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The SONAR images are perturbed by speckle noise. The use of speckle reduction filters is necessary to optimize the image
exploitation procedures. This paper presents a new denoising method in the wavelet domain, which tends to reduce the speckle,
preserving the structural features and textural information of the scene. Shift-invariance associated with good directional selectivity
is important for the use of a wavelet transform (WT) in many fields of image processing. Generally, complex wavelet transforms,
for example, the Double Tree Complex Wavelet Transform (DT-CWT) have these useful properties. In this paper, we propose the
use of the DT-CWT in association with Maximum A Posteriori (MAP) filters. Such systems carry out different quality denoising
in regions with different homogeneity degree. We propose a solution for the reduction of this unwanted effect based on diversity
enhancement. The corresponding denoising algorithm is simple and fast. Some simulation results prove the performance obtained.
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1. Introduction

The SONAR images represent a particular case of Syn-
thetic Aperture Radar (SAR) images. The SAR images are
perturbed by speckle. It is of multiplicative nature. The
aim of a denoising algorithm is to reduce the noise level,
while preserving the image features. A first particularity of
SONAR images is their potentially low quality. Depending
on the acquisition conditions, the Signal to Noise Ratio
(SNR) can be very low. A second feature of the SONAR
images is that they contain almost homogeneous and
textured regions. The presence of edges is relatively rare.
The multiplicative speckle noise that disturbs the SONAR
images can be transformed into an additive noise with the aid
of a logarithm computation block. To obtain the denoising
result, the logarithm inversion is performed at the end of
the process. A potential architecture for a SONAR denoising
system is presented in Figure 1. The denoising system must
contain a mean correction block. The corresponding block in
Figure 1 computes the mean of the acquired image which is
equal with the mean of its noise-free component because the
speckle noise has unitary mean. Next it corrects the mean of
the result. The mean of the image at the output of the block
that inverts the logarithm is extracted and the mean of the
acquired image is added.

The first goal of this paper is the additive noise denoising
kernel in Figure 1.

The multiresolution analysis performed by the WT is a
powerful image denoising tool. In the wavelet domain, the
additive noise is uniformly spread throughout the coeffi-
cients, while most of the image information is concentrated
in the few largest ones (sparsity of the wavelet represen-
tation). The most straightforward way of distinguishing
information from noise in the wavelet domain consists of
thresholding the wavelet coefficients. Soft-thresholding is the
most popular strategy and has been theoretically justified
by Donoho and Johnstone [1]. They propose a three steps
denoising algorithm:

(1) the computation of a forward WT,

(2) the filtering with a nonlinear filter,

(3) the computation of the corresponding inverse
wavelet transform (IWT).

They use the Discrete Wavelet Transform (DWT) and
the soft-thresholding filter. They do not make any explicit
hypothesis on the noise-free image. So, this method can be
considered nonparametric. Their unique statistical hypoth-
esis refers to the noise, considered additive white and
Gaussian, (AWGN). The soft-thresholding filter is used to
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Figure 1: The architecture of the proposed denoising system. The
mean correction mechanism and the kernel are highlighted.

put to zero all the wavelet coefficients with the absolute
value smaller than a threshold. This threshold is selected to
minimize the min-max approximation error.

The soft-thresholding filter was enhanced in [2], where
the same hypotheses concerning the noise-free image and the
noise were considered.

Some relatively recent research has addressed the devel-
opment of statistical models of wavelet coefficients of natural
images and application of these models to image denoising
[3–9]. The corresponding signal processing treatments can
be considered as parametric denoising methods. An appeal-
ing particularity of the WTs is the interscale dependence.
If at a given scale a coefficient is large, its correspondent
at the next scale (having the same spatial coordinates) will
be also large. The wavelet coefficients statistical models
which exploit the dependence between coefficients give
better results compared to the ones using an independent
assumption [5, 6, 8, 9]. The denoising is performed in [5, 6]
with the aid of maximum a posteriori (MAP) filters.

If we use the denotation w for the wavelet coefficients of
the noise-free image and n for the wavelet coefficients of the
noise then it can be written, y = w + n. The MAP estimation
of w, ŵ, realized using the observation y is given by the
following MAP filter equation:

ŵ = arg max
w

{

log
(

pn
(

y −w
)

pw(w)
)}

, (1)

where px represents the probability density function (pdf) of
x. Generally, the above equation has no analytical solution.
There are some exceptions. For example if both w and n
are zero mean Gaussian distributed, with variances σ and σn
then the MAP filter becomes the very well known zero-order
Wiener filter [10]. If the coordinates of the current pixel are
(i, j), then the input-output relation of the local zero-order
Wiener filter is
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The model of natural images is given by heavy tailed distri-
butions, [5]. So, the utilization of zero-order Wiener filters

in image denoising applications cannot provide the best
performance. This drawback can be partially compensated
by a better estimation of the local variance of the noise-free
image, realized with the aid of a two-stage denoising system.
The first stage treats the acquired image providing a pilot for
the second stage [10–13]. A very nice contribution of [12]
is the idea of directional windows. The rectangular windows
used for the estimation of the local variance of the clean
image are replaced by elliptical windows oriented following
the preferential direction of the current detail subimage. This
is a first example of exploiting the intrascale dependence
of the wavelet coefficients, mentioned in [2]. Of course
the intrascale dependence of the wavelet coefficients is an
intrinsic property of a WT, but it can be exploited only if
there is a model at hand to describe it.

If n is Gaussian distributed and w has a Laplacian
distribution (this is a heavy tailed one), then the MAP filter
becomes an adaptive soft thresholding filter [5]. The local
variant of this MAP filter is described by
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where:
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⎧

⎨
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X , for X > 0,

0, otherwise.
(4)

The zero-order Wiener filter and the adaptive soft-
thresholding filter are two examples of marginal MAP filters.
If the models of the clean image and of the noise are bivariate
distributions then the MAP filter can take into account the
interscale dependence of the wavelet coefficients. This is the
case of the bishrink filter [5]. In this case the coefficient w2

represents the parent of the coefficient w1 (w2 is the wavelet
coefficient at the same position as w1, but at the next coarser
scale). Then, yk = wk + nk, k = 1, 2 and the vectors w, y, and
n can be constructed. We can write: y = w + n. The noise is
assumed i.i.d. Gaussian:

pn(n) = 1
2πσ2

n
· e−(n2

1+n2
2)/2σ2

n . (5)

The model of the noise-free image proposed in [5] is
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2πσ2

· e−(
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2 , (6)

another heavy tailed distribution. The input-output relation
of the bishrink filter is
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This estimator requires prior knowledge of the noise variance
and of the marginal variance of the clean image for each
wavelet coefficient. To estimate the noise variance from the
noisy wavelet coefficients, a robust median estimator from
the finest scale wavelet coefficients is used [1]:

σ̂2
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(∣
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∣
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)

0.6745
, yi ∈ subband HH. (8)
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In [5] the marginal variance of the kth coefficient is estimated
using neighboring coefficients in the region N(k), a squared
shaped window centered on this coefficient with size 7 × 7.
To make this estimation one gets σ2

y = σ2 + σ2
n where σ2

y

represents the marginal variance of noisy observations y1

and y2. For the estimation of the marginal variance of noisy
observations, in [5] the following relation is proposed:

σ̂2
y =

1
M

∑

yi∈N(k)

y2
i , (9)

where M is the size of the neighborhood N(k). Then σ can
be estimated as:

σ̂ =
√

(

σ̂2
y − σ̂2

n

)

+
. (10)

In [6], a similar technique is used, but the bivariate a
priori pdf of the clean image of SαS type is considered.
Unfortunately in this case the MAP filter equation can
not be solved analytically, some numerical methods being
required. The advantage of an analytical solution of the MAP
filter equation lies in a fast implementation (the numerical
methods are avoided) and in the possibility to perform a
sensitivity analysis.

The DWT has some drawbacks [7]: the lack of shift
invariance and the poor directional selectivity. These dis-
advantages can be diminished using a complex wavelet
transform, like, for example, the DT-CWT [7]. The MAP
filters constructed in [5, 6] act in the field of the DT-CWT.

In [8] a method for removing noise from digital images
is described, based on a statistical model of the coefficients
of overcomplete multiscale oriented basis. This decompo-
sition is named steerable pyramid. Following it, the image
is subdivided into subbands using filters that are polar-
separable in the Fourier domain. In scale, the subbands have
octave bandwidth with a functional form constrained by
a recursive system diagram. In orientation, the functional
form is chosen so that the set of filters at a given scale span
a rotation-invariant subspace. This decomposition can be
considered as a WT with shift invariance and very good
directional selectivity. Neighborhoods of coefficients at adja-
cent positions (intrascale dependence) and scales (interscale
dependence) are modeled as the product of two independent
random variables: a Gaussian vector and a hidden positive
scalar multiplier. The latter modulates the local variance of
the coefficients in the neighborhood, and is thus able to
account for the empirically observed correlation between the
coefficients amplitudes. Under this model, named Gaussian
scale mixture (GSM), the Bayesian least squares estimate
(BLS) of each coefficient reduces to a weighted average of the
local linear estimate over all possible values of the hidden
multiplier variable.

In [9], three novel wavelet domain denoising methods for
subband-adaptive, spatially-adaptive and multivalued image
denoising are developed. The core of this approach is the
estimation of the probability that a given coefficient contains
a significant noise-free component, which is called signal of
interest. The WTs used in [9] are the DWT and the UDWT.

The aim of this paper is to correct the behavior of the
bishrink filter in the homogeneous regions of very noisy images.

All the denoising methods already presented have some
drawbacks. A potential solution to correct these behaviors is
to fuse multiple denoising schemes. Using different denoising
schemes, we can consider the results as different estimates
of the image. Different schemes show dissimilar types of
artifacts. Through linear combination of the results, in [14]
the l2 norm of the error to find the optimum coefficients
in a least-square-error sense is minimized. The wavelet
transform, the contourlet transform, and the adaptive 2-
D Wiener filtering are used in [14] as blocks of denoising
schemes. Averaging of the results is also proposed as a
special case of linear combination in [14] and show that it
yields near-optimal performance. Its major disadvantage is the
oversmoothing. This fusion technique can be improved if
the mean computation is delocalized. Nonlocal (NL) means
algorithms are proposed in [15]. The NL-means algorithm
tries to take advantage of the high degree of redundancy of
any natural image. Every small window in a natural image
has many similar windows in the same image. In a very
general sense, one can define as “neighborhood of a pixel i”
any set of pixels j in the image so that a window around j
looks like a window around i. All pixels in that neighborhood
can be used for predicting the value at i. Given a discrete
noisy image x = {x(i) | i ∈ I} the estimated value
NLx(i) is computed as a weighted average of all the pixels
in the image, NLx(i) = ∑

j∈I β(i, j)x( j), where the weights
{β(i, j)} j depend on the similarity between the pixels i and
j and satisfy the usual conditions 0 ≤ β(i, j) ≤ 1 and
∑

j β(i, j) = 1. In order to compute the similarity between the
image pixels, a neighborhood system on I is defined. While
producing state-of-the-art denoising results, this method is
computationally impractical [16]. Its high computational
complexity is due to the cost of weights calculation for all
pixels in the image during the process of denoising. For
every pixel being processed, the whole image is searched,
and differences between corresponding neighborhoods are
computed. The complexity is then quadratic in the number
of image pixels. In [16] the computational complexity of
the algorithm proposed in [15] is addressed in a different
fashion. The basic idea proposed in [16] is to pre-classify
the image blocks according to fundamental characteristics,
such as their average gray values and gradient orientation.
This is performed in a first path in [16], and while denoising
in the second path, only blocks with similar characteristics
are used to compute the weights. Accessing these blocks
can be efficiently implemented with simple lookup tables.
The basic idea is then to combine ideas from [15], namely,
weighted average based on neighborhoods similarity, with
concepts that are classical in information theory and were
introduced in image denoising context. Images with much
finer texture and details will not benefit that much from
the denoising; while reducing most of the noise, this type of
processing will inevitably degrade important image features
[17]. The first problem is to distinguish between good and
bad candidates for denoising. Many natural images exhibit
a mosaic of piecewise smooth and texture patches. This
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type of image structure calls for position (spatial-) varying
filtering operation. Textured regions are characterized by
high local variance. In order to preserve the detailed structure
of such regions, the level of filtering should be reduced over
these regions. The basic concept amounts to a reduction
in the extent of filtering in regions where signal power
exceeds that of the noise. So, the solution proposed in [17]
supposes the anisotropic treatment of the acquired image
taking into account the local variance values of its regions.
This procedure can be seen like an NL-means algorithm
where the classification of the image blocks is done on the
basis of their local variance. The algorithm proposed in this
paper is of the same kind but it has two stages architecture.
The first stage performs a first denoising followed by a
classification of the denoised image blocks based on their
local variances. The second stage fuses multiple denoising
schemes. The fusion is done with the aid of the classes
provided by the first stage with an NL-means like algorithm.
But this algorithm does not operate on a single image. It
operates on the set of results of all the denoising schemes
to be fused. So in our case the delocalization is realized by the
diversification of the denoising schemes. We average some pixels
having the same coordinates in different results of different
denoising schemes. The running time of the algorithm
proposed in [16] is linear in the number of image pixels.
The algorithm in [17] is also fast. The algorithm proposed
in this paper is even faster. Our algorithm is explained
as follows.

First we prove that the performance of the bishrink filter
degrades with the increasing of σn and with the decreasing
of σ . Next we propose a new strategy for the correction
of those degradations. It is based on architecture in two-
stage. In the first stage a variant of the genuine denoising
algorithm proposed in [5] is applied obtaining a first result.
Computing the standard deviation of each pixel of the first
result, the pilot image is obtained. Its pixels are classified
in Nr regions according to their values. This is equivalent
with the image blocks preclassification proposed in [16].
Our classification criterion is the same as that proposed in
[17].

The set of coordinates of the pixels belonging to one
of these regions will represent one of the Nr masks used
in the second stage. At the basis of the construction of
the second stage lies the idea of diversification. Using
different diversification mechanisms, Nr denoising schemes
are obtained. Their output images are called partial results.
These results are synthesized with the aid of the Nr masks
generated at the end of the first stage. The synthesis is
achieved by NL-averaging.

The structure of this paper is the following. In Section 2 a
sensitivity analysis of the bishrink filter is presented and some
of its drawbacks are identified. Then a solution to reduce
these drawbacks is proposed and analyzed. In Section 3 all
the details of the proposed denoising algorithm are given.
Section 4 is dedicated to the presentation of the simulation
results and to some comparisons with the best available
wavelet based image denoising results conceived to illustrate
the effectiveness of the proposed algorithm. The paper’s
conclusion is formulated in Section 5.

2. The Bishrink Filter

The estimator described by (5)–(10) is named bishrink filter
and is applied in the field of the DT-CWT. The sensitivity of
the bishrink filter with the estimation of the noise standard
deviation (σ̂n) can be computed with the relation:

Sσ̂nŵ1
= dŵ1

dσ̂n
· σ̂n
ŵ1

. (11)

The input-output relation of the bishrink filter (7) can be put
in the following form:
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So, it can be written:
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The absolute value of this sensitivity is an increasing function
of σ̂n. When the value of the estimation of the noise standard
deviation is higher than the performance of the bishrink filter
is poorer.

Another very important parameter of the bishrink filter
is the local estimation of the marginal variance of the noise-
free image σ̂ . The sensitivity of the estimation ŵ1 with σ̂ is
given by
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(14)

This is a decreasing function of σ̂ . The precision of the
estimation based on the use of the bishrink filter decreases
with the decreasing of σ̂ . The local variance of a pixel σ̂ can
be interpreted in two ways. First it represents a homogeneity
degree measure for the region to which the considered pixel
belongs. This behavior can be observed in Figure 2, where
the Barbara image and the image composed by the local
variances of its pixels are presented together.

The regions with high homogeneity in the Barbara
image correspond to the dark regions in the image of local
variances. All the pixels belonging to a perfect homogeneous
region have the same value. So, their local variances are
equal with zero. The values of the pixels belonging to a
textured region oscillate in space and they have not null
local variances. Finally, the pixels belonging to an edge
have the higher local variances. So, the bishrink filter treats
the edges very well, the estimation of the textured regions
must be corrected and the worst treatment corresponds to the
homogeneous regions. The denoising quality of pixels with
slightly different σ will be very different in the homogeneous
regions. The sensitivity Sσ̂ŵ1

increases with the increasing of
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Figure 2: From left to right and up to bottom: original Barbara
image; the correspondent local variations image; four classes
containing textures and contours; two classes containing textures
and homogeneous regions. For each of the last six images the pixels
belonging to a different class are represented in yellow.

σ̂n. So, the degradation of the homogeneous and textured
zones of the noise-free image is amplified by the increasing of
the noise standard deviation. Consequently, the most difficult
regime of the bishrink filter corresponds to the treatment of
homogeneous regions of very noisy images.

Similar sensitivity analyses can be accomplished for the
zero-order Wiener filter or for the adaptive soft-thresholding
filter, concluding that their worst behavior corresponds to
the homogeneous regions of their noise-free input image
component. Secondly, the local variance of a pixel gives
some information about the frequency content of the region
to which the considered pixel belongs. If the pixels of a
given region have low local variances, then the considered
region contains low frequencies. If these pixels have high
local variances then the considered region contains high
frequencies. The aim of this paper is to reduce the distortion
produced by a denoising system based on the DT-CWT and

the bishrink filter as a consequence of the sensitivities Sσ̂nŵ1
and

Sσ̂ŵ1
.

(a)

(b)

Figure 3: (a) The result of the method in [5] contains some
distortions. (b) The distortions are almost everywhere reduced by
the proposed method.

3. The Solution Proposed

The denoising quality of pixels with slightly different local
variances is different. This difference is higher when the
corresponding values of the local variances are smaller. An
example can be observed in the first picture of Figure 3.

This picture represents a homogeneous region of the
Lena image affected by AWGN with σn = 100, denoised with
the method proposed in [5]. Some visible artifacts can be
observed.

Our goal is to make the denoising more uniform. First
we make the data more uniform with respect to the values
of the local variances of the noise-free component of the
acquired image. At the beginning of our first stage, the
denoising method proposed in [5] is applied obtaining a
first result. By segmenting the first result according to the
values of its local variances we obtain Nr classes. Each
of them contains estimations of the noise-free component
of the acquired image with local variances included into
a specified interval. The range of the local variances in
the interior of each class is relatively small. So the data
belonging to a considered class is uniform. A segmentation
example for the Barbara image can be observed in Figure 2,
corresponding to Nr = 6. The coordinates of the pixels
belonging to a class are registered into a correspondent
mask. These masks represent the result of the first stage of
the proposed denoising method. The classes are obtained
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segmenting the first result, which represents an estimation
of the noise-free component of the acquired image. The
second stage of the proposed denoising method treats once
again the acquired image. This time we suppose that the
local variances of the noise-free part of the acquired image
are identical with the local variances of the first result. With
the aid of the masks, the classes of the first result can
be imposed to the noise-free component of the acquired
image. This transfer procedure creates some uncertainty.
So we need to make the harmonization of the denoising
uncertainty among the classes of the noise-free component
of the acquired image. The uncertainty of the denoising must
be as small as possible. At the beginning of the second stage,
it is inversely proportional with the mean value of the local
variance which corresponds to that class. This stage can be
implemented by a diversification mechanism followed by a
fusion mechanism. The diversification mechanisms produce
Nr partial results for each class of the acquired image.
The idea of diversification, which lies at the basis of the
construction of the second stage of the proposed denoising
architecture, comes from the communications field where
spatial or temporal diversification techniques are used to add
a fixed amount of redundancy to a message, improving the
information transmission. Finally, the extra data are rejected
using a fusion procedure and the message is reconstructed
in a form as close as possible to its original one. The
diversification principle was already used in denoising. For
example, to reduce the unwanted oscillations near edges,
which appear because the DWT is not shift-invariant, Coif-
man and Donoho introduced the cycle-spinning concept,
[13]. Rotation invariance can be also obtained using the
diversification principle, [18]. This concept was also used in
[19, 20] to improve the denoising. The strategy proposed
in [14] can also be considered as diversification. In this
paper three diversification mechanisms are proposed. The
first one supposes the utilization of two different mother
wavelets. The others are based on the utilization of two
different variants of bishrink filter; they are adaptive bishrink
filter with global estimation of local variance and mixed
bishrink filter. Using these diversification mechanisms and
the genuine bishrink filter, Nr = 6 partial results are
obtained. The correspondent class of the final result can be
obtained by the fusion of the same classes of the partial
results. The simpler linear fusion technique for the Nr partial
results is their averaging. This method was already used
in denoising applications [13, 14, 18, 19]. In Figure 4, the
fusion system applied in the interior of a specified class is
presented. An averager is a linear lowpass filter. Its cut-off fre-
quency is inversely proportional with the number of partial
results.

The frequency content of a class corresponding to a
higher value of local variance is richer than the frequency
content of a class that corresponds to a smaller value of
local variance. So, for the fusion of a class corresponding
to a smaller value of local variance, an increased number
of partial results are necessary. The fusion procedure uses
a different number of partial results, from class to class,
because these classes have different uncertainties. It is based
on an NL-means like algorithm.

β1

β2

βL

Denoising system 1

Denoising system 2

Denoising system L

x = s+n

ŝ1

ŝ2

ŝL

...
...

ŝ =
L
∑

l=1

βl ŝl

Figure 4: Final result synthesized in the interior of a class.

Using the Nr masks generated at the end of the first
stage, we identify the Nr corresponding classes in each partial
result. Each one contains only the pixels with the coordinates
specified by the corresponding mask. The amount of noise
reduction and the oversmoothing degree in the interior
of a class increase with the increasing of the number of
partial results used. The fusion procedure proposed prevents
the oversmoothing using a different number of partial results
in regions with different local variances of the noise-free
component.

Our previous simulations suggest a value of six for Nr .
So, we have six classes and six denoising systems in Figure 4
(L = 6). For the first class we have only one weight (β1 = 1
and β2 = β3 = · · · = β6 = 0). For the second class we
have two weights (β1 = β2 = 1/2 and β3 = · · · = β6 = 0)
and so on. For the sixth class, all the weights of the system in
Figure 4 are not nulls (β1 = β2 = β3 = · · · = β6 = 1/6).

Other fusion techniques, like median filtering or max-
imum’s detection can be also imagined. A very interesting
fusion technique, based on the use of the multiwavelet DWT,
is proposed in [21].

Any of the three variants of the bishrink filter proposed
in this paper has better performance than the local zero-
order Wiener filter. The DT-CWT is superior to the DWT
or the UDWT in denoising applications. So, the performance
obtained using the proposed denoising method is superior to
the performance reported in [11] or in [12].

3.1. The Proposed Implementation. The architecture of the
proposed denoising kernel is presented in Figure 5. The first
stage of the algorithm is represented in red. It is composed
by four blocks. The first three blocks implement the genuine
denoising method based on the use of the bishrink filter
with global estimation of local variance (F2). Our previous
simulations indicate that F2 is the better variant of bishrink
filter from the PSNR’s enhancement point of view.

The first block of the first stage implements a DT-CWT
and the third one the corresponding inverse transform (IDT-
CWT). So, a first result ŝ2A is obtained. The pilot image
is generated by the segmentation of ŝ2A done by the block
Segm. The segmentation is realized by the comparison of the
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local standard deviation of each pixel of the first result with
some thresholds. This way the data contained in each class is
uniform. Registering the coordinates of the pixels belonging
to each class, six masks are generated.

The second stage of the denoising system in Figure 5 is
represented in blue. To realize the diversification required
in the second stage of the proposed algorithm, two types of
WT, DT-CWT A and DT-CWT B, are computed, obtaining
the wavelet coefficients wA and wB. Next, three variants of
bishrink filter: F1-the genuine one, F2-the adaptive bishrink
filter with global estimation of the local variance, and F3-
the mixed bishrink filter, are applied in the field of each DT-
CWT. Six sequences of estimations of the wavelet coefficients:
ŵ1A, ŵ2A, ŵ3A, ŵ1F , ŵ2F , and ŵ3F are obtained. For each one
the inverse WT, IDT-CWT, is computed, obtaining six partial
results: ŝ1A, ŝ2A, ŝ3A, ŝ1F , ŝ2F , and ŝ3F . This way the redundancy
was increased because the actual volume of data is six times
higher than the initial volume of data.

With the aid of the six masks generated at the end of the
first stage, the six classes of each partial result are identified.
Using the class selectors CS1–CS6, the partial results are
individually treated. Each mask is used by the corresponding
class selector. These systems select the pixels of their input
image with the coordinates belonging to the correspondent
mask. CS1 is associated with the class which contains the
higher values of the local standard deviation and treats the
image ŝ2A. It generates the first class of the final result ŝ1 and
contributes to the generation of the classes ŝ2 ÷ ŝ6 of the final
result. CS2 corresponds to the next class of ŝ2A and treats
the image ŝ3A, participating to the construction of the classes
ŝ2 ÷ ŝ6 of the final result. CS3 corresponds to the next class of
ŝ2A and treats the image ŝ1A. It contributes to the construction
of the classes ŝ3 ÷ ŝ6 of the final result and so on. Finally
CS6 is associated to the remaining class of ŝ2A and treats
the image ŝ3F . It participates to the construction of the sixth
class of the final result ŝ6 (that contains the smaller values
of the local variance). By NL-averaging (an NL-means like
methodology), the six classes of the final result are obtained.
The first class of the final result, ŝ1, is identical with the first
class of the image ŝ2A and represents the output of CS1. The
second class of the final result, ŝ2, is obtained averaging the
pixels of the outputs of CS1 and CS2 and so on. For the
last class of the final result ŝ6, containing soft textures and
homogeneous zones, all the pixels belonging to the outputs
of CS1, CS2, . . . , and CS6 are averaged. Assembling these
classes by concatenation, the final estimation is obtained. In
the following, the construction of each block in Figure 5 is
presented in detail.

3.2. The Diversification Mechanisms. The first diversification
mechanism refers to the construction of the DT-CWT. Since
an image usually consists of several regions of different
smoothness, the sparsity of its representation in a single
wavelet domain is limited. This naturally motivates using
multiple wavelet transforms to denoise. This procedure is
used, for example, in [20]. Besov balls are convex sets
of images whose Besov norms are bounded from above
by their radii. Projecting an image onto a Besov ball of

proper radius corresponds to a type of wavelet shrinkage for
image denoising. By defining Besov balls in multiple wavelet
domains and projecting onto their intersection using the
projection onto convex sets (POCSs) algorithm, an estimate
is obtained in [20], which effectively combine estimates from
multiple wavelet domains.

There are two kinds of filters used for the computation
of the DT-CWT: for the first decomposition level and for
the other levels [7]. The first diversification mechanism is
realized through the selection of two types of filters for
the first level. The first one is selected from the (9,7)-tap
Antonini filters pair and the second one corresponds to the
pair of Farras nearly symmetric filters for orthogonal 2-
channel perfect reconstruction filter bank, [22]. The idea of
diversification by using multiple mother wavelets was also
exploited in [19, 21], where the bishrink filter was associated
with DWT. The same WT was used in [20]. The synthesis of
the final result was carried out in [19] by simple averaging
and in [20, 21] by variational frameworks.

The other two diversification mechanisms refer to the
construction of the bishrink filter. F1 is the genuine bishrink
filter. The filter F2 is a bishrink filter with global estimation
of the local variance [23]. It was constructed for the reasons
presented in the following. The estimation in (9) is not very
precise. First, it is based on the correct assumption that y1

and y2 are modeled as zero mean random variables. But
their restrictions to the finite-neighborhood N(k) are not
necessarily zero mean random variables. So, it is better to
estimate first the means in the neighborhood:

μ̂y = 1
M

∑

yi∈N(k)

yi, (15)

and then the variances:

σ̂2
y =

1
M
·
∑

yi∈N(k)

(

yi − μ̂y
)2
. (16)

Finally, the relation (10) can be applied. In the case of the
bishrink filter with global estimation of the local variance,
the detail wavelet coefficients produced by the first tree of
the DT-CWT computation block are indexed with re and
the detail wavelet coefficients produced by the other tree are
indexed with im. Applying in order the relations (15), (16),
and (10) for the two trees implementing each of the DT-
CWTs, the local parameters: reμ̂y , reσ̂2

y , reσ̂ , imμ̂y , imσ̂2
y and imσ̂

are computed in each neighborhood N(k). Then the global
estimation of the marginal standard deviation can be done:

σ̂ = reσ̂ + imσ̂

2
. (17)

Using this estimation, the bishrink filter with global esti-
mation of the local variance is applied separately to the
real detail wavelet coefficients produced by each of the two
trees composing the DT-CWT. In Figure 6 a comparison
of the bishrink filter with the bishrink filter with global
estimation of the local variance is presented, for the Lena
image perturbed by AWGN with zero mean and standard
deviation σn = 100.
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Figure 5: The architecture of the proposed additive noise denoising kernel.
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Bishrink result BFGELV result

Figure 6: From left to right and up to bottom: Lena image; same image perturbed by a strong AWGN; genuine bishrink filter behavior; result
obtained using the new filter variant. The better quality of the new filter variant can be observed.

It can be observed that the bishrink filter with global
estimation of the local variance conserves better the extreme
values of the clean component of the input image.

The filter F3 is the mixed bishrink filter, proposed in
[19]. After three iterations of each DWT representing one
tree of a DT-CWT, the pdf of wavelet coefficients can be
considered Gaussian. The mixed bishrink filter acts for the
first three iterations of each DWT as a bishrink filter with
global estimation of local variance, for the forth iteration it

acts as a local adaptive Wiener filter and for the fifth iteration
(the last one) it acts as a hard thresholding filter, [1], with the
threshold equal with 3 σ̂n.

The effect of the filter F3 in the framework proposed
in [19] can be observed in Figure 7, (middle). Preliminary
extensive tests proved that the six estimates in Figure 5 are
classified from better to poor in the following sequence: ŝ2A,
ŝ3A, ŝ1A, ŝ1F , ŝ2F , and ŝ3F from the peak signal to noise ratio
(PSNR) point of view.
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(a) (b) (c)

Figure 7: Speckle removal for the sea-bed sonar Swansea image
(we are thankful to GESMA for providing this image). (a) acquired
image (ENL = 3.4), (b) result in [19] (ENL = 106), (c) proposed
method denoising result (ENL = 101.8). The result in [19] looks
over-smoothed. This behavior explains the small ENL reduction in
the case of the proposed method.

3.3. The Classification. The image ŝ2A is segmented in
classes whose elements have a value of the local vari-
ance, belonging to one of six possible intervals, Ip =
(αpσ̂2A max,αp+1σ̂2A max)1≤p≤6, where α1 = 0 and α7 = 1.
An example is presented in Figure 2. The Barbara image
perturbed by AWGN with σn = 25 was denoised obtaining
the partial result ŝ2A. The six classes of this partial result are
represented too.

The class selector CSp 1 ≤ p ≤ 6, in Figure 5 selects the
class associated to the interval I7-p.

The preliminary tests already mentioned also suggest the
following values for the bounds of the intervals Ip: α2 =
0.025,α3 = 0.05, α4 = 0.075,α5 = 0.1, and α6 = 0.25.

4. Simulation Results

We present three types of simulation results: for AWGN, for
synthesized speckle noise, and for real SONAR images.

4.1. AWGN. Firstly we compare the proposed additive noise
denoising kernel to other effective systems in the literature,
namely, the interscale orthonormal wavelet thresholding
denoising system proposed in [2], the multiwavelet approach
from [20], the genuine bishrink filter proposed in [5], the
processor based on the SαS family of distributions presented
in [6], the BLS-GSM system proposed in [8], and the
denoising system based on the estimation of the probability
of the presence of a signal of interest proposed in [9]. The
comparison was done using four images: Peppers, Lena, Boat
and Barbara, all having the same size 512× 512 pixels.

First, we compared the performance in terms of output
PSNRs. Next, we analyzed the visual aspect of the results. Let
s and ŝ denote the clean and the denoised images. The root

mean square (rms) of the approximation error is computed
by

ε =
√

√

√

√

1
Np

∑

q

(

sq − ŝq
)2

, (18)

where Np is the number of pixels. The PSNR in dB is given
by

PSNR = 20 log10

(

255
ε

)

. (19)

The PSNR values obtained using the denoising systems
already mentioned at the beginning of this section are
tabulated in Table 1 and are taken from [2, 5, 6, 8, 9, 20].

Analyzing this table, some observations can be made.
For all the test images and all noise levels, with only one
exception (Barbara, σn = 100) the better results are obtained
using the BLS-GSM algorithm. The PSNR enhancement
realized through the proposed algorithm follows closely the
performance of the BLS-GSM algorithm. There are two
implementations of the algorithm proposed in [6]. The
first one, which does not make a local estimation, was
considered for the treatment of the Lena image in Table 1.
The second implementation makes a local estimation and
has better performance. It was considered for the treatment
of the image Boat in Table 1. The use of SαS family requires
numerical methods to solve the MAP filter equation and
the solution obtained has not an analytical form. So, a
sensitivity analysis is not possible for the processor in
[6]. Unfortunately, neither the method described in [6]
nor the proposed denoising method exploits the intrascale
dependence of the wavelet coefficients. The advantage of the
system proposed in [9] is the consideration of the intrascale
dependence of the wavelet coefficients. Its disadvantage lies
in the utilization of the UDWT, which is perfectly shift
invariant but has a poor directional selectivity. It is also
very redundant. The comparisons already presented take into
account only the PSNR, which is a global quality measure.
In the following, we will present some considerations about
the visual quality of the results. First, a comparison of
the denoising system based on the genuine bishrink filter
described in [5] and the proposed denoising algorithm from
the homogeneous zones treatment point of view is reported.
An example for the image Lena is given in Figure 3. The clean
image was perturbed by AWGN with σn = 100, obtaining a
very noisy image. A region obtained cropping the image ŝ2A

is illustrated on the first line of Figure 3. The same region
was extracted from the image ŝ and is illustrated on the
second line of Figure 3. The proposed method decreases the
distortions introduced by the denoising system based on the
genuine bishrink filter [5] especially in the case of very noisy
images. An objective measure of the homogeneity degree of
a region is defined by the ratio of the square of the mean
and the variance of the pixels situated in the considered
region. In the following, this measure will be denoted by
Ra. In Table 2 we present the enhancements of Ra for the
proposed denoising method and for the method in [5] for the
Lena image. We have selected a 32 × 32 zone located in the
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Table 1: The PSNR values of denoised results for different test images and noise levels (σn) of (A) noisy, (B) system in [2], (C) system in
[20], (D) system in [5], (E) system in [6], (F) system in [8], (G) system in [9], and (H) proposed system.

(A) (B) (C) (D) (E) (F) (G) (H)

Lena Not l.e.

σn = 10 28.18 — — 35.34 34.75 35.61 35.24 35.36

σn = 15 24.65 — — 33.67 33.03 33.90 33.46 33.68

σn = 20 22.14 — — 32.40 31.87 32.66 32.20 32.43

σn = 25 20.17 — 29.41 31.40 30.89 31.69 31.21 31.49

σn = 30 18.62 — — 30.54 30.18 — 30.33 30.83

σn = 50 14.15 — — 28.27 — 28.61 — 28.56

σn = 100 8.13 — — 25.18 — 25.64 — 25.47

Boats with l.e.

σn = 10 28.15 32.90 — 33.10 33.09 33.58 33.25 33.33

σn = 15 24.62 30.85 — 31.36 31.44 31.70 31.32 31.45

σn = 20 22.10 29.47 — 30.08 30.19 30.38 29.93 30.14

σn = 25 20.17 28.44 28.55 29.06 29.21 29.37 28.89 29.12

σn = 30 18.58 27.63 — 28.31 28.51 — 28.04 28.38

σn = 50 24.74 25.50 — 26.01 — 26.38 — 26.12

σn = 100 22.44 22.97 — 23.31 — 23.75 — 23.45

Barbara

σn = 10 28.13 32.18 — 33.53 — 34.03 33.46 33.78

σn = 15 24.61 29.66 — 31.31 — 31.86 31.19 31.57

σn = 20 22.11 27.98 — 29.80 — 30.32 29.53 30.03

σn = 25 20.17 26.76 26.72 28.61 — 29.13 28.23 28.88

σn = 30 18.62 25.83 — 27.65 — — 27.17 27.93

σn = 50 14.15 23.70 — 25.40 — 25.48 — 25.45

σn = 100 8.13 21.76 — 22.54 — 22.61 — 22.63

Table 2: The Ra values of results for Lena test image and different
noise levels (σn) of (A) clean image, (B) noisy image, (C) system in
[5], and (D) proposed system.

Lena (A) (B) (C) (D)

σn = 25 2373 39.47 114.69 135.1

σn = 50 2373 9.87 136.48 218.46

σn = 100 2373 2.70 232.24 345.12

left-up corner. The degree of homogeneity of these regions
(expressed by Ra) differs from noise level to noise level.

In each experiment, the enhancement of Ra realized
through the proposed denoising system is higher than the
enhancement of Ra realized through the denoising system
in [5]. So our goal to accomplish a better treatment of the
homogeneous regions is objectively verified.

To continue the visual quality analysis we have imagined
the following procedure. First, the edges of the clean image
are detected using the Roberts detector. Next the edges of the
denoising result are detected using the same detector with the
same parameters. Next the rms of the difference of the two
edge images is computed and its dependence on the input
PSNR is sketched. In Figure 8 we represent the results of
the comparisons made on the basis of the procedure already
proposed between the proposed denoising system and the

system in [5] for the case of images: Peppers, Lena, Boat and
Barbara. The edges treatment realized through the proposed
denoising system is better than the edges treatment realized
through the system based on the genuine bishrink filter [5].

It is interesting to evaluate the various denoising methods
from a practical point of view: the computation time. With
the simple univariate method proposed in [2], the whole
denoising process (including four iterations of an orthonor-
mal wavelet transform) lasts approximately 1.6 seconds using
a Power Mac G5 workstation with 1.8-GHz PowerPC 970
CPU. With the interscale-dependent thresholding function
proposed in [2] the whole denoising task takes about 2.7
seconds.

In the same paper the computation times for some
of the other denoising methods presented in Table 1 are
appreciated. For example for the redundant BLS-GSM with
estimation window of size 3 × 3, the computation time
for denoising images is appreciated at 311.8 seconds. The
computation time of the ProbShrink algorithm described in
[9], for estimation window with size 3 × 3, is appreciated
in [2] at 6.6 seconds. In [5] is noted that the All Cops
implementation of the denoising algorithm based on the
association of the DT-CWT with the genuine bishrink filter
takes 25 seconds on a 450 MHz Pentium II. The All Cops
program for the proposed algorithm takes 41 seconds on
a 2.4 GHz Pentium IV. So, the classifications established
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following the computation speed criterion and the output
PSNR criterion for the denoising methods analyzed on the
basis of Table 1 are inverse. All the previous considerations
were made for images of size 512× 512.

4.2. Speckle Synthesized. In this case the noise is generated
following a Rayleigh distribution with unitary mean and
is of a multiplicative nature. It is generated computing the
square root of a sum of squares of two white Gaussian noises
having the same variance. For the Lena image, applying the
denoising system in Figure 1 we have obtained the result
presented in Figure 9. The PSNR gain performed by the
proposed method is in this case of 10 dB.

A comparison of the proposed method with the classical
speckle removing methods proposed by Lee, Frost, and Kuan
and with the wavelets based method from [19, 21], for the
example in Figure 9, is presented in Table 3. In the case of the
classical speckle removing methods, rectangular estimation
windows with size 7× 7 were used.

From the PSNR point of view our method has the best
performance among those compared in Table 3.

The proposed method can be considered equivalent
with the SAR denoising method proposed in [24]. The two
denoising algorithms proposed in [24] use the UDWT. It
is computed either with the aid of the Daubechies mother
wavelets db8 or with the pair of biorthogonal mother
wavelets bior9.7. The first denoising algorithm proposed in
[24] performs a local linear minimum mean square error
(LLMMSE) filtering in the UDWT domain. The second one
uses a MAP filter constructed supposing that the noise-
free wavelet coefficients and the wavelet coefficients of the
noise are distributed according to Generalized Gaussian
Distributions. The parameters of those pdfs are estimated
for each pixel of the input image. The corresponding MAP
filter equation is solved with the aid of numerical methods.
A comparison of the proposed denoising method with
the methods proposed in [24] is presented in Table 4. An
excellent criterion for the appreciation of the quality of
a denoising method conceived for the reduction of the
multiplicative noise is based on the computation of the
method noise. It represents the ratio of the noisy image
by the denoising result [25]. The method noise must be
identical with the input noise for a perfect denoising method.
It can be observed, analyzing Figure 9, that the input noise
(represented in the second picture from the first line) has
the same aspect like the method noise (represented in the
second picture from the second line). There are some fine
differences between the images of the input noise and of the
method noise, noticeable especially in the dark regions of the
noise-free component of the input image (represented in the
first picture of the first line in Figure 9). In the last picture
from the second line, a comparison between the histograms
of the input noise (up) and of the method noise (bottom)
is carried-out, highlighting the statistical differences between
these two noises. They are distributed following the same
type of law (a Rayleigh law), but the input noise has a higher
variance. It means that the contrast of the noise-free input
image is affected by the proposed denoising method.

Table 3: The PSNR of different speckle denoising methods (in dB).

Noisy Lee Frost Kuan [19] [21] Prop

21.4 27.2 27.0 28.1 28.6 29.6 31.4

Table 4: A comparison between the speckle reduction methods
described in [24], (A) raw image, (B) results obtained using
the association LLMSE-UWD, (C) results obtained using the
association MAP-UWD, and the proposed method (D).

(A) (B) (C) (D)

db8 bior 9.7 db8 bior 9.7

1-look 12.1 24.2 24.2 26.0 26.2 26.4

4-looks 17.8 28.2 28.3 29.4 29.6 29.9

16-looks 23.7 32.2 32.4 32.9 33.0 32.2

It can be observed that the proposed method makes a
good treatment of edges and of homogeneous regions. Its
drawback is the textures treatment, some of the fine textures
of the clean component of the acquired image being erased
by the denoising. A better analysis of the visual aspect of the
proposed method can be carried out if it is applied to the
test image proposed in [26], which consist of a collection
of six synthetic and real subimages. The subimages 1, 5,
and 6 represent real scenes. The subimage 2 contains three
types of synthesized textures and the subimage 4 contains
some synthesized homogeneous regions and contours. The
subimage 3 represents a zone of the Lena image. In this
case the speckle noise is synthesized following the procedure
presented in [26]. The methods from [21, 26] are compared
with the proposed denoising method.

A comparison of denoising methods is presented in
Figure 10, based on the subimages: 2, 3, and 4. The better
treatment of the homogeneous regions is performed by the
pure statistical method in [26] but it erases some contours
and textures carrying-out an over-smooth filtering. The
other two methods use the DT-CWT and treat the details
better. The method proposed in [21], based on the DT-
CWT-genuine bishrink filter denoising association does not
eliminate all the noise. This effect is easy visible in the homo-
geneous regions. The proposed denoising method makes a
good treatment of real scenes, completely eliminating the
noise and introducing small distortions. The treatment of
edges is excellent. The denoising of rough textures is more
accurate. Some distortions are visible at the borders of
homogeneous zones. In the interior of those regions residual
noise can be observed.

4.3. Real SONAR Images. Figure 7 shows the original
SONAR image “Swansea” and the results obtained with
the method in [19] and the proposed method. The visual
analysis of the filtered image proves the correctness of our
assumptions. Indeed the result of the proposed method has
a better visual aspect, the result in [19] being slightly over-
smoothed. An objective measure of the homogeneity degree
of a region was proposed for SAR images and it is named
enhancement of the Equivalent Number of Looks (ENLs).
It is defined by the ratio of the square of the mean and



12 EURASIP Journal on Image and Video Processing

8 10 12 14 16 18 20 22

0.18

0.11

Peppers

(a)

8 10 12 14 16 18 20 22

0.2

0.14

Lena

(b)

8 10 12 14 16 18 20 22

0.21

0.14

Boat

Bishrink filter
Proposed denoising method

(c)

8 10 12 14 16 18 20 22

0.185

0.14

Barbara

Bishrink filter
Proposed denoising method

(d)

Figure 8: A comparison of the contours treatment carried out through method in [5] and the proposed method.
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Figure 9: Synthesized speckle noise. First line, from left to right: clean image; synthesized speckle; noisy image (PSNR = 21.4 dB). Second
line, from left to right: denoised image (PSNR = 31.4 dB); method noise; histograms of the noise (up) and method noise (bottom).
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Figure 10: From up to bottom: noisy subimages; results obtained in
[26]; results obtained applying the method proposed in [21]; results
of the proposed denoising method.

the variance of the pixels situated in the considered region.
The enhancement of the ENL of a denoising method in a
homogeneous region is defined by the ratio of the ENLs
of the considered region computed before and after the
application of the method.

The performance obtained for homogeneous regions
through the proposed denoising method is certificated by the
important enhancement of the ENL obtained considering a
region of 120× 1000 pixels.

5. Conclusions

This paper presents an effective image denoising algorithm
for SONAR images. It is based on a new additive noise
denoising kernel that improves the treatment of homo-
geneous zones for very noisy images. Inspired from [5],
our algorithm uses one of the best WTs and a very good
MAP filter. It outperforms the visual aspect and the PSNR
enhancement performances of other denoising methods. The
diversity enhancement technique proposed, based on the
segmentation of the local standard deviation image obtained
at the output of the first stage, is more general. It can
be applied with minor modifications to other denoising
architectures. This is an ad-hoc method and we have not all
the rigorous theoretical justification yet.

We presented our simulation results and compared them
with published results in order to illustrate the effectiveness
of the proposed algorithm. The comparisons suggest that
the results obtained are competitive with the best results
reported in the literature for SONAR images denoising.

One of our future research works will be the inclusion
in the proposed algorithm of the intrascale dependence of
wavelet coefficients information. We believe that the idea of
directional estimation windows proposed in [12] is a good
candidate for this task. Another possible solution for the
inclusion of the intrascale dependence is the consideration of
the phase information provided by the DT-CWT in a similar

manner to the one recently proposed by Kingsbury [27], in
association with the BLS-GSM algorithm.

The research of new diversification mechanisms and of
new synthesis techniques, like, for example, that proposed in
[28], will represent other future directions for our team.

Finally we will provide a good theoretical explanation for
the selection of the thresholds of the segmentation algorithm.
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