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INTRODUCTION

Scale-invariant feature transform (SIFT) transforms a grayscale image into scale-invariant coordinates of local features that are
invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully
used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale informa-
tion and misses important visual information regarding color. In this paper, we present the development of a novel color feature
extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for
video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform
(CGSIFT) for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image,
representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image.
We also develop a new space description method using small image regions to represent global color features as the second step of
CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single
clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strat-
egy using clustering ensembles reveals very promising results for video shot detection.

Copyright © 2008 Yuchou Chang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

tics-based, and transform-based methods [2]. In this pa-

The recent rapid growth of multimedia databases and the in-
creasing demand to provide online access to these databases
have brought content-based video retrieval (CBVR) to the
attention of many researchers. Because manual indexing of
archived videos is infeasible due to prohibitively high la-
bor costs, automatic video retrieval is essential to the on-
line accessing of multimedia databases. Generally, video con-
tent can be represented by a hierarchical tree which contains
shots, scenes, and events [1]. A continuous video bitstream
is segmented into a series of cascaded video shots, which are
the basis for constructing high-level scenes and events with
semantic meanings. Hence, shot detection [2], the identifi-
cation of a continuously recorded sequence of image frames,
is critical for semantic analysis of video content.

Shot detection can generally be categorized into five
classes: pixel-based, histogram-based, feature-based, statis-

per, we focus on clustering-based shot detection [3-14]
which can be considered as a combination of feature-based
and statistics-based methods. Different clustering algorithms
such as hierarchical clustering [4, 10], k-means [5, 13],
self-organizing map (SOM) [7], fuzzy c-means [8, 11], co-
occurrence matrix [9], information-theoretic coclustering
[12], and other clustering methods [3, 6, 14] have been used
for shot detection in recent years.

Berkhin [15] classified clustering algorithms into 8
groups, for example, hierarchical methods, partitioning me-
thods, grid-based methods, constraint-based clustering, and
so forth. Generally, clustering-based shot detection methods
use just a single clustering algorithm to categorize frames
into corresponding shots. Each clustering method has its
own advantages and disadvantages that result in different
performance over different data sets, so no single method is
consistently the best. Considering the success of clustering
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ensembles [16-19] in machine learning in recent years, we
propose a novel clustering strategy using clustering ensem-
bles for shot detection.

Features that help the user or machine judge if a particu-
lar frame is contained within a shot are critical for shot detec-
tion. Many visual features have been proposed for describing
the content of the image [24]. Scale-invariant feature trans-
form (SIFT) has been shown to be the most robust, invariant
descriptor of local features [20-23]. However, SIFT operates
on grayscale images rather than the color images that make
up the vast majority of recorded videos. SIFT uses a one-
dimensional (1D) vector of scalar values for each pixel as a
local feature descriptor and cannot be extended to operate
on color images which generally consist of three-dimensional
(3D) vector values. The main difficulty of applying SIFT to
color images is that no color space is able to use 1D scalar val-
ues to represent colors. Although there are many color space
conversion methods that transform 3D RGB color values to
other color spaces such as HSV and CIE Lab, the transformed
color spaces still represent colors in 3D.

In order to use SIFT for color video shot detection, each
color video frame must be converted into color indices to
represent a small set of important colors present in the
frame. SIFT can then be applied to the color indices which
are treated as gray-level values in grayscale images for fea-
ture extraction. We adopt a very powerful color quantization
method called Fibonacci lattice-quantization [25] to quan-
tize color information and generate a palette of color in-
dices for SIFT. Based on this approach, we propose a novel
color feature descriptor using the global context of the video
frame. This new color feature descriptor, based on SIFT,
is called the color global scale-invariant feature transform
(CGSIFT) descriptor. We then apply clustering ensembles to
the new CGSIFT descriptor to detect shots in color video.

The rest of this paper is organized as follows. Section 2
describes background work related to SIFT and clustering
ensembles. Section 3 introduces the new CGSIFT for color
feature extraction based on SIFT. Shot detection structure
based on clustering ensembles is presented in Section 4.
Section 5 discusses processing time and storage space anal-
ysis to illustrate the advantages of the proposed method.
Experimental results are presented in Section 6 to evaluate
the performance of the proposed method based on the new
feature descriptor and clustering ensembles. Section 7 con-
cludes this work.

2. RELEVANT WORK
2.1. Scale-invariant feature transform

SIFT is a computer vision algorithm that extracts distinc-
tive features from an image. It was originally used for object
recognition [20, 22] and later applied to content-based image
retrieval [23]. Features extracted by SIFT are invariant to im-
age scale, rotation, and changing viewpoints. The algorithm
transforms a grayscale image into scale-invariant coordinates
of local features, which are the keypoints of the image. Each
keypoint is represented by a 128-dimension vector. SIFT con-
sists of 4 steps [20]: scale-space extrema detection, keypoint

localization, orientation assignment, and keypoint descrip-
tor assignment.

However, as previously noted, SIFT features are generally
derived from grayscale images. With the development and
advancements in multimedia technologies, the bulk of video
data of interest is in color. Color images contain more vi-
sual information than grayscale. For SIFT feature extraction,
video data must be converted to grayscale, causing impor-
tant visual information to be lost. In order to describe color
video contents as accurately as possible, we use a quantiza-
tion method based on Fibonacci lattices [25] to convert the
color image into color indices for SIFT. Furthermore, because
SIFT extracts only local features and cannot describe global
context for visual content analysis, a new feature-extraction
algorithm designed to address the color video shot detection
problem would be very useful. We propose such a technique:
color global scale-invariant feature transform (CGSIFT).

2.2, Clustering ensemble

Methods based on clustering ensembles have been shown
to be effective in improving the robustness and stability of
clustering algorithms [16-19]. Classical clustering ensemble
methods take multiple clusters into consideration by em-
ploying the following steps. First, a population of clusters
is obtained by executing different clustering algorithms on
the same data set. Second, an ensemble committee is con-
structed from all resulting clusters. Third, a consensus func-
tion is adopted to combine all clusters of the ensemble com-
mittee to obtain the final clusters.

Figure 1 shows the framework of a classical clustering en-
semble method. By leveraging the consensus across multi-
ple clusters, clustering ensembles give a generic knowledge
framework for combining multiple clusters. Two factors cru-
cial to the success of any clustering ensemble are the follow-
ing:

(i) the construction of an accurate and diverse ensemble
committee of diverse clusters;

(ii) the design of an appropriate consensus function to
combine the results of the ensemble committee.

Strehl and Ghosh [16] introduced the clustering ensem-
ble problem and provided three effective and efficient al-
gorithms to address the problem: cluster-based similarity
partitioning algorithm (CSPA), hypergraph partitioning al-
gorithm (HGPA), and meta-clustering algorithm (MCLA).
In order to benefit from the clustering ensemble approach,
objects should be represented using different features. The
number and/or location of initial cluster centers in iterative
algorithms such as k-means can be varied. The order of data
presentation in on-line methods such as BIRCH [27] can be
varied. A portfolio of very different clustering algorithms can
be jointly used. The experiments of Strehl and Ghosh show
that clustering ensembles can be used to develop robust, su-
perlinear clustering algorithms and to dramatically improve
sets of subspace clusterings for different research domains.

Topchy et al. [17] extended clustering ensemble research
in several regards. They introduced a unified representation
for multiple clusterings and formulated the corresponding
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FIGURE 1: Framework of classical clustering ensemble.

categorical clustering problem. They proposed a probabilis-
tic model of the consensus function using a finite mixture of
multinomial distributions in a space of clusterings. They also
demonstrated the efficiency of combining partitions gener-
ated by weak clustering algorithms that use data projections
and random data splits.

Fred and Jain [18], based on the idea of evidence accu-
mulation, considered that each partition is viewed as an inde-
pendent evidence of data organization. Individual data par-
titions are combined based on a voting mechanism to gen-
erate a new n X n similarity matrix for n patterns. The final
data partition of these n patterns is obtained by applying a
hierarchical agglomerative clustering algorithm on this ma-
trix. Kuncheva and Vetrov [19] used standard k-means that
started from a random initialization to evaluate the stabil-
ity of a clustering ensemble. From their experimental results
they concluded that ensembles are generally more stable than
single component clustering.

Clustering ensembles have demonstrated stable and ac-
curate clustering results through a large number of experi-
ments on real and synthetic data in the literature. We employ
them here to group color video shots based on the features
detected by our CGSIFT algorithm.

3. FEATURE EXTRACTION USING CGSIFT

3.1. Retain color information by
Fibonacci lattice- quantization

24-bit color images have three color components: red, green,
and blue, which are combined to generate over 16 million
unique colors. Compared to a 256 grayscale image, a color
image can convey much more visual information, providing
the human perceptual system with much more details about
the scene. However, not all 16 million colors are distinguish-
able by humans, particularly if colors are very similar.

FIGUre 2: Points of the Fibonacci lattice in a complex plane.

Color quantization [26] is a sampling process of 3D color
spaces (RGB, CIE Lab, HSV, etc.) to form a subset of colors
known as the palette which are then used to represent the
original color image. Color quantization is particularly con-
venient for color image compression, transmission, and dis-
play. Unlike most color quantization methods that generate
a color palette with three separate color components for each
color in the selected subset, quantization using Fibonacci lat-
tices denotes colors using single scalar values. These scalar
values can be used to denote visual “distance” between their
corresponding colors. However, traditional color quantiza-
tion algorithms such as uniform [29], median cut [29], and
Octree [30] use palette indices only to point to the stored,
quantized 3D color values. Attributes of this new quantiza-
tion method are very useful for our application: we use Fi-
bonacci lattice-quantization to convert colors into 256 scalar
color indices and then use these indices to construct SIFT.

The Fibonacci lattice sampling scheme proposed in [25]
provides a uniform quantization of CIE Lab color space and
a way to establish a partial order relation on the set of points.
For each different L value in CIE Lab color space, a complex
plane in polar coordinates is used to define a spiral lattice as
a convenient means for sampling. The following set of points
in the (a, b) plane constitutes a spiral lattice:

zy, =10 7§ €R, neZ (1)

Figure 2 shows an example of the spiral, Fibonacci lattice
for T = (/5 —1)/2 and § = 1/2. Each point z, is identified
by its index n. Parameters 7 and § determine the axial distri-
bution and the radial distribution of the points, respectively.
If there exist N luminance (L) values and N, colors in the
corresponding (a, b) plane, for each color in the palette, the
corresponding symbol is determined by adding its chromi-
nance index 7 to a multiple of its luminance index i:

q=n+Np-i. (2)
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Consequently, the L, a, and b values for any color from
the palette can be reconstructed from its symbol q. For a pixel
p> with color components L, a,, and b, the process of deter-
mining the closest palette point starts with finding the closest
luminance level Lg from the Ny levels available in the palette.
The luminance level Lg determines an (a, b) plane and one
of the points z,, 0 < n < Ny, in that plane is the minimum
mean square error (MSE) solution. The exact solution, g, is
the point whose squared distance to the origin is the closest
tor, = a; +by.

These L values can approximately denote the luminance
levels of the image. Since the (a, b) plane is not circular, there
will be points in the Fibonacci lattice whose colors are not
valid in RGB color space. Thus, we label all these points as
“range invalid.” The points are given by z, = S./ne/(>™ %),
where 7 = (/5 - 1)/2, ap = 0.05, and S = 1.5. For a
400 x 300 image shown in Figure 3(a) having 43963 colors,
the L component is quantized into 12 user-selected values (0,
10, 20, 30, 40, 50, 65, 70, 76, 85, 94, and 100). These L values
and N, = 60 points on each plane are used to construct the
palette. Therefore, the size of palette is 12 X 60 = 720.

Figure 3(b) shows the quantized image with 106 colors
in the palette. Each pixel is labeled by the one-dimensional
symbol g, which not only is the index of an entry in the
palette, but also represents the color information to some ex-
tent. Compared with Figure 3(c) of a 256 grayscale image,
the red car and green trees are much easier to distinguish
in the quantized image (Figure 3(b)) despite the grayscale
frame having more levels (256) than the frame quantized by
Fibonacci lattices (106). Easily distinguished colors can ap-
pear very similar in a grayscale image. Because human per-
ception contrast in quantized images can be measured by the
distance between the g symbols of two colors, it is more ac-
curate to construct SIFT based on color indices to a palette
constructed by Fibonacci lattice-quantization than using 256
levels of grayscale.

Using this attribute of Fibonacci lattice-quantization, we
can retain color and visual contrast information in con-
structing accurate SIFT features from color video frames. Ac-
cording to (3), we perform a normalization process on quan-
tized frames to obtain SIFT keypoint descriptors:

~ q(%, ) = qmin

In(x, ) = X 255. (3)

max — ¢min

In the equation, Iy(x, y) is the normalized value at the cur-
rent position (x, y) in the image, gmax and gmin are maxi-
mum and minimum symbol values within the image, and
q(x, y) is the current pixel symbol value. After this nor-
malization process, pixel symbol values are normalized to
be between 0 and 255 and treated as gray-level values. The
procedures in [20] can then be applied to this constructed
grayscale image to obtain keypoint descriptors.

3.2. Join global context information into color SIFT

In order to extend local SIFT features to global features which
can better describe the contents of the whole frame, we par-
tition the image frame into symmetric regions to extract new

global features. Assume that, after performing SIFT based on
Fibonacci lattice-quantization, one image has N; keypoints,
each of which is a 128-dimension vector. We construct a tem-
plate shown in Figure 4 to gather position information for
constructing CGSIFT. This template consists of 24 distinct
regions that increase in size as their distance from the cen-
ter of the image increases. Generally, objects in the center of
an image attract more attention than surrounding objects,
which are often considered to be background or other triv-
ial details. For example, in Figure 3, the vehicles are the main
focus in the frame, and the trees and ground are background
and relatively unimportant. Hence, smaller regions in the
center part tend to describe more important contents, and
larger regions on the periphery tend to depict less important
details.

We give each region an order label to distinguish the par-
titions. The eight regions nearest the center are labeled as 1
to 8, the eight intermediate regions are 9 to 16, and outer-
most regions are 17 to 24. In each region, a mean color value
is calculated based on the symbol g of each pixel within the
region as follows:

NumP;
Sz Y e @)

VColorMean _i Num Pi

In (4), NumP; is the number of pixels in region 7, and q(x,
y) is the symbol g within the current region i. In a similar
manner, we calculate the color variance in each region:

VColorVar,i

Z ?iulmP,- (q(x) }/) - VColorMean,i ) :

NumP; ’

(5)

The third component of CGSIFT is the number of keypoints
in each region VNumkeypointsi» i = 1,2,...,24. Since key-
points can reflect the salient information within the image, if
one region has a higher number of keypoints, it should nat-
urally be considered as a more important part of the image
frame. The next two components of CGSIFT are the mean
and variance of the orientation of keypoints in the region
which are calculated by the original SIFT. These two com-
ponents are calculated according to (6) and (7), respectively:

Z NumKeyio(x y)

i=1 )

VOrientationMean,i = T 1= 1, 2, ey 24.
NumKey;

(6)

NumKey; is the number of keypoints in region 7, and o(x,
y) is the orientation of the keypoint within current region
i. Variances of the keypoints in each region are obtained as
follows:

VoOrientationvar _i
Z NumKey;

2
i=1 (O(x) y) - VOrientationMean ,i)
NumKey;
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(a) Original frame
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(b) Quantized image

(c) Grayscale image

FIGURE 3: (a) Original frame, (b) color quantized result using Fibonacci lattices, (c) corresponding gray frame.
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FIGURE 4: A new space description template for constructing
CGSIFT.

These five components of the CGSIFT (VcolorMean. i»
Veolorvar.is VNumKeypoints, i> VOrientationMean. i> and VOrientationVar. i)
are used to construct a 5 X 24 = 120-dimension feature vec-
tor of CGSIFT. Thus, CGSIFT combines the color, salient
points, and orientation information simultaneously, result-
ing in more robust operation than can be obtained using sin-
gle local SIFT grayscale feature. Moreover, CGSIFT can be
used as the basis for color video shot detection.

4. VIDEO SHOT DETECTION USING
CLUSTERING ENSEMBLES

As noted in Section 1, many different clustering methods
have been used for shot detection. We use a novel cluster-
ing strategy with clustering ensemble for shot detection. In-
stead of using a single clustering method, clustering ensem-
ble focuses on knowledge reuse [16] of the existing clustering
groups so as to achieve a reasonable and accurate final par-
tition result. k-means is a popular clustering method used
widely in the literature since 1967. We choose k-means [28]
as the basic clustering method to create clustering ensembles
because of its simplicity and efficiency. The k-means algo-
rithm attempts to minimize total intracluster variance as fol-
lows:

k
V= > Dist(xj,4,), (8)
=1 XjES,‘

1

where there are k clusters S, i = 1,2,...,k, y; is the cen-
troid of each cluster S;, and Dist(x;, ;) is a chosen distance
measure between a data point x; and the cluster centroid y;.
Dist(x;j, ;) can be Manhattan distance, Euclidean distance,
or Hamming distance.

In order to depict the essential CGSIFT feature distribu-
tion as accurately as possible, we adopt random initial clus-
tering centroids which generate different results depending
on the initial centroids selected. The procedure of using a
k-means single-clustering algorithm for processing a color
frame consists of the following steps.

(1) Determine the numbers of clusters Ki, K>, ..., Ky for
M k-means clusterings to form M clustering results on
CGSIFT features of a set of frames.

(2) For each single k-means clustering, randomly select Kj,
i =12,...,M, CGSIFT features of M frames as the
initial clustering centroids.

(3) Assign each frame to the group that has the closest cen-
troid based on the Euclidean distance measure.

(4) After all frames have been assigned to a group, recal-
culate the positions of the current clustering Kj, i =
1,2,...,M, centroids.

(5) Repeat steps (3) and (4) until the centroids no longer
move, then go to step (6).

(6) Repeat steps (2), (3), (4), and (5) until M separate k-
means clusterings have been created.

Using the clustering groups generated by the repeated ap-
plication of the k-means single-clustering method, the en-
semble committee is constructed for the next ensemble step.
We use the clustering-based similarity partition algorithm
(CSPA) [16] as the consensus function to yield a combined
clustering. (Complete details about CSPA can be found in
[16].) The combined clustering is used as the final partition
of the video shots.

5. PROCESSING TIME AND STORAGE SPACE ANALYSIS

The proposed shot detection algorithm is composed of two
parts: feature extraction and clustering. Because Fibonacci
lattice-quantization generates 1D scalar values rather than
3D vector values, it saves storage space. For example, for any
12-bit color palette (4096 colors) storing R, G, and B values
for each color, it needs 12 kilobytes of data for the palette.
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Using a Fibonacci palette, fewer than 50 bytes are needed
[25], because it is not required to store real color values. For
processing time complexity, since it is not necessary to search
3D color values in the palette like traditional color quanti-
zation methods, Fibonacci lattice-quantization only uses a
scalar value to reduce the searching time to assign color to
each pixel.

Feature extraction is carried out on partitioned symmet-
ric regions and five components of the feature are obtained
by processing each pixel five times or less, so its processing
time is less than O(5 x n?). Compared to an image histogram
[31], a classical and efficient feature in information retrieval
with processing time complexity O(n?), the proposed fea-
ture extraction algorithm has the same order of magnitude
(O(n?) for an n X n image) of computation. After the feature
extraction process, each color image is represented by a 120-
dimension vector of single-precision floating point numbers,
requiring just 120 x 32 bits = 0.47 kilobytes storage space.
However, for a frame or color image of 400 X 300, it will take
up 400 x 300 x 24 bits = 351.6 kilobytes. Compared to the
original color frame storage requirement, feature-based im-
age denotation reduces memory or disk space significantly,
especially for large color video databases.

The group calculation of clustering ensemble is the most
time-consuming portion of the proposed algorithm, espe-
cially when executed sequentially. However, parallel com-
puting [32] can be applied to run each single clustering on
a different processing unit at the same time, thus reducing
the overall processing time for the clustering ensemble. To
achieve parallel processing, the clustering ensemble could be
implemented in hardware such as a field programmable gate
array (FPGA), technology that has been used to accelerate
image retrieval in recent years [31, 33, 34]. Another option
is to use a graphics processing unit (GPU) for the computa-
tion. GPUs are known for their capability of processing large
amounts of data in parallel. Implementation of the proposed
algorithm for real-time applications is the next step of our
research, and the details are beyond the scope of this paper.

Through the analysis of time and space complexities
mentioned above, we can see that our CGSIFT feature extrac-
tion algorithm reduces computation time and storage space
requirements to some extent and maintains more acceptable
resource usage than histogram approaches. As for clustering
ensemble computation, we propose constructive methods to
lower its computational time while maintaining its high ac-
curacy. Our complexity analysis did not include SIFT because
it is a very robust local feature extraction algorithm that has
been thoroughly analyzed in many studies described in the
literature.

6. EXPERIMENTAL RESULTS

6.1. Testvideos and ground truth

» < » «

We used five videos, “campus,” “autos,” “Hoover Dam,” “Col-
orado,” and “Grand Canyon” to test CGSIFT, the proposed
feature extraction algorithm, and the new clustering strat-
egy. First, we used the “campus” and “autos” videos to test
clustering accuracy via clustering ensembles relative to the

original k-means single-clustering method. Then, in order to
avoid the bias from the better clustering strategy we proposed
in this paper, we applied the same k-means clustering to the
proposed CGSIFT and the traditional SIFT for comparison.
Finally, we used recall and precision rates as measures to test
the performance of the proposed approach on the “Hoover
Dam,” “Colorado,” and “Grand Canyon” videos and compare
it with that of other clustering-based methods.

At the outset, the “campus” and “autos” videos were man-
ually segmented into separate shots to establish the ground
truth for comparison. Each video has a total of 100 frames.
The “campus” footage contains 10 separate shots with
abrupt changes, and each shot contains exactly 10 frames;
“autos” contains 5 video shots with abrupt changes, each of
which contains 20 frames. The key frames of both videos are
shown in Figure 5.

6.2. Single clustering versus clustering ensembles
and CGSIFT versus SIFT

Since we manually determined the number of shots in each
video, we set the final partition number for both the clus-
tering ensemble and k-means methods to 10 and 5 for “cam-
pus” and “autos,” respectively. We used 10 groups of k-means
single-clustering with different initial clustering centroids to
construct the ensemble committee.

For each componential k-means single-clustering, we set
12 cluster centroids for the “campus” video and 8 cluster cen-
troids for the “autos” video. We repeated M = 10 k-means
single-clusterings for both of them to form 10 clustering re-
sults. After obtaining individual results from each of these
10 single-clusterings on 100 frames of “campus” and “autos,”
at the clustering ensemble stage, we set the number of cen-
troids in the final partition to 10 and 5 for the two videos,
respectively. CSPA was used to obtain final 10 and 5 parti-
tions. For the comparative k-means clustering algorithm, we
directly set its number of cluster centroids to be 10 and 5 at
the beginning.

Figure 6 shows that the approach employing the clus-
tering ensemble outperforms k-means single clustering.
Figure 6(a) shows that, for 10 abruptly changed shots in
“campus,” the clustering ensemble partitioned all 10 video
shots correctly. However, k-means wrongly partitions all
frames of shot 4 as shot 3, resulting in 0% accuracy for that
shot. Furthermore, for shots 2 and 10 respectively, only 90%,
and 70% of the frames are correctly labeled. As shown in
Figure 6(b), the clustering ensemble successfully grouped all
frames of five video shots of the “autos” video into the correct
shots. In contrast, k-means was unable to cluster any frames
of shot 1 into the correct shot, and it could not correctly clas-
sify all frames in shot 3.

When SIFT is applied to the grayscale image, multiple
keypoints are generated, each of which has a 128-dimension
vector. We used the average value of these 128-dimension
vectors to compare the CGSIFT performance via k-means
clustering. As shown in Figure 7, although shot 4 of CGSIFT
in video “campus” had 0% accuracy, the overall perfor-
mance was still much better than SIFT. In processing the
“autos” video, CGSIFT was clearly better than SIFT. Taken
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(b) 5 key frames in video “autos”

F1GURE 5: The key frames of abrupt change shots of the videos (a) “campus” and (b) “autos.”

120 T T T T T T T

100§---0--=0---0---@———0———O————O———0—— - 4
80

60

Correct rate (%)

40

20 F

Ten shots

-e~- Clustering ensemble
+- k-means

(a) Video “campus” video shot detection result

105 T T T T T

100¢p--------— O-———----— o D ————O———

95t . e

Correct rate (%)
©
S

75 . 1 1 1 1 1 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5

Five shots

-6~ Clustering ensemble
+ k-means

(b) Video “autos” video shot detection result

FIGURE 6: Performance comparison between clustering ensemble and k-means clustering.

in combination, the graphs in Figure 7 show that CGSIFT is
a significant improvement over SIFT for the two test videos.
This improvement is the result of CGSIFT considering color
and space relationships simultaneously—SIFT describes only
local contents in grayscale.

6.3. TRECVID

The TRECVID evaluation tools [35] were developed in con-
junction with a text retrieval conference (TREC), organized
to encourage research in information retrieval by provid-
ing a large test collection, uniform scoring procedures, and

a forum for organizations interested in comparing their re-
sults. In order to evaluate the robustness of the proposed fea-
ture extraction and clustering ensemble algorithms for color
video shot detection, we compared the proposed framework
to fuzzy c-means [11] and SOM-based [7] shot detection
methods. Because the main focus of this paper is the ex-
traction of robust features and the application of a novel
clustering strategy on unsupervised shot detection problem,
we chose clustering-based shot detection methods for com-
parison instead of shot change-based detection algorithms.
Unlike clustering-based shot detection algorithms, the latter
consider the time and sequence information.
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FIGURE 7: Performance comparison between CGSIFT and SIFT based on k-means clustering.

TaBLE 1: Video data used for comparison among algorithms.

Video No. of frames

No. of shots
Hoover Dam 540 27
Colorado 200 10
Grand Canyon 600 30

To compare performance, we used three videos (“Hoover
Dam,” “Colorado,” and “Grand Canyon”) from the open
video project associated with TRECVID 2001. Because our
algorithm is intended to construct a robust cut detection be-
tween shots, we manually removed gradual transition frames
to form the ground truth. Table 1 shows summary informa-
tion for the three selected videos.
We used recall and precision as performance metrics

[36]. They are defined in the equations below:

recall = _b
" D+Dy’
D )
precision = DiDy

In the equations, D is the number of shot transitions cor-
rectly detected by the algorithm. D) is the number of missed
detections, and Dr is the number of false detections (the
transitions that should have been detected but were not).
Similar to “campus” and “autos,” we set the number
of cluster centroids in each componential k-means single-
clustering to be 33, 12, and 35 for “Hoover Dam,” “Col-
orado,” and “Grand Canyon,” respectively, and the final par-
tition numbers to be 27, 10, and 30. Using clustering ensem-
ble and k-means clustering-based CGSIFT, we obtained the
performance comparison in Table 2. It can be seen that re-
call and precision measures are better for the proposed clus-

tering ensemble method than for fuzzy c-means, SOM, and
k-means clustering using SIFT.

From Table 2, we can see that the proposed algorithm
outperforms all other three methods. We note that the SOM-
based method [7] used 6 features in MPEG-7 to detect the
shots. Because we considered only the visual and not the
audio content of the video in this paper, we used only five
features: motion activity, color moments, color layout, edge
histogram, and homogeneous texture for SOM. Its perfor-
mance is worse than that of the proposed algorithm. Al-
though five visual features were used to describe video con-
tent, each feature focused on just a single aspect of the

content. Our CGSIFT feature obtained a better descrip-
tion. Furthermore, because fuzzy c-means [11] uses only a
histogram—a feature which does not incorporate spatial re-
lationship information—it is not as robust as the clustering
ensemble approach. Its performance was the worst of the se-
lected algorithms. Finally, the performance of k-means using
SIFT feature was also worse than that of the proposed algo-

rithm. This comparison indicates that the proposed method

using CGSIFT feature and clustering ensemble is more effi-
cient than the method using the original SIFT feature and
k-means.

Existing video shot segmentation can be classified into
two categories: shot change detection approach and cluster-
ing approach. The former measures the difference of adjacent
frames to judge whether the difference is significant enough
to detect the cut. On the other hand, the latter (clustering)
approach needs prior knowledge of the number of clusters to
group frames into corresponding sets. Both have their advan-
tages and disadvantages. Because our research work focuses
on robust color video frame feature extraction and a novel
unsupervised learning method, we only selected clustering-

based methods for comparison. In order to discriminate
shots having similar visual content in the clustering process,
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TaBLE 2: Performance evaluation of clustering ensemble, fuzzy c-means, SOM, and k-means on SIFT using “Hoover Dam,” “Colorado,” and

“Grand Canyon” videos.

Video Clustering ensemble Fuzzy c-means SOM k-means on SIFT
Recall Precision Recall Precision Recall Precision Recall Precision
Hoover Dam 100.0% 100.0% 65.4% 16.4% 92.3% 78.8% 88.5% 66.7%
Colorado 100.0% 100.0% 66.7% 17.0% 88.9% 90.0% 100.0% 60.0%
Grand Canyon 96.6% 90.6% 66.7% 13.8% 89.7% 82.9% 93.1% 58.0%

some constraints such as temporal changes and sequence
number could be added.

7. CONCLUSIONS

We have presented a color feature extraction algorithm and
clustering ensemble approach for video shot detection. First,
considering that the single color index value of Fibonacci
lattice-quantization can more accurately represent color than
can grayscale, we use this quantization method to preprocess
color frames of the video. Then, according to the template
reflecting spatial relationships, CGSIFT is constructed which
contains color and salient point information to provide color
global features. A clustering ensemble is used to group dif-
ferent frames into their corresponding shots so as to detect
the boundaries of the video shots. Experiments show that
the proposed video shot detection strategy has better perfor-
mance than the strategy using k-means single-clustering and
the SIFT descriptor.

In our future work, we will address the challenge of cre-
ating descriptors that incorporate color, space, and texture
simultaneously, ideally resulting in further increases in per-
formance and more robust operation. Furthermore, we will
address the problem of joining constraint information with
traditional clustering ensembles.
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