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1. Introduction

Camera array systems can capture multiview images of a
3D scene, which allow a viewer to observe the scene from
arbitrary viewpoints by using image-based rendering tech-
niques [1, 2]. Such systems require efficient coding schemes
owing to the large amount of data, typically consisting of
hundreds of views. Since they capture an identical scene from
slightly different viewpoints, significant correlations exist
among the multiview images. Most of conventional coding
methods, as well as currently developed MPEG standard,
exploit these correlations at the encoder using the concept
of disparity compensation [2]. However, they require high
encoding complexity and communication between cameras
with large data volume.

Distributed multiview coding methods provide a solu-
tion for such problems [3–6]. In these methods, each image
is encoded independently, but decoded jointly at a central
decoder. Since the intercamera communication is avoided,
low complexity encoding and a simple system configuration
can be achieved. The interimage correlation is exploited at
the decoder. Therefore, compression efficiency is still higher
than that possible by conventional intracoding methods.
In previous works, however, the decoder seems to pay
an unnecessary computational cost when the viewer only

observes a novel image synthesized at a desired viewpoint,
instead of the decoded images themselves. This is because it
first reconstructs input camera images and then synthesizes
the novel image with a general renderer using the decoded
images. To our knowledge, there is no approach so far that
synthesizes a novel image directly from the encoded data.

In this paper, we consider a system in which multiview
images are captured and encoded in a distributed fash-
ion and a viewer synthesizes a novel image at a desired
viewpoint by using this data. We propose an efficient
method that combines decoding and rendering processes so
that the novel image can be directly synthesized without
having to reconstruct all the input images. This method,
called rendering-oriented decoding, jointly performs two
key techniques, disparity compensation in the decoding
process and geometry estimation in the rendering pro-
cess, because they are essentially equivalent if the camera
parameters for the multiview images are known. When
the viewer only synthesizes a novel image, our method
requires lower computational cost than a typical method
that performs the above two processes separately. Our
method keeps the complexity of both the encoder and
decoder as low as a conventional intracoding method, while
attaining better coding performance thanks to the interimage
decoding.
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Figure 1: A typical structure of distributed multiview coding sys-
tems.

The rest of this paper is organized as follows. Section 2
briefly describes two basic schemes for this study: distributed
multiview coding techniques and an image-based rendering
algorithm. Section 3 presents our rendering-oriented decod-
ing method. Section 4 evaluates the coding efficiency and
processing time of our method compared to a conventional
intracoding method, and Section 5 concludes the paper.

2. Background

2.1. Distributed Multiview Coding. Figure 1 shows a typical
structure of distributed multiview coding systems. The
images are classified into two categories: key images (K)
and Wyner-Ziv images (W). The key images are encoded
and decoded independently with a conventional intraimage
coder. The Wyner-Ziv images are encoded independently
by applying a channel coder for their pixel values or
transformed coefficients, and the resulting parity bits are
transmitted to the decoder. To decode the Wyner-Ziv
image, its estimate, called side information (Y), is gener-
ated through disparity-compensated prediction using the
previously decoded key images, and the prediction error is
corrected by using the parity bits of the image.

The compression efficiency of the distributed coding
methods greatly depends on the accuracy of the side infor-
mation, because only a few parity bits are needed to correct
small prediction errors. If a geometry model of the target
scene is available, accurate side information can be generated
by warping the neighboring views [4]. For multiview video
sequences, to improve the quality of side information, the
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Figure 2: Light field parameterization and the reference regions
used for interpolating the synthesized region.

motion-compensated prediction can be combined with the
disparity-compensated one [5, 6].

2.2. Rendering Using Multiview Images. We assume that
multiview images are captured with calibrated cameras that
roughly lie on a plane and are arranged on a 2D grid (e.g.,
[7–13]), and that there is no prior knowledge of the scene
geometry. The light rays included in the multiview images
can be parameterized as a light field [14, 15] (s, t,u, v),
where (s, t) and (u, v) denote the positions and directions of
the light rays, respectively. Figure 2 shows a subspace (s,u)
of a light field constructed with input cameras arranged
on a regular grid with the same pose, for simplicity. For
synthesizing a novel image at a desired viewpoint (s0, z0),
light rays that pass through the viewpoint need to be
gathered. They must satisfy

u = f

z0

(
s− s0

)
, (1)

where f is the focal length of the input cameras. Since a
light field is usually composed of a finite number of input
cameras, geometry (depth) estimation is widely adopted
to appropriately interpolate the light rays that are not
actually captured with the cameras. Here, we first describe
a rendering method that estimates a per-pixel depth map
depending on the desired viewpoint [13, 16], and then
explain the locality of light rays used in the rendering
method.

2.2.1. Rendering Method. As shown in Figure 3, a layered
depth model, z = {zn | n = 1, 2, . . . ,N}, is assumed in the
object space to equally divide the disparity space as

1
zn
= 1

zmax
+
n− 1/2

N

(
1

zmin
− 1

zmax

)

, (2)

where zmax and zmin are the maximum and minimum depths
of the scene. We estimate the depth for each target light
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Figure 3: Configuration for rendering a desired view.

ray, r(x), where x represents the position of the light ray in
the desired view. At the intersection of the target light ray
with each of the depth layers (p(x, z)), we evaluate the color
consistency of the reference light rays, which correspond to
the back-projections of the intersection point to the input
cameras. The light rays are denoted by ri(x, z) where i is
the camera index. To prevent the occlusion effect and keep
computational cost low, this evaluation is only performed
on the k-nearest cameras (reference cameras). The color
consistency cost is therefore given by

C(x, z) = consistency
(
I
(
ri
(
x, z
))∣∣

i∈V
)
, (3)

where V is the set of camera indices near the target light
ray and I(·) denotes the color of the light ray. In our
implementation, we used the sum of variances for each RGB
component as the consistency measure, and set |V | = k = 4
as shown in Figure 3.

This cost function is smoothed in each depth layer in
order to reduce noise effects. For this smoothing, we use a
normal block filter

C(x, z) = 1
|S|

∑

x′∈S
C
(
x′, z

)
, (4)

where S is a rectangular window whose center is x. Finally,
the depth value that minimizes the cost is selected for each
target light ray:

zopt(x) = arg min
z

C(x, z). (5)

As in the depth estimation, we use k-nearest reference
light rays to interpolate the color of the target light ray.
This approach keeps the view-dependent components of the
target scene and prevents an unnecessarily blurred result
[17]. We use bilinear interpolation of the colors of the
reference light rays for the optimal depth:

I(r(x)) =
∑

i∈V
wi(x)I

(
ri
(
x, zopt(x)

))
. (6)

Here, wi(x) is the weight for the ith reference light ray
ri(x, zopt(x)), and it takes a floating-point value between 0
and 1 depending on the positions of the reference cameras
and the target light ray; wi(x) takes 1 if the target light ray

K
(recon.)

W
(parity)

DC
W

(recon.)

Geometry estimation

Free-viewpoint image

(a) Typical method

K
(recon.)

W
(parity)

Rendering-oriented
decoding

Free-viewpoint image

(b) Our method

Figure 4: Process flow for synthesizing a free-viewpoint image (DC:
disparity compensation).

passes through the ith camera position, while it takes 0 if it
passes through the other neighboring camera positions, and∑

i∈V wi(x) = 1.
Note that the reference camera set V depends on the

position of each target light ray x. Therefore, the number of
input cameras used for rendering the entire view depends on
the desired viewpoint. This rendering method, however, has
constant computational complexity regardless of the number
of input cameras, because it calculates the color and cost
for each target light ray. The computational complexity is
determined by the number of target light rays (i.e., the
resolution of the desired view) and the number of depth
layers.

2.2.2. Reference Region. For synthesizing a novel image, the
above rendering method does not require all light rays
acquired with the input cameras; instead, it only requires the
light rays in reference regions, which we define as segments
in the input images that include all of the reference light rays
used to synthesize a desired view. When we use the regular
camera arrangement shown in Figure 2, the reference regions
are described as

∣
∣
∣∣
∣u−

f

z0

(
s− s0

)
∣
∣
∣∣
∣ ≤

zmin + z0

zmin
∣
∣z0
∣
∣ f d, (7)

where d is the interval between the input cameras. This
means that the reference region in an input image is
a rectangular segment whose size is determined by the
parameters on the right-hand side of the equation. For
an irregular (practical) camera arrangement, the reference
regions are similarly defined as quadrangular segments in the
input images.

Based on the locality of the reference regions, several
camera array systems [8–10] use a region of interest (ROI)
approach that only transmits or decodes image segments
including the reference regions to reduce the data amount.
However, they do not address inter-view prediction. Our
method, by contrast, decodes the light rays in the reference
regions with inter-view prediction based on a distributed
coding approach. Moreover, since the inter-view prediction is
incorporated into the geometry estimation in the rendering
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process, our method keeps the decoder complexity as low as
an intracoding method.

3. Rendering-Oriented Decoding

The rendering method described in Section 2.2.1 is applica-
ble if all reference regions are reconstructed and available.
Therefore, as shown in Figure 4(a), typical methods first
reconstruct the multiview images by using the decoding
method described in Section 2.1, and then perform render-
ing using the reconstructed images. However, they seem to
pay an unnecessary computational cost, because disparity
compensation in the decoding process and geometry estima-
tion in the rendering process are essentially equivalent if the
camera parameters for the multiview images are known, and
not all the reconstructed images are used for the rendering.

To synthesize a desired view directly, we propose
rendering-oriented decoding method, in which the decoding
of the Wyner-Ziv images is incorporated into the rendering

process, as shown in Figure 4(b). The Wyner-Ziv images are
therefore not reconstructed explicitly, and only the refer-
ence light rays in the Wyner-Ziv images are reconstructed
implicitly in the rendering process. Our method uses a simple
coset code for the Wyner-Ziv images. As with a conventional
intracoding method, it keeps both the encoder and decoder
low complexity.

3.1. Rendering Method with a Coset Code. The input mul-
tiview images are divided into key images and Wyner-Ziv
images. At the encoder, the key images are encoded using a
conventional intraimage coder. For the Wyner-Ziv images,
each RGB value of a pixel is represented by M cosets,
Cm (m = 1, 2, . . . ,M), in a memoryless fashion [18].

At the decoder, we first reconstruct the key images and
coset indices for the Wyner-Ziv images. The side information
for each target light ray and each depth layer, Y(x, z), is then
calculated by interpolating the colors of the reference light
rays in the key images as follows:

Y(x, z) =
∑

i∈VK
wi(x)I

(
ri(x, z)

)

∑
i∈VK

wi(x)
. (8)

Here, VK is the set of camera indices for the key images in
the reference camera set V . This side information is used to
reconstruct the reference light rays of near Wyner-Ziv images
in a maximum likelihood sense by

Î
(
ri(x, z)

∣
∣
i∈VW

) = arg min
cj∈Cm,q

(
cj − Yq(x, z)

)2
∣∣
∣
q∈{R,G,B},

(9)

where VW is the set of camera indices for the Wyner-Ziv
images inV , and cj is a codeword in the coset Cm,q of the light
ray ri(x, z)|i∈VW

for each RGB component q. This equation
means that our method reconstructs only the reference
light rays in the Wyner-Ziv images. We then evaluate the
color consistency cost of the reconstructed reference light
rays (3), smooth the cost (4), and estimate the depth and
color for each target light ray (5) and (6). Since the extra
computational cost for (8) and (9) is not too high, we can
keep the complexity of this rendering method as low as
that of the original one described in Section 2.2.1. In the
experiments, we arranged the key images and Wyner-Ziv
images as shown in Figure 1; therefore, |VK | = |VW | = 2
for all target light rays.
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(a) City (b) Santa

Figure 7: Parts of (a) City and (b) Santa image sets, which are captured on a regular 2D grid by moving a single camera.

Figure 8: Parts of Meeting room image set, which are captured with multiple cameras that roughly lie on a 2D grid.

3.2. Improving Coding Efficiency by Using Edge Information.
When the side information for the Wyner-Ziv images is
generated, smooth regions can be easily predicted, while edge
regions are difficult to predict because of occlusions. In other
words, the predicted color (side information) given by (8)
is accurate enough in the smooth regions, but it includes
a larger error in the edge regions [6]. We therefore use an
algorithm that performs the coset decoding only in the edge
regions and uses the predicted color itself as the interpolated

color in the smooth regions. This reconstruction algorithm
is described as follows:

Î
(
ri(x, z)

∣
∣
i∈VW

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arg min
cj∈Cm,q

(
cj − Yq(x, z)

)2
∣
∣∣
q∈{R,G,B}

if ri(x, z) is in edge regions

Y(x, z), otherwise.

(10)



6 EURASIP Journal on Image and Video Processing

(a) (b)

Figure 9: Extracted edge regions in an input image of (a) Santa and
(b) Meeting room image sets.

The encoder only needs to send coset indices that correspond
to edge regions of the Wyner-Ziv images, as well as mask
information that indicates the position of the edge regions.
This algorithm therefore improves coding efficiency.

3.3. Implementation. Figure 5 shows the implementation
diagram of our method. We encode the key images by using
a standard intraimage coder consisting of discrete wavelet
transform (DWT) and SPIHT for each RGB component (we
used the implementation in QccPack [19]). For the Wyner-
Ziv images, we first map each RGB value of a pixel, vq, to a
coset Cm,q by the following function:

Cm,q =

⎧
⎪⎪⎨

⎪⎪⎩

vq mod M, if
⌊
vq
M

⌋
is even,

M − 1− (vq mod M
)
, otherwise.

(11)

The coset indices are then encoded with DWT and SPIHT
for each RGB component. Since we use the lossy coder for
encoding the coset indices, we choose the above mapping
function, instead of the regular modulo M function, to
prevent drastic changes in codewords with a small error
in the coset index. A similar technique is also used in
[20]. At the decoder, we decode the SPIHT and perform
the rendering-oriented decoding with the key images and
the decoded coset indices of the Wyner-Ziv images. In the
experiments, we only set M to numbers to the power of two,
which is described as M = logM.

For exploiting edge information as described in
Section 3.2, we implemented a simple edge detector for the
Wyner-Ziv images. The Wyner-Ziv images are divided into
a set of small rectangular blocks. If the sum of RGB color
variances within a block exceeds a threshold, the block is
considered as an edge region. The coset indices within the
extracted edge regions are encoded by using shape-adaptive
SPIHT [19] with a mask image for the edge regions.

4. Experiments

Compared to a typical method that performs a straight-
forward decoding and rendering, as shown in Figure 4(a),
our rendering-oriented decoding method is of low com-
plexity because it does not perform disparity compensation
explicitly and does not reconstruct all of the light rays in
the Wyner-Ziv images. Instead, our method has a similar

Table 1: Specifications of the input image sets and parameters of
the edge detection and rendering methods used in the experiments.

City, Santa Meeting room

Number of input images 81 (9 × 9) 64 (8 × 8)

Resolution of input images 640 × 480 320 × 240

Edge detection block size 32 × 32 16 × 16

Edge detection threshold 200 200

Res. of synthesized images 640 × 480 300 × 300

Number of depth layers (N) 20 15

Smoothing window size (S) 15 × 15 11 × 11

complexity to a method that encodes all images as the key
images and synthesizes a novel image with a normal renderer
described in Section 2.2.1, which is referred to as all-key
method. In the following experiments, we therefore compare
the coding performance and processing time of these two
methods, as shown in Figure 6.

We used two types of input image sets, as shown in
Figures 7 and 8. The City and Santa image sets (Figure 7)
are captured by moving a single camera on a control stage,
which is an ideal condition for generating accurate side
information. Since they are captured on a regular 2D grid
with a fixed camera pose, we used a simple geometry for
calculating the position of the reference light rays in the
input images. On the other hand, the Meeting room image
set (Figure 8) is captured with our 64-camera array [13],
which corresponds to a more practical situation. The image
set has large color variations due to individual differences
between cameras, and some of them suffer from lens blur.
We performed geometry calibration of the cameras by using
Tsai’s method [21]. For the Meeting room image set, we
implemented our rendering-oriented decoding method and
the all-key method on a GPU (described in Section 4.2 in
detail) and evaluated the coding performance and processing
time using the GPU implementations. Table 1 summarizes
the parameters used in the following experiments, and
Figure 9 shows some examples of the edge regions extracted
with these parameters.

4.1. Coding Performance. As shown in Figure 6, we divided
input images into base-key images and the other (nonbase)
images. The base-key images were identical in both our
method and the all-key method; they were encoded by
using DWT and SPIHT or assumed to be losslessly available
for comparing the influence of the quality of the base-key
images on the rendering quality. The nonbase images were
encoded as Wyner-Ziv images in our method, as shown in
Figure 5, while as key images in the all-key method. The only
difference between the two encoding methods is therefore
whether they use the coset mapping and edge detection or
not. In the experiments, the bit rate of the base-key images
was fixed, while that of the nonbase images was controlled by
truncating the SPIHT bitstream.

Figures 10, 11, and 12 plot the rate-distortion perfor-
mance of our method either with or without the edge
detector (our method without the edge detector encodes the
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Figure 10: Rate-distortion curves for the City image set, obtained using (a) lossy and (b) lossless base-key images. The bit rate of the lossy
base-key images was 0.45 bpp and their average quality was 35.77 dB.

coset indices in all regions of the Wyner-Ziv images) and
that of the all-key method for different image sets, obtained
using lossy and lossless base-key images. The plots show the
reconstruction quality of synthesized images averaged for 10
random viewpoints (except the original viewpoints of the key
and Wyner-Ziv images), where the quality is calculated with
respect to the image synthesized from the uncompressed data
and expressed as peak signal-to-noise ratio (PSNR). The bit
rate of the nonbase images is expressed on the horizontal
axis. The bit rate of edge information is included in the plots
of our method using it.

As it can be seen from the plots, our method shows
superior coding performance compared to the all-key
method especially at low bit rates. Smaller M yields better
performance at low bit rates, because small errors in the
smooth regions can be corrected by a coset code with small
M, but it restricts the maximum quality which is important
at high bit rates. As for our method, the edge information
provides additional gain at low bit rates, since the edge
regions include larger errors than the smooth regions. When
comparing the results obtained using the lossy and lossless
base-key images, we can see that all of the methods similarly
benefit from the increase of the quality of the base-key
images, and the shapes of the rate-distortion curves maintain
their relationship to each other regardless of the quality of the
base-key images.

The plot “only using base-key” in each graph shows
the reconstruction quality when we render the novel image
by using the base-key images only (i.e., the bit rate of the
nonbase images is zero). In this case, the color is interpolated
in the same way as for generating the side information
(8), and the color consistency cost is calculated as the sum
of absolute difference of the reference light ray’s colors in
the base-key images. This reconstruction quality therefore
corresponds to the quality of the side information without
error correction. At very low bit rates, our method and the
all-key method produce lower-quality images than the side
information (under the dashed line). This means that the
novel images synthesized at those bit rates are negatively
affected from the reconstructed low-quality nonbase images.

This negative effect can be explained with the recon-
structed synthesized images and their error images (differ-
ence from the synthesized image obtained using uncom-
pressed data), as shown in Figure 13. Here, we used lossless
base-key images and set the bit rate of the nonbase images
to 0.15 bpp for all methods. If we only use the base-key
images, many of the errors appear in the edge regions; in
particular, some large structure errors can be seen in those
regions (e.g., the bottom-left building in Figure 13(1a) and
around the head of the candle in Figure 13(2a)). The all-key
method produces larger errors in the smooth regions than
the rendering method only using the base-key images (e.g.,
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Figure 11: Rate-distortion curves for the Santa image set, obtained using (a) lossy and (b) lossless base-key images. The bit rate of the lossy
base-key images was 0.45 bpp and their average quality was 36.75 dB.

the top-right part (background) in Figure 13(1b)), because
it synthesizes the interpolated color with the low-quality
nonbase images. The resulting images look blurred, as shown
in Figures 13(1b) and 13(2b). Our method without edge
information also produces the errors in the smooth regions,
but has better PSNR than the all-key method (Figures 13(1c)
and 13(2c)). Our method with edge information provides
the best reconstruction quality, where the smooth regions
keep high quality as using the base-key images only, and
errors in the edge regions are reduced (Figures 13(1d) and
13(2d)). The synthesized images obtained using the Meeting
room image set, depicted in Figure 14, also show similar
results; the all-key method produces too blurred images,
while our method with edge information produces higher-
quality images.

4.2. Processing Time. To compare the processing times of
our method and the all-key method, we implemented
the two methods on a GPU. For the all-key method, we
used the GPU implementation of the rendering algorithm
that we developed for real-time video-based rendering
using our camera array [13], because all the input images
are reconstructed and available before rendering. For the
rendering-oriented decoding method, we modified the GPU
implementation so that it can perform coset decoding before

evaluating the color consistency of reference light rays. The
reconstructed coset indices in the Wyner-Ziv image are
uploaded to the GPU texture memory as a texture in the
RGB channels, as well as the reconstructed key images. When
we use edge information, the edge mask for each Wyner-
Ziv image is also uploaded as a texture in the alpha channel
together with the coset indices in the RGB channels. We used
OpenGL and fragment programs with Cg [22] for the GPU
implementation. The measurements were performed on an
Intel Xeon 5160 (3 GHz) dual processor machine with 3 GB
main memory and an NVIDIA GeForce 8800 Ultra graphics
card.

Figure 15 shows the processing time versus the number
of depth layers for our method and the all-key method. We
measured the average processing time for 100 executions of
both rendering methods for the Meeting room image set.
The processing time only includes the coset decoding and
rendering processes; that is, the key images and the coset
indices in the Wyner-Ziv images were decoded and uploaded
to the GPU texture memory before rendering.

The processing time of our rendering-oriented decoding
method is proportional to the number of depth layers. This
result is the same as that in the case of the original rendering
method, which is used for the all-key method. The processing
times of our methods with M = 6 and 7 are different. This is
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(a) Meeting room, using lossy base-key images (0.45 bpp, 29.23 dB)
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(b) Meeting room, using lossless base-key images

Figure 12: Rate-distortion curves for the Meeting room image set, obtained using (a) lossy and (b) lossless base-key images. The bit rate of
the lossy base-key images was 0.45 bpp and their average quality was 29.23 dB.

because we only need to check two candidates in coset decod-
ing for M = 7, while we need to check 2(8−M) candidates (or
determine which two candidates should be evaluated based
on the higher-order bits of the side information) for M < 7,
resulting in higher complexity. The difference between our
method and the all-key method is small: our method takes
about 7% and 14% more processing time than the all-key
method for M = 7 and 6, respectively. When our method
uses edge information, the processing time becomes slightly
faster than that without edge information for M = 6, because
we do not need to correct the reference light rays that are not
in the edge regions. On the other hand, the processing time
becomes slightly slower for M = 7, because there are only
two candidates for the coset decoding and checking if the
reference light ray is in the edge regions causes an overhead.

4.3. Discussion. The experimental results show that our
method has better coding performance than the all-key
method especially at low bit rates, while performing the
decoding and rendering as fast as the all-key method.
In particular, the coding performance for the City and
Santa image sets shows a clearer advantage of our method
than that for the Meeting room image set, because the
former image sets are suitable for generating accurate side
information. Although the Meeting room image set has large
color variations among input images, which makes it difficult

to generate accurate side information, our method still
provides higher quality than the all-key method at low bit
rates. In such a case, incorporating a color compensation
method among input views (e.g., [23, 24]) into the decoding
algorithm could help improve coding efficiency.

The experimental results also show that, at very low
bit rates, the rendering method only using base-key images
provides higher quality than our method and the all-key
method. This means that we can choose an appropriate
rendering method depending on the bit rate; the rendering
method only using base-key images at very low bit rates, our
method with the edge detector and a proper number of cosets
(M) at low and medium bit rates, and the all-key method
at high bit rates. Since we do not use a feedback channel
to control the bit rate of the Wyner-Ziv images [4, 5], to
determine the proper number of cosets at the encoder is still
difficult and it would be interesting future work.

Our rendering-oriented decoding method has the same
feature of the original rendering method; that is, the
processing time is proportional to the number of depth layers
and target light rays. This is because the coset decoding
(8)–(10) can be performed for each target light ray in a
desired view, as well as the original rendering process (3)–
(6). This feature is suitable for implementing the decoding
and rendering processes all on a GPU, because the GPU
can efficiently perform the same instructions for all the
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Figure 13: Synthesized images and their difference from that obtained using uncompressed data (multiplied by 8) for the City (top) and
Santa (bottom) image sets.

target pixels in parallel. Thanks to this implementation, our
rendering-oriented decoding is fast enough for real-time
processing as well as the original rendering method. We
have developed a camera array system that enables real-time
video-based rendering with the original rendering method
[13]. Therefore, if the cameras have a function that maps
pixel values to coset indices and encodes them with an
intraimage coder (e.g., the Axis 210 camera we used for
the camera array has a built-in JPEG encoding function),
we could construct a system that performs real-time video-
based rendering with improved synthetic quality.

Our method, as well as typical distributed multiview
coding methods, would have worse coding performance than
conventional methods that perform disparity-compensated
prediction at the encoder. However, for the scenario
described in this paper (rendering a novel view from encoded
data), our method has a clear advantage in computational
cost as follows. The conventional method that performs
disparity compensation at the encoder needs to separately
perform geometry estimation at the decoder for rendering

a novel view; there is no way to jointly perform these two
processes because the encoder and decoder are separated.
The typical distributed multiview coding method performs
disparity compensation at the decoder, but still separately
performs geometry estimation at the decoder for the render-
ing, as shown in Figure 4(a). Our method, by contrast, jointly
performs disparity compensation and geometry estimation
at the decoder, which can make the total computational
cost of the encoder and decoder lower than the above two
methods.

We compared the coding performance of our method
and the all-key method at novel viewpoints, instead of at
the viewpoints of the Wyner-Ziv images, because of the
following two reasons: (1) to our knowledge, all existing
works about distributed multiview coding focus on recon-
structing the Wyner-Ziv images; they therefore measure the
reconstruction quality at the viewpoints of the Wyner-Ziv
images. However, for the free-viewpoint rendering scenario
described in this paper, it is more natural to select novel
viewpoints that are different from the original viewpoints of
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(a) All-key method
27.16 dB

(b) Ours with edge info. (M = 7)
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Figure 14: Synthesized images and their difference from that
obtained using uncompressed data (multiplied by 8) for the Meeting
room image set.

3020100

Number of depth layers

All-key method
w/o edge info. (M = 7)
w/o edge info. (M = 6)
With edge info. (M = 7)
With edge info. (M = 6)

0

10

20

30

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Figure 15: Processing time for different numbers of depth layers.

the key and Wyner-Ziv images; (2) image-based rendering
techniques tend to produce images having low PSNR (this
does not necessarily mean low visual quality), when we com-
pare the rendered image with the image captured by an actual
camera. This is because they do not correctly synthesize
view-dependent effects, such as specular components and

occluded regions in the scene. Therefore, if we evaluate the
reconstruction quality in PSNR at the original viewpoints of
the Wyner-Ziv images, our method, which uses an image-
based rendering method for reconstructing the images, has
a disadvantage compared to the all-key method, which uses
the encoded key images themselves as the reconstructed
images. If we evaluate the quality at novel viewpoints, as
we did in this paper, the disadvantage is avoided, because
both our method and the all-key method use an image-
based rendering method for the reconstruction and the
reference images are also synthesized with the same image-
based rendering method (i.e., the view-dependent effects
decrease in both the reference images and the reconstructed
images).

5. Conclusions

In this paper, we have presented rendering-oriented decoding
method for a distributed multiview coding system using a
coset code. By incorporating the reconstruction of reference
light rays in the Wyner-Ziv images into the rendering process,
our method directly synthesizes a novel image without
reconstructing all the Wyner-Ziv images explicitly. Our
method keeps both encoder and decoder complexity as low
as that of a conventional intracoding method, while attaining
better coding performance especially at low bit rates. Our
future work will be focused on finding a way to incorporate
the rendering-oriented decoding method into a real-time
video-based rendering system.
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