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Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the
optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the
case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian) noises of unknown covariance,
the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied
this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme
is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving
object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function.
Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more
reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely
available on the web.
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1. Introduction

The importance of image sequence processing is constantly
growing with the ever increasing use of television and video
systems in consumer, commercial, medical, and scientific
applications. Image sequences can be acquired by film-
based motion picture cameras or electronic video cameras.
In either case, there are several factors related to imaging
sensor limitations that contribute to the graininess (noise) of
resulting images. Electronic sensor noise and film grain are
among these factors [1]. In many cases, graininess may result
in visually disturbing degradation of the image quality, or it
may mask important image information. Even if the noise
may not be perceived at full-speed video due to the temporal
masking effect of the eye, it often leads to unacceptable
single-frame hardcopies and to poor-quality freeze-frames
that adversely affect the performance of subsequent image
analysis [2].

The motion estimation process must be able to track
objects within a noisy source. In a noisy source, objects
appear to change from frame to frame because of the
noise, not necessarily as the result of object motion [3].
Tracking objects within a noisy environment is difficult,
especially if the image frames are severely corrupted by
additive Gaussian noises of unknown covariance; second-
order statistics methods do not work well.

Higher-order statistics (HOS) in general and the bis-
pectrum (order 3) in particular have recently been widely
used as an important tool for signal processing. The classical
methods based on the power spectrum are now being
effectively superseded by the bispectral ones due to some
definite disadvantages of the former. These include the
inability to identify systems fed by non-Gaussian noise
(NGN) inputs and nonminimum phase (NMP) systems and
identification of system nonlinearity [4]. In these cases, the
autocorrelation-based methods offer no answer. Out of all
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these, the identifiability of NMP systems has received the
maximum attention from researchers.

HOS-based methods have been proposed to estimate
motion between image frames [5–9]. In, the motion esti-
mation is based on the bispectrum method for sub-pixel
resolution of noisy image sequences. In [7], the displacement
vector is obtained by maximizing a third-order statistics cri-
terion. In [8], the global motion parameters are obtained by
a new region recursive algorithm. In [6], several algorithms
are developed based on a parametric cumulant method,
a cumulant-matching method, and a mean kurtosis error
criterion. The latter is an extension of the quadratic pixel-
recursive method by Netravali and Robbins [10]. In [11], it is
shown that such statistical parameters are insensitive to addi-
tive Gaussian noises. In particular, bispectrum parameters
are insensitive to any symmetrically distributed noise and
also exhibit the capability of better characterizing NGN and
identifying NMP linear systems as well as nonlinear systems.
Therefore, transformation to a higher-order domain reduces
the effect of noise significantly. In this correspondence, a
novel algorithm for the detection of motion vectors in
video sequences is proposed. The algorithm uses bispectrum
model-based subpixel motion estimation in the parametric
domain for noisy image sequences to obtain a measure
of content similarity for temporally adjacent frames and
responds very well to scene motion vectors. The algorithm
is insensitive to the presence of symmetrically distributed
noise.

The outline of this paper is as follows. First, the problem
formulation is introduced in Section 2. In Section 3, we first
present briefly the definitions and properties of the bis-
pecrum and cross-bispectrum. Next, we describe the motion
estimation in the parametric domain. High-accuracy sub-
pixel motion estimation is discussed in Section 4. Section 5
presents an evaluation of the computational complexity of
our algorithm. The results of the experimental evaluation of
the proposed method are shown in Section 6 and compared
to existing methods while Section 7 concludes the paper.

2. Problem Formulation

The problem of motion estimation can be stated as follows:
“Given an image sequence, compute a representation of the
motion field that best aligns pixels in one frame of the
sequence with those in the next” [9]. This is formulated as
follows:

gk−1(x, y) = fk−1(x, y) + nk−1(x, y), (1)

gk(x, y) = fk(x, y) + nk(x, y)

= fk−1
(
x − dx, y − dy

)
+ nk(x, y),

(2)

where (x, y) denotes spatial image position of a point;
gk(x, y) and gk−1(x, y) are observed image intensities at
instants k and k − 1, respectively; fk(x, y) and fk−1(x, y)
are noise-free frames; nk(x, y) and nk−1(x, y) are assumed
to be spatially and temporally stationary, zero-mean image
Gaussian (or non-Gaussian) noise sequences with unknown
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Figure 1: Physical representation of cumulants [4].

covariance; and (dx,dy) is the displacement vector of the
object during the time interval [k − 1, k].

The goal is to estimate (dx,dy) from gk(x, y) and
gk−1(x, y).

3. Bispectrum-Based ImageMotion Estimation

3.1. Definitions and Properties. In this subsection, some HOS
functions are defined and their properties are described
in order to provide the necessary tools to understand the
motion estimation methodology.

Also, the third-order autocumulant/moment sequence,
C

gkgkgk
3 (r1, r2; s1, s2), of gk(x, y) is defined as follows [5]:

C
gkgkgk
3

(
r1, r2; s1, s2

)

= E
[
gk(x, y)gk

(
x + r1, y + r2

)
gk
(
x + s1, y + s2

)]
,

(3)

where E{·} denotes the expectation operation; (r1, r2) and
(s1, s2) are two shifted versions of the gk(x, y).

To understand the theory of triple correlations physically
for 2D data [4], the reader is referred to Figure 1. The Figure
shows the spaces occupied by the original data (denoted
by continuous box) and two shifted versions of the same
data (denoted by dashed boxes). The shifts are made by the
amounts (r1, r2) and (s1, s2), respectively. It is now obvious
that the product of the overlapping data positions (shown by
the shaded portion) denotes the triple correlation function
as defined by (3).

Also, the third-order autocumulant/moment sequence is
defined as follows [12]:

C
gkgkgk
3

(
r1, r2; s1, s2

) = C
fk fk fk
3

(
r1, r2; s1, s2

)

+ Cnknknk
3

(
r1, r2; s1, s2

)
.

(4)

Equation (4) states that the triple correlation of fk(x, y)
plus nk(x, y) is equal to the triple correlation of the fk(x, y)
plus the triple correlation of the noise. For nk(x,y) a zero-mean
Gaussian noise, then its triple correlation is identically zero
[7, 12]. This provides a theoretical basis for using the triple
correlation (or the bispectrum) as a method of reducing the
effects of additive noise. Then the term Cnknknk

3 (r1, r2; s1, s2) is
negligible which renders the triple correlation very effective
in detecting a signal embedded in noise. Therefore,

C
gkgkgk
3

(
r1, r2; s1, s2

) = C
fk fk fk
3

(
r1, r2; s1, s2

)
. (5)
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Also, nk(x, y) can be non-Gaussian if it is independent
and identically distributed (i.i.d.) and nonskewed (e.g.,
symmetrically distributed).

The bispectrum, B
gkgkgk
3 (u1,u2; v1, v2), is defined as the

4D Fourier transform of the third-order autocumulant (or
moment) [4]:

B
gkgkgk
3

(
u1,u2; v1, v2

) = F 4[C
gkgkgk
3

(
r1, r2; s1, s2

)]

= F 4[C
fk fk fk
3

(
r1, r2; s1, s2

)]

= B
fk fk fk
3

(
u1,u2; v1, v2

)
,

(6)

where F 4 denotes the 4D Fourier transform operation;
(u1,u2) and (v1, v2) are the frequency coordinates for the 2D
Fourier transform.

Let Ggk (u) be the discrete Fourier transform (DFT) of
the frame gk(x, y). Each component of the bispectrum is
estimated by a triple product of Fourier coefficients as follows
[12]:

B
gkgkgk
3

(
u1,u2; v1, v2

)

= Ggk

(
u1,u2

)
Ggk

(
v1, v2

)
G∗gk
(
u1 + v1,u2 + v2

)
,

(7)

where ∗ indicates the complex conjugate.
The cross-bispectrum is obtained in a similar manner as

the bispectrum. Thus,

B
gk−1gkgk−1

3

(
u1,u2; v1, v2

)

= B
gk−1gk−1gk−1

3

(
u1,u2; v1, v2

)
e− j2π(u1dx+u2dy),

B
gk−1gkgk−1

3

(
u1,u2; v1, v2

)

= Ggk−1

(
u1,u2

)
Ggk

(
v1, v2

)
G∗gk−1

(
u1 + v1,u2 + v2

)
.

(8)

On close observation and after certain algebraic manip-
ulations, (3) shows the third-order cumulant sequence to
possess the following symmetry properties [4]:

C
gkgkgk
3

(
r1, r2; s1, s2

) = C
gkgkgk
3

(
s1, s2; r1, r2

)

= C
gkgkgk
3

(− s1,−s2; r1 − s1, r2 − s2
)

= C
gkgkgk
3

(
s1 − r1, s2 − r2;−r1,−r2

)

= C
gkgkgk
3

(
r1 − s1, r2 − s2;−s1,−s2

)

= C
gkgkgk
3

(− r1,−r2; s1 − r1, s2 − r2
)
.
(9)

This directly leads to the following symmetry properties of
the bispectrum sequence [4]:

B
gkgkgk
3

(
u1,u2; v1, v2

) = B
gkgkgk
3

(
v1, v2;u1,u2

)

= B
∗gkgkgk
3

(− v1,−v2;−u1,−u2
)

= B
∗gkgkgk
3

(− u1,−u2;−v1,−v2
)

= B
gkgkgk
3

(− u1 − v1,−u2 − v2; v1, v2
)

= B
gkgkgk
3

(
u1,u2;−u1 − v1,−u2 − v2

)

= B
gkgkgk
3

(− u1 − v1,−u2 − v2;u1,u2
)

= B
gkgkgk
3

(
v1, v2;−u1 − v1,−u2 − v2

)
.

(10)

These symmetry properties reduce the computational
burden while calculating the bispectrum.

3.2. Parametric Model-Based Motion Estimation. The prob-
lem of signal processing using bispectrum in the parametric
domain has recently been widely addressed by researchers.
Two primary schools of thought exist for this. The first
line is headed by Raghuveer and Nikias [13], who have
parametrized the bispectrum through solution of a cumulant
matrix equation. The other school of thought headed
by Giannakis [14] calculates the system impulse response
coefficients directly using a linear combination of cumulant
slices. Other papers have been subsequently published which
give extensions and applications of these basic approaches
(see [15] and references therein). Here, we propose the
bispectrum model-based subpixel motion estimation in
the parametric domain. Simulations demonstrate that this
method requires large blocks of data and thus may be appro-
priate for estimating object displacement in background
noise. Consequently, our approach will be derived in this
context and hence, (dx,dy) = const. in (2). Substituting fk−1

from (1) into (2) we obtain

gk(x, y) =
∑

i∈R

∑

j∈R
α(i, j)gk−1(x − i, y − j)

+ nk(x, y) + nk−1
(
x − dx, y − dy

)
,

(11)

where, in theory, α(i, j) = 0 for all {(i, j)} except (i, j) =
(dx,dy), and α(dx,dy) = 1. If the search region R contains
the largest possible horizontal and vertical delays, and if we
take gk(x, y) for gk(x + r1, y + r2), we obtain

gk
(
x + r1, y + r2

) =
∑

i∈R

∑

j∈R
α(i, j)gk−1

(
x − i + r1, y − j + r2

)

+ nk
(
x + r1, y + r2

)

+ nk−1
(
x + r1 − dx, y + r2 − dy

)
.

(12)

By multiplying both sides of (12) by gk−1(x, y)gk−1(x+ s1, y+
s2) and taking expectations, we obtain

E
[
gk−1(x, y)gk

(
x + r1, y + r2

)
gk−1

(
x + s1, y + s2

)]

=
∑

i∈R

∑

j∈R
α(i, j)E

[
gk−1(x, y)gk−1

(
x − i + r1, y − j + r2

)

× gk−1
(
x + s1, y + s2

)]

+ E
[
gk−1(x, y)nk

(
x + r1, y + r2

)

× gk−1
(
x + s1, y + s2

)]

+ E
[
gk−1(x, y)gk−1

(
x + s1, y + s2

)

× nk−1
(
x + r1 − dx, y + r2 − dy

)]
.

(13)
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Therefore,

C
gk−1gkgk−1

3

(
r1, r2; s1, s2

)

=
∑

i∈R

∑

j∈R
α(i, j)C

gk−1gk−1gk−1

3

(
r1 − i, r2 − j; s1, s2

)

+ C
gk−1nkgk−1

3

(
r1, r2; s1, s2

)

+ C
gk−1nk−1gk−1

3

(
r1 − dx, r2 − dy ; s1, s2

)
.

(14)

However, C
gk−1nkgk−1

3 (r1, r2; s1, s2) and C
gk−1nk−1gk−1

3 (r1−dx, r2−
dy ; s1, s2) are identically zero for all (r1, r2; s1, s2) due to
the fact that the signal and noise are zero-mean and
independent. Consequently, (14) becomes

C
gk−1gkgk−1

3

(
r1, r2; s1, s2

)

=
∑

i∈R

∑

j∈R
α(i, j)C

gk−1gk−1gk−1

3

(
r1 − i, r2 − j; s1, s2

)
.

(15)

Taking the 4D Fourier transform of (15) and rearranging, the
following pulse transfer function for the system is obtained:

B
gk−1gkgk−1

3

(
u1,u2; v1, v2

)

= B
gk−1gk−1gk−1

3

(
u1,u2; v1, v2

)∑

i∈R

∑

j∈R
α(i, j)e− j2π(u1i+u2 j).

(16)

The third-order hologram, h(r1, r2), is then defined by

h
(
r1, r2

) = F −4

[
B

gk−1gkgk−1

3

(
u1,u2; v1, v2

)

B
gk−1gk−1gk−1

3

(
u1,u2; v1, v2

)

]

=
∑

i∈R

∑

j∈R
α(i, j)δ

(
r1 − i, r2 − j

)
,

(17)

where F −4 denotes the 4D inverse Fourier transform
operation.

Selecting various integers for r1 and r2, we form an
overdetermined system of equations. For example, if the
chosen search region R is a rectangular that varies from −Px
to Px in the horizontal direction and−Py to Py in the vertical
direction , and if r1 ranges from −Px to Px, and r2 ranges
from −Py to Py , a set of linear equations can be produced as
follows:

ĥ = αδ̂, (18)

where

ĥ = [hl
(− Px,−Py

)
,hl
(− Px + 1,−Py + 1

)
, . . . ,hl

(
Px,Py

)]T
,

α = [α
(− Px,−Py),α

(− Px + 1,−Py + 1
)
, . . . ,α

(
Px,Py

)]T
,

δ̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ(0, 0) · · · δ
(− 2Px,−2Py

)

δ(1, 1) · · · δ
(− 2Px + 1,−2Py + 1

)

...
...

δ(2Px, 2Py) · · · δ(0, 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(19)
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Figure 2: Motion vector fields of Grove sequence in the presence of
noise using (a) our algorithm, (b) optical flow algorithm, (c) phase
correlation algorithm.

The least-squares solution of (18) is given:

αls =
[
δ̂ T δ̂

]−1
δ̂ T ĥ. (20)
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Figure 3: Motion vector fields of Walking sequence in the presence
of noise using (a) our algorithm, (b) optical flow algorithm, (c)
phase correlation algorithm.

The least-squares solution α̂ls is obtained and its maximum

α̂(d̂x, d̂y) is determined. The image motion estimate is then

(d̂x, d̂y).
Although we assume that the signals are non-Gaussian, it

can be shown that for binary, deterministic signals and large
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Figure 4: Motion vector fields of Mequon sequence in the presence
of noise using (a) our algorithm, (b) optical flow algorithm, (c)
phase correlation algorithm.

images sizes bispectrum is insensitive to Gaussian noise, and
thus (20) is approximately true. Therefore,

ĥ
(
r1, r2

) = α̂
(
d̂x, d̂y

)
δ̂
(
r1 − d̂x, r2 − d̂y

)

= δ̂
(
r1 − d̂x, r2 − d̂y

)
.

(21)
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Table 1: The comparison between three methods for the computa-
tion time.

Sequences Methods MECT (sec)

Grove
Our method 0.49

Optical flow 0.25

Phase correlation 0.38

Beanbags
Our method 0.50

Optical flow 0.26

Phase correlation 0.37

Mequon
Our method 0.37

Optical flow 0.18

Phase correlation 0.30

Hydrangea
Our method 0.37

Optical flow 0.19

Phase correlation 0.31

Walking
Our method 0.50

Optical flow 0.25

Phase correlation 0.38

4. High-Accuracy Subpixel Motion Estimation

Subpixel performance is a critical element of the proposed
algorithm. With reference to our previously published
work [16, 17], we are introducing a number of important
new features, which improve the accuracy of the motion
estimates.

The coordinates (r1m, r2m) of the maximum of the real-
valued array ĥ(r1, r2) can be used as an estimate of the
horizontal and vertical components of motion between
gk(x, y) and gk−1(x, y) as follows:

(
r1m, r2m

) = arg max Re
(
ĥ
(
r1, r2

))
, (22)

where Re{·} denotes the real part of complex array ĥ(r1, r2).
Subpixel accuracy of motion measurements is obtained

by variable-separable fitting performed in the neighborhood
of the maximum using one-dimensional quadratic function.
Using the notation in (22), prototype functions are fitted to
the triplets:

{
ĥ
(
r1m − 1, r2m

)
, ĥ
(
r1m, r2m

)
, ĥ
(
r1m + 1, r2m

)}
, (23)

{
ĥ
(
r1m, r2m − 1

)
, ĥ
(
r1m, r2m

)
, ĥ
(
r1m, r2m + 1

)}
, (24)

that is, the maximum peak of the phase correlation surface
and its two neighboring values on either side, vertically and
horizontally.

The location of the maximum of the fitted function

provides the required subpixel motion estimate (̂̂dkx, ̂̂dk y).
Fitting a parabolic function horizontally to the data triplet
(23) yields a closed-form solution for the horizontal compo-

nent of the motion estimate ̂̂dkx as follows:

̂̂
dkx = ĥ

(
r1m + 1, r2m

)− ĥ
(
r1m − 1, r2m

)

2Ĥ
, (25)

where Ĥ = [ĥ(r1m + 1, r2m)− 2ĥ(r1m, r2m) + ĥ(r1m − 1, r2m)].

The fractional part ̂̂dk y of the vertical component can be
obtained in a similar way using (24) instead of (23).

Finally the horizontal and vertical components of the
subpixel accurate motion estimate are obtained by comput-
ing the location of the maxima of each of the above fitted
quadratics.

In [18], it is shown that half-pixel accuracy motion vec-
tors lead to a very significant improvement when compared
to one pixel accuracy, whereas a higher precision results
in negligible changes. Therefore, a half-pixel accuracy was
chosen in our simulations.

5. Computational Cost Comparison

The majority of the computational cost of the proposed
bispectrum is due to the fast Fourier transform (FFT).
Therefore, the fundamental computation required for bis-
pectral estimates is given by (7), the triple product of
the three individual Fourier transformations, while this
computation is straightforward, limitations on computer
time and statistical variance impose severe limitations on
implementation of the definition of the bispectrum [19].
On the other hand, we take advantage of the symmetrical
properties of the bispectrum to reduce the computational
complexity and memory requirements of calculating third-
order statistics. It can now be calculated in any one sector
and mapped onto the others [20].

The phase correlation is estimated by multiplying each
coefficient Ggk (u1,u2) by its complex conjugate, but each
component of the bispectrum is estimated by a triple product
of Fourier coefficients as demonstrated in (7). Thus, the
number of operations required to compute the bispectrum is
significantly increased relative to the phase correlation. There
are N2/8 independent components of the bispectrum while
there are only N/2 independent components of the phase
correlation for an N ×N image [21].

6. Simulation Results

Our experiments have aimed at evaluating the perfor-
mance of the proposed approach and comparing it with
that of the optical flow and phase correlation techniques.
For the optical flow method we used the implementa-
tion obtained from Bruhn method [22]. In our simula-
tion we used the database freely available on the web
at http://vision.middlebury.edu/flow/. We contribute three
types of data to test different aspects of all techniques:
real sequences of independent motion; realistic synthetic
sequences; and high frame-rate video. These sequences have
been chosen for their difficult motion and their different
characteristics. Although the original sequences are in color,
only the luminance component is used to estimate the
motion vectors.

Figure 2 shows the estimated motion vector fields for
the Grove sequence using the three aforementioned motion
estimation methods. Note that for a fair comparison we used
optical flow technique and phase correlation algorithm with
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Figure 5: Prediction for frame 5 of the Beanbags sequence in the presence of noise using (b) our algorithm, (c) optical flow algorithm, (d)
phase correlation algorithm, (a) is original image.

half-pixel accuracy. The motion vectors estimated between
frames 6 and 7 are shown for the Grove sequence. For
this particular sequence, our scheme provides the most
consistent and reliable motion vector field. Both optical
flow and phase correlation algorithms fail to detect the
true motion vector. Similar results are shown in Figures 3
and 4 for the motion vectors estimated between frames 2
and 3, and between frames 5 and 6 in the Walking and
Mequon sequences, respectively. Both optical flow and phase
correlation algorithms produce abrupt motion vector fields.
Although these abrupt motion vectors may lead to lower
numerical mean squared errors (MSEs), they are incorrect
motion vectors. Because of the noise resistant property of
the parametric bispectrum method, it produces more reliable
estimates. Therefore, our approach motion estimation results
globally in motion fields more representative of the true
motion in the scene.

To see more clearly the correctness of motion estimation,
we use Beanbags sequence as an example. The motion com-
pensated pictures using three methods are shown in Figure 5.

Portions of these three pictures are enlarged in Figure 6 to
show the differences. We observe better compensated images
by the proposed method. We also observe that the motion
compensated images for our scheme are much closer to the
original images. Thus, the scheme is able to measure the
motion vector more accurately and is more robust in general.
Overall, parametric bispectrum scheme typically offers better
visual quality images than the other methods.

The detection of motion vectors relies on successive
phase correlation operations applied to pairs of consecutive
block partitioned frames of a video sequence. The heights
of the dominant peaks are monitored, and when a sudden
magnitude change is detected, then this is interpreted as
a displacement vector. Figure 7 shows sample phase corre-
lation surface between two blocks bk−1(x, y) and bk(x, y),
related to frames 3 and 4 of the Hydrangea sequence,
respectively. The bispectrum retains both amplitude and
phase information from the Fourier transform of a sig-
nal, unlike the other methods. The phase of the Fourier
transform contains important shape information. Therefore,
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Figure 6: Enlarged portions of the motion compensated pictures of the Beanbags sequence using (a) our algorithm, (b) optical flow
algorithm, (c) phase correlation algorithm.

the bispectrum minimizes the influence of the noise and
simplifies the identification of the dominant peak on the
correlation surface.

The PSNR of motion compensated is a popular per-
formance measure for motion estimation, giving insight
about the quality of the prediction. The PSNRs of the three
motion estimation algorithms are shown in Figure 8. This
result is obtained by using two real video sequences Tempete
and Stefan. These sequences were run for 60 frames with a
frame rate of 30 frame/sec. Both sequences are degraded with

additive zero-mean Gaussian noise to a signal-to-noise ratio
(SNR) of 10 dB. Here we define

SNR = 10 log10

σ2
f

σ2
n

, (26)

where σ2
f is the variance of the frame, σ2

n is the variance of
the noise. From Figure 8, it is clear that the implemented
optical flow technique is significantly less efficient than the
parametric bispectrum technique. It is mainly due to the
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Figure 7: Phase correlation surfaces between two blocks using (a)
our algorithm, (b) optical flow algorithm, (c) phase correlation
algorithm.

difficulty of the optical flow technique to cope with large
displacement and discontinuities in the motion field. On the
other hand, the normalization (equalization) operation in
the phase correlation technique enhances the noise power
at high frequencies, and it produces incorrect displacement
estimates on noisy image sequences. On the whole, the
bispectrum retains both amplitude and phase information
from the Fourier transform of a signal, unlike the other
techniques. This confirms the motion that the proposed
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Figure 8: PSNR obtained for noisy sequences (SNR = 10 dB).

technique of an image is a superior feature selector utilizing
the portions of the image spectrum most likely to contribute
to reliable motion estimation.

In terms of complexity, this is measured by the compu-
tation time. All the computations are performed on Intel
centrino duo machines (Toshiba Satellite A100-579 T5500,
2 GHz(2 CPUs)) with Windows XP. The three algorithms
have been implemented using a prototype written in Matlab
6.5 R13. The comparison between three methods for the
motion estimation computation time (MECT) is shown in
Table 1.

We employ 60 frames of the video Tempete sequence.
We perform the motion compensation procedure for
each current frame k with respect to reference frames
k − r, where r = 1, 2, 3, and 4. The average PSNR of the
motion compensated images is given in Table 2, withTempete
sequence degraded with additive zero-mean Gaussian noise
to an SNR of 10 dB.

The average PSNR, PSNRavg, is given as follows:

PSNRavg = 1
F

F∑

i=1

PSNRi, (27)

where PSNRi is the measured PSNR for frame i and F is
the total number of frames. In Table 2, we observe that the
PSNRavg decreases with larger apparent disparity between the
global motion of the background and the local motion of the
foreground. For each value of r, we see that the PSNRavg is
higher for the proposed scheme than the other methods.
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Table 2: Average PSNR of motion compensated images for
the three motion estimation techniques (unit: dB) for Tempete
sequence.

r Our method Optical flow Phase correlation

1 10.80 10.50 10,21

2 10,23 9.83 9,59

3 9,93 9.59 9,25

4 9,68 9.24 8,81

7. Conclusion

In this paper, subpixel motion estimation algorithm
using bispectrum in the parametric domain was pre-
sented. We have presented a collection of datasets for
the evaluation of our method, available on the web at
http://vision.middlebury.edu/flow/. In the case of the data is
severely corrupted by additive Gaussian noises of unknown
covariance, our method suppresses the effects of noise
and simplifies the identification of the dominant peak on
the correlation surface, unlike other techniques. At high
noise levels SNR around 10 dB the optical flow and phase
correlation techniques fail, yet even under these extreme
conditions, the parametric bispectrum provides improve-
ment in performance over the other algorithms. Overall, our
scheme produces smoother displacement vector field with a
more accurate measure of object motion in different SNR
scenarios.
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