave-one-out cross validation technique [18].

The patch interaction potential ψζ(ib , jb)(xib , x jb) is a
function over the vectorized two-pixel thick nonoverlapping
patch boundary and learnt using the above-mentioned non-
parametric estimation technique. The classification potential
ϕ(xib , cjt ) is split into a conditional term ϕ(xib | cjt ) and a
marginal term σ(cjt ). The conditional term is nonparametri-
cally represented as a function over vectorized sharp patches
obtained from images belonging to the class cjt and the
marginal term σ(cjt ) is given by 1/K . The class interaction
potential θ(cit , cjt ) is modeled as a probability table given by

[
θ
(
cit , cjt

)]
kl = p

(
cit = k, cjt = l

) =

⎧
⎪⎪⎨

⎪⎪⎩

q, if k = l,

1− q

K − 1
, if k /= l,

(2)

where K is the number of classes and we set q to be 0.7 for
our experiments.

3.1. Belief Propagation. For acyclic graphs, the marginal
distributions can be calculated efficiently and exactly by a
local message passing algorithm known as belief propagation
(BP) [16]. In the case of graphs with cycles, the BP
algorithm is not exact. The iterative version of BP algorithm
produces beliefs which do not converge to true marginals.
But, it has been empirically shown that loopy BP produces
excellent results for several hard problems. Recently, Yedidia
et al. [19] established the link between the fixed points of
belief propagation algorithm and stationary points of the
“variational free energy” defined on the graphical model.
This important result sheds more light on the properties of
loopy BP approximation.

In our multilayer MRF model, BP is first performed in
the restoration layer which is followed by BP in the recogni-
tion layer. There are four different types of messages, namely,
the message passed between neighboring nodes (ib, jb) ∈
Eb in the restoration layer, the messages passed between
neighboring nodes (it, jt) ∈ Et in the recognition layer,
and the bidirectional messages passed between neighboring
nodes (ib, jt) ∈ El in the recognition and restoration layer
interface.
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Figure 3: The restoration nodes x converge to the digits. The recognition layer multinomials peak at the digit locations.

(a) (b)

Figure 4: The division of a face into regions for better restoration.
Overlapping nodes ensure better interaction for the boundary
patches.

Recognition-to-Restoration Layer Messages. The message
propagated from a node in the recognition layer cit to a node
in the restoration layer x jb is given by

mit , jb

(
x jb

) = α
∑

cit

ϕ
(
x jb , cit

) ∏

kt∈Eti
mkt ,it

(
cit
) ∏

rb∈Ebi ,rb /= jb

mrb ,it

(
cit
)
.

(3)

Intrarestoration Layer Messages. The message propagated
from node ib to node jb in the restoration layer during the
nth iteration represented as mn

ib , jb(x jb) is given by

mn
ib , jb

(
x jb

) = α
∫

ψ
(
xib , x jb

)
φ
(
xib , yib

) ∏

kt∈Eti
mn−1

kt ,ib

(
xib
)

×
∏

hb∈Ebi ,hb /= jb

mn−1
hb ,ib

(
xib
)
dxib .

(4)

Restoration-to-Recognition Layer Messages. The message
propagated from node ib to jt, mib , jt (cjt ) is

mn
ib , jt

(
cjt
) = α

∫

ϕ
(
xib , cjt

)
φ
(
xib , yib

) ∏

kb∈Ebi
mn−1

kb ,ib

(
xib
)

×
∏

rt∈Eti,rt /= jt

mn−1
rt ,ib

(
xib
)
dxib .

(5)

Intrarecognition Layer Messages. The message propagated
from node it to node jt, during the nth iteration represented
as mn

it , jt (cjt ) is given by

mn
it , jt

(
cjt
) = α

∑

cit

θ
(
cit , cjt

) ∏

kb∈Ebi
mn−1

kb ,it

(
cit
) ∏

rt∈Eti ,rt /= jt

mn−1
rt ,it

(
cit
)
.

(6)
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(a) (b)

Figure 5: Subband representation of the 2× 2 block DCT coefficients.
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Figure 6: Confidence scores versus true digit class, before and after
restoration.

3.2. Nonparametric Belief Propagation (NBP). We note that
the messages computed using (4) are mixtures of Gaussians
and computing a message mk

ib , jb(x jb) involves the product of
the interaction potential ψ(xib , x jb), the association potentials
φ(xib , yib), the messages from the neighbors in the recog-
nition layer mn−1

kt ,ib(xib) for all kt ∈ Eti, and the messages
from the neighbors in the restoration layer mn−1

hb ,ib(xib) for all
hb ∈ Ebi, hb /= jb, where each term is a mixture of Gaussians.
In order to evaluate (4), the mixture components in the
potentials and the messages have to be pruned drastically
so that the number of components in the product is within
tractable limits to solve the integral. Such an approximation
is unsuitable for the restoration problem and alternatively we
use the nonparametric extension proposed by Sudderth et al.
[15] and independently invented by Isard [14].

The interaction potential can be decomposed into a
marginal influence term given by ξ(xib) := ∫

ψ(xib , x jb)dx jb

and an interaction term ψ(x jb |xib). The message update
equation (4) can be solved in two phases. The first phase
involves computing the product πn

ib , jb(xib):

πn
ib , jb

(
xib
)

:= ξ
(
xib
) ∏

ht∈Eti
φ
(
xib , yib

) ∏

hb∈Ebi ,hb /= jb

mn−1
hb ,ib

(
xib
)

×
∏

kt∈Eti
mn−1

kt ,ib

(
xib
)
.

(7)

Each term in the product πn
ib , jb(xib) is a mixture of Gaussians

and if each term has M mixture components, then the
product is a mixture of ML Gaussians, where L is the
number of terms. Exact computation of the product can
be performed, however, it is not feasible because of the
O(ML) computations. Pruning of the mixture components
can be performed to restrict the number of computations,
but it turns out to be a very coarse approximation for the
restoration problem. Sequential Gibbs sampling [20] and
importance weighting were used in [14, 15] to generate
M asymptotically unbiased samples without explicitly com-
puting the product. In this work, we use alternating Gibbs
sampling (parallel sampling) [21] to obtain asymptotically
unbiased samples x1

ib , x2
ib , . . . , x

M
ib from the product πn

ib , jb(xib).
The second phase involves integrating the combination of
the above product πn

ib , jb(xib) with the interaction term. Sud-
dherth et al. [15] and Isard [14] proposed Gibbs sampling
to solve the first phase and handled the second phase using
stochastic integration and further, represented the messages
nonparametrically using a kernel density estimate as

mib , jb

(
x jb

) =
M∑

m=1

wm
jbN

(
x jb ;μmjb ,Λm

jb

)
, (8)

where wm
jb , μmjb , Λm

jb correspond to the weight, mean, and
covariance associated with the mth kernel. The message
update is performed using stochastic integration, where
every sample xmib is propagated to node jb by sampling xmjb
from the interaction potential ψ(xib , x jb). Now, nonparamet-
ric density estimation is used to obtain a kernel density
estimate (8) for the message mn

ib , jb(x jb), where the means
of the kernels are the propagated samples. Covariances are
chosen to be diagonal and identical and are obtained using
leave one outcross validation [18].
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Figure 7: Recognition and restoration results: (top Left) original license plate; (top right top to bottom) blurred input, deblurred using
deconvolution methods, result of our algorithm, actual sharp image. (Bottom left to right) multinomial distributions (X-axis: digit class,
Y-axis: confidence score) over the nodes in the recognition layer. The top row is the result after 3 iterations and the bottom row is the result
after 6 iterations.

3.3. Data-Driven Local Retraining. Nonparametric belief
propagation can be used to approximately evaluate (4),
but, however, we note that the first two terms in (4),
ψ(xib , x jb) and φ(xib , yib), are nonparametric densities each

having more than 106 components. It is computationally
infeasible to compute mn

ib , jb(x jb) and, hence, we need a
technique for pruning the nonparametric densities to be
computationally reasonable and meaningful. We adopt
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(a) (b) (c)

Figure 8: Multilayer MRF-based face superresolution. (Left) Blurred input; (center) deblurred using deconvolution methods; (right) our
method.

Figure 9: Comparative results. (Top row from left to right) LENA, a part of JPEG-coded LENA at 0.188 bpp, result of the proposed method,
and Zou and Yan result [22]. (Bottom row) Yang and Galatsanos result [23], Paek et al. result [24], Park and Kim result [25], Jeong et al.
result [26], and MPEG-4 result [27].

a data-driven retraining step in which the potentials
ψ(xib , x jb) and φ(xib , yib) are learned from a subset sampled
from the training set based on the posterior marginal
p(ckt |Y) at the recognition layer node ckt , where kt indicates
the common neighbor of ib and jb in the recognition layer.

3.4. Multilayer Message Passing. Belief propagation for our
two-layer model is given by the following schedule.

(1) Intrarestoration layer messages given by (4) are
computed using nonparametric belief propagation
and the data-driven local retraining algorithm.

(2) Restoration-to-recognition layer message is approxi-
mately evaluated at the maximum posterior marginal
estimate argmaxxib

p(xib |Y) owing to computational

difficulties involved in evaluating the exact integral.

(3) Intrarecognition layer messages are evaluated using
(6).

(4) Recognition-to-restoration layer messages are com-
puted using (3) and the resulting nonparametric
message is pruned based on the weight of the
components.

The above steps are performed iteratively till convergence.

3.5. Restoration and Recognition. After convergence of the
message passing algorithm, the marginal distributions
p(xib |Y) and p(cit |Y) can be evaluated using

p
(
xib |Y

) ≈ αφ
(
xib , yib

) ∏

kb∈Ebi
mn−1

kb ,ib

(
xib
) ∏

rt∈Eti
mn−1

rt ,ib

(
xib
)
,

p
(
cit |Y

) ≈ α
∏

kt∈Eti
mkt ,it

(
cit
) ∏

rb∈Ebi
mrb ,it

(
cit
)
.

(9)

The restored image is obtained by estimating the maximum
posterior marginal (MPM) estimate argmaxxib

p(xib |Y) at all

nodes ib in the restoration layer and similarly recognition
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Figure 10: PSNR values for the methods mentioned in Figure 9.

(a) (b)

(c) (d)

Figure 11: (Top row, left) Compressed image; (right) reconstruc-
tion using Li and Delp [28] method (8 × 8 BDCT); (bottom
row, left) compressed image; (right) reconstruction using Li-Delp
method (2× 2 BDCT).

results are obtained by evaluating the MPM estimate
argmaxcit p(cit |Y) at all nodes it in the recognition layer.

(a) (b)

(c) (d)

Figure 12: (Top) Compressed image; (bottom) reconstruction
using our method (2× 2 BDCT).

4. Recognition Layer

The recognition layer is incorporated into the model to aid
the restoration layer. The basic need for this layer arises from
the fact that the training dataset for any practical application
is extremely big and we need an efficient way of subdividing
this set for searching through this space of training examples.

One important feature of this kind of model is that
it does not expect the nodes as well as their interactions
to be modeled in any particular form. We investigate two
different applications and two different representations of the
recognition layer as well as the interactions in this layer.

4.1. License Plate Recognition. For this class of applications,
the recognition layer nodes can be represented by a multi-
nomial distribution over the 10 digits. In essence, this layer
captures the digit class to which the restoration nodes (x′i s)
belong to. For example, let us consider a case where we are
trying to restore an image of 39. Let us assume we have 3
rows of x nodes under each z node. After a few iterations of
our NBP algorithm for the multilayered MRF, the nodes in
the two layers converge to the states as shown in Figure 3.

4.2. Face Image Restoration. We note that face images have
a spatial coherence which can be exploited for recognition.
If the face is divided into 4 quadrants with the nose tip as
the center, then we can expect the eyes to be in 1st and 2nd
quadrants and the cheeks to be in the other two quadrants.
This information can be incorporated in our restoration
algorithm and we can search for patches only in the first two
quadrants while restoring the eye regions (Figure 4).
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(a) (b)

(c) (d)

(e) (f)

Figure 13: (Left) Compressed image; (right) reconstruction using
our method (2× 2 BDCT).

The recognition layer in this model is just the index of the
grid structure imposed over the face image. The interactions
for the nodes in this layer are captured in the overlapped
structure of the grids.

5. Compression Artifacts Removal by
Frequency DomainMRFModel

We propose a new progressive and fast approach based on the
transform domain MRF model. The L × L DCT transform
is interpreted as an L2-subband transform. The transform
coefficients at the same subband are modeled as an image.
This decomposition is similar to the wavelet transform
techniques proposed in [29]. We pose the problem of finding
the optimal coefficients as an inference problem in Markov
random fields (MRFs). Example-based inference techniques
have been used by [9, 30] for image superresolution. In
a similar tone, we try to learn the mapping between
uncompressed and compressed images with many training

patches. But the novelty is that now the patches are no longer
image patches, but contiguous blocks of DCT coefficients
which form the subband image for a particular frequency.
We learn the potential functions for each subband image
separately and inference is carried out for each subband
image independently of the others. An attractive feature of
this technique (originally introduced by Li and Delp [28]) is
the fact that not all the subband coefficient images need to be
inferred.

5.1. Block DCT Basics. Classical BDCT coding techniques
divide the input image of size M×N into blocks of size L×L,
and then the 2-D DCT is obtained for each block. The 2-D
DCT coefficients of the (i, j)th block B(i, j) can be described
by

FD
(i, j)(u, v) = 2C(u)C(v)

L

L−1∑

m=0

L−1∑

n=0

f(i, j)(m,n)

× cos
(

(2m + 1)
2L

uπ
)

cos
(

(2n + 1)
2L

vπ
)

,

(10)

where f(i, j)(m,n) is the pixel value in B(i, j), u, v = 0, . . . ,L−1,
i = 0, . . . ,M/L, j = 0, . . . ,N/L, and

C(u) =
⎧
⎪⎨

⎪⎩

1
√

(2)
, u = 0

1, u /= 0.
(11)

After the DCT transform, the transform coefficients are
quantized independently in each block (for the sake of sim-
plicity in analysis, we assume that there is no intraprediction
in the DCT coefficients across blocks) and the quantized
coefficients can be determined by

FQ
(i, j)(u, v) = round

(
FD

(i, j)(u, v)

γQ(u, v)

)

, (12)

where Q(u, v) is a quantization table and γ is a quantization
parameter which controls the overall quality level.

“Dequantization” and the inverse DCT (IDCT) are
determined by

F̂D
(i, j) = γFQ

(i, j)(u, v)Q(u, v), (13)

f̂(i, j)(m,n) = 2
L

L−1∑

u=0

L−1∑

v=0

C(u)C(v)F̂D
(i, j)(u, v)

× cos
(

(2m + 1)
2L

uπ
)

cos
(

(2n + 1)
2L

vπ
)
.

(14)

Since the dequantization process is not a lossless opera-
tion, it can be shown that the reconstructed DCT coefficients
can actually have any value inside the QCS instead of the
one defined in (13). The values lying outside the QCS are
usually clipped. The independent reconstruction of each
block DCT coefficients leads to discontinuities along the
block boundaries which subsequently causes the blocky
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(a) (b) (c)

Figure 14: (Left) Compressed image; (center) reconstruction using our method (2 × 2 BDCT); (right) reconstruction using Yang and
Galatsanos [23] method.

artifacts. It has been recognized that the DCT coefficients
at the same frequency are highly correlated from block to
block. On the other hand, the DCT coefficients at different
frequencies are nearly uncorrelated which can be attributed
to the suboptimality in energy compaction and decorrelation
of the DCT. As a result, the DCT coefficients at the same
frequency in different blocks can be regrouped as one
coherent group. We define each group as F(u, v), where (u, v)
is the frequency or order of the coefficients. F(u, v) is then
considered as a subband image of size (M/L)× (N/L). A 2×2
BDCT-coded image and its subband images are shown in
Figure 5. Clipping is done to ensure a proper display.

6. Experiments and Results

In this section, we will provide results for the different
methods we have illustrated throughout this paper. The
images are always represented as patches of size 4 × 4.
Our training set consists of face images as well as license
plate images. The low-resolution training dataset consists
of gray scale images obtained by convolving Laplacian
kernels of different scales with the high-resolution images.
For generating the training data for the digit images, we
collected blurred as well as sharp images from 20 different
font families. For the face images, we use a proprietary face
database which has 5 different poses for the same person.
The database consists of aligned faces and hence any test
face which is not in the training set needs to be aligned with
respect to the training images.

First set of experiments are related to the multilayer
MRF structure as elaborated in Section 2. We present results
for both the applications mentioned above, namely, license
plate image restoration and face image restoration. For the
digit case, the results are shown in Figure 7. We test the
recognition accuracy and confidence of the proposed alter-
nating restoration and recognition algorithm. As mentioned
earlier, the potentials during the first iteration are learned
using random images from the training set. These potentials
are then refined after the completion of the recognition
algorithm, by making use of the confidence scores to obtain
representative samples. For this experiment, the training

set consists of 200 synthetic images and the test set is
composed of 200 real images of the blurred license plates. We
present results of recognition accuracy and the improvement
in confidence scores, before and after restoration, after 5
runs of the restoration and recognition loop. There was
a significant improvement in recognition rate 92% after
restoration compared to the 40% recognition rate before
restoration. In Figure 6, we present the average confidence
scores corresponding to the true digit class before and after
restoration. We observe that there is a clear improvement in
the confidence score for most of the digits (“0”, “3”, “4”, “5”,
“6”, “8”). In some cases (“1”, “7”), we observe that the gain
is not significant, as the confidence scores are already high.
For the experiments with face images, the results are shown
in Figure 8.

We demonstrate the superiority of the BP technique for
inferring the DCT coefficients over other existing methods
that have been proposed over the recent years. We have
tried different block sizes resulting in different number of
subband images. The overall performance is much more
dependent on the compression bit rate rather than the block
size. Also for most blocks around 60% of the subband images
are modified thereby, saving on runtime. The training data
for the experiments have been generated from Feret face
recognition dataset [31] and the CMU PIE dataset [32]. The
experiments are mainly done to handle face images, but
the technique can be easily extended to other areas, as we
show in the final set of experiments. We used 200 images for
training. For color images, we process the different channels
separately. Each training image is compressed with 5 different
compression rates resulting in total 1000 training pairs of
images.

The experiments are mainly divided into two categories.
First, we try our method on the Lena image because of the
wealth of published results for Lena. We report improvement
over the method proposed by Zou and Yan [22], which
reported improvements over most other existing methods.
The comparative results are shown in Figure 9. Note that the
results have been taken from published images and have not
been regenerated. The eye portion in the result shows that
it is sharper than the result obtained by Zou and Yan [22].
The PSNR values obtained for the Lena image are shown
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in Figure 10. Though PSNR may not be the best metric for
evaluation, since it has been used by many researchers to
claim improvement, we show the results in Figure 10.

In the second set of experiments, we test on frames
obtained from a real video for which no ground truth
was available. The closest method to the one proposed in
this work is the one proposed by Li and Delp [28]. The
results shown in Figure 11 have been produced by Zhen
Li, on his copyright software. Result for a frame of the
same video, but using the method proposed in this paper,
is shown in Figure 12. Clearly, the face looks much sharper
in our method. The reconstructed images show much better
performance near the eye and the teeth areas. Figure 13
shows face results generated from images compressed at
higher bit rates.

We also compare our method to the method proposed
by Yang and Galatsanos [23] for nonface-based experiments,
as shown in Figure 14. The training data used for these
experiments were still based on face images. Yang and Galat-
sanos [23] used explicit horizontal, vertical, and diagonal
smoothness constraints which are expensive to compute. We
try to capture all the information in the potential functions
for the MRF.

7. Conclusion and Future Directions

In this paper, we have tried to address the problem of
image restoration through multiple methods. We model the
images as MRF’s over a patch-based representation. The
two spatial domain methods mentioned move toward the
idea that high-level concepts like recognition can be used
to aid low-level operations like restoration. We introduce
a transformed domain method analogous to the spatial
domain patch-based MRF and implement the system for
removing compression artifacts from images and videos.
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