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1. INTRODUCTION

Speech is one of the most natural and important means of
communication between people. Automatic speech recog-
nition (ASR) can be described as the process of converting
an audio speech signal into a sequence of words by com-
puter. This allows people to interact with computers in a
way which may be more natural than through interfaces
such as keyboards and mice, and has already enabled many
real-world applications such as dictation systems and voice
controlled systems. A weakness of most modern ASR sys-
tems is their inability to cope robustly with audio corruption
which can arise from various sources, for example, environ-
mental noises such as engine noise or other people speak-
ing, reverberation effects, or transmission channel distor-
tions caused by the hardware used to capture the audio sig-
nal. Thus one of the main challenges facing ASR researchers
is how to develop ASR systems which are more robust to
these kinds of corruptions that are typically encountered
in real-world situations. One approach to this problem is
to introduce another modality to complement the acoustic
speech information which will be invariant to these sources
of corruption.

It has long been known that humans use available visual
information when trying to understand speech, especially in
noisy conditions [1]. The integral role of visual informa-
tion in speech perception is demonstrated by the McGurk
effect [2], where a person is shown a video recording of
one phoneme being spoken, but the sound of a different
phoneme being spoken is dubbed over it. This often results
in the person perceiving that he has heard a third interme-
diate phoneme. For example, a visual /ga/ combined with an
acoustic /ba/ is often heard as /da/. A video signal capturing
a speaker’s lip movements is unaffected by the types of cor-
ruptions outlined above and so it makes an intuitive choice
as a complementary modality with audio.

Indeed, as early as 1984, Petajan [3] demonstrated that
the addition of visual information can enable improved
speech recognition accuracy over purely acoustic systems,
as visual speech provides information which is not always
present in the audio signal. Of course it is important that
the new modality provides information which is as accu-
rate as possible and so there have been numerous studies
carried out to assess and improve the performance of vi-
sual speech recognition. In parallel with this, researchers have
been investigating effective methods for integrating the two
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Figure 1: The general process of automatic speech recognition.

modalities so that maximum benefit can be gained from their
combination.

A visual speech recognition system is very similar to a
standard audio speech recognition system. Figure 1 shows
the different stages of the typical recognition process. Before
the recognition process can begin, the speech models must be
constructed. This is usually performed by analyzing a train-
ing set of suitable video examples, so that the model parame-
ters for the speech units can be estimated. The speech models
are usually hidden Markov models (HMM) or artificial neural
networks (ANN). Once the models are constructed, the clas-
sifier can use them to calculate the most probable speech unit
when given some input video.

Visual features will usually be extracted from the video
frames using a process similar to that shown in Figure 2. De-
pending on the content of the video (i.e., whether it contains
more than one speaker’s face), it may be necessary to start
with a face detection stage which returns the most likely loca-
tion of the speaker’s face in the video frame. The consecutive
stages of face localization and mouth localization provide a
cropped image of the speaker’s mouth.

The lip parameterization stage may be geometric based
or image transform based. Petajan’s original system [3] is an
example of geometric-based feature extraction which used
simple thresholding of the mouth image to highlight the lip
area, and then measurements of mouth height, width, and
area were taken from that. Since then, many approaches have
been developed which exploit our knowledge of the shape
of a human mouth to fit more complex models to speak-
ers’ mouths. These methods include active contours (often
referred to as snakes) [4], deformable templates [5–10], active
shape models [11], and various other approaches [12–14].

Whereas geometric methods utilize knowledge of the
structure of the human mouth to extract features which de-
scribe its shape, image transform methods attempt to trans-
form the image pixel values of each video frame into a new
lower-dimensional space, which removes redundant infor-
mation and provides better class discrimination. As with
geometric-based approaches, there have also been numer-
ous studies using different image transform methods. These
methods include discrete cosine transform (DCT) [15–18],
discrete wavelet transform (DWT) [15, 19], principal com-
ponent analysis (PCA) [4, 15, 20], and linear discriminant
analysis (LDA) [21].

In [15], Potamianos et al. give a comparison of DCT,
DWT, Walsh, Karhunen-Loève transform (KLT), and PCA
transforms and conclude that the DWT and DCT transforms
are preferable to other transforms, such as PCA, which re-
quire training. They also tested the features under several
noisy video conditions including video field rate decima-
tion, additive white noise, and JPEG image compression and
showed that image transform-based features are quite robust

to these conditions. In this paper, we wish to carry out a com-
plementary study in which we will compare the performance
of a variety of different image transform-based feature types
for speaker-independent visual speech recognition of iso-
lated digits recorded in various noisy video conditions which
may occur in real-world operating conditions. This work ex-
tends upon our previous research on the use of geometric-
based features for audio-visual speech recognition subject to
both audio and video corruptions [22].

Specifically, we will compare the performance of features
extracted using the discrete cosine transform (DCT), dis-
crete wavelet transform (DWT), principal component anal-
ysis (PCA), linear discriminant analysis (LDA), and fast dis-
crete curvelet transform (FDCT). This will be the first re-
ported results of a system which uses FDCT features for
visual speech recognition. The video corruptions used in
our tests include video blurring, video compression, and a
novel form of video noise we call jitter which is designed
to simulate the corrupting effects of either camera move-
ment/vibration or the tilting/movement of the speaker’s head
while speaking. For each of the transforms, we will inves-
tigate various parameters which could affect their perfor-
mance, such as the feature selection method for DCT fea-
tures and the wavelet base and decomposition levels for DWT
features. We also investigate the performance improvement
gained by augmenting static visual features with their associ-
ated dynamic features.

In our experiments, we will be carrying out speaker-
independent isolated digit recognition tests using a large in-
ternationally standard database and while these experiments
will not show the absolute performance which would be
achieved on all other recognition tasks or databases, they
should allow judgments to be made about the expected com-
parative performance of the feature types on new data.

This paper is organized as follows. In Section 2, the im-
age transform feature types used in this work are discussed.
Section 3 outlines the preparation of the video data used in
experiments. Section 4 contains the experimental results and
discussion. Finally in Section 5, a summary is provided of the
main findings and conclusions which can be drawn from the
results.

2. IMAGE TRANSFORM TYPES

As was stated above, we will be comparing the performance
of five different image transform-based feature types. These
are DCT, DWT, PCA, LDA, and finally FDCT. The first four
of these are well known in the literature so we will not de-
scribe them again here. Instead, we refer the interested reader
to descriptions which can be found in [23]. However, the
FDCT is less well known, so a description is provided in the
next subsection.

2.1. Fast discrete curvelet transform

The curvelet transform is a relatively new multiscale trans-
form introduced and described in detail in [24]. The motiva-
tion for the development of the new transform was to find a
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Figure 2: The general process of visual feature extraction.

way to represent edges and other singularities along curves
in a way that was more efficient than existing transforms,
that is, less coefficients are required to reconstruct an edge
to a given degree of accuracy. Like the wavelet transform, the
curvelet transform uses frame elements indexed by scale and
location, but unlike the wavelet transform it also uses direc-
tional parameters. The transform is based on an anisotropic
scaling principle, unlike the isotropic scaling principle of the
wavelet transform.

Theoretically, therefore, such a transform may be able to
extract information about a speaker’s lip contour more effi-
ciently than the DCT or DWT. In [25], two implementations
of the curvelet transform for digital signals are described: one
using unequispaced fast Fourier transforms (FFTs) and an-
other using frequency wrapping. These transforms are re-
ferred to as fast discrete curvelet transforms. The MATLAB
toolkit Curvelab [26] was used to implement an FDCT (using
unequispaced FFTs) in this work.

3. EXPERIMENTAL DATA

3.1. XM2VTS database

For this work we used the XM2VTS database [27]. This
database contains 295 speakers, roughly balanced between
genders. Each speaker was recorded saying all ten digits four
times in four different sessions in a quiet environment. The
data was divided into 200 speakers for training and 95 speak-
ers for testing. Thus, there were 3200 training occurrences
of each digit and the test data includes 15200 test tokens.
This provides sufficient data to train speaker-independent
digit models. The data is supplied as continuous digit se-
quences with only sentence-level transcriptions. However, as
was stated previously, for this work we decided to carry out
isolated digit recognition experiments, so a forced alignment
procedure was initially carried out on all utterances using the
hidden Markov toolkit (HTK) [11] in order to obtain word
boundary positions. The database is also supplied with lip
tracking results, using the color-based approach described by
Ramos Sanchez [28]. These were used to localize the mouth
region of interest (ROI) in each video frame.

3.2. Video noise

Three different types of noise were considered which repre-
sent corruption likely to occur in a real-world application:
compression, blurring, and jitter (see Figure 3).

3.2.1. Compression

Video that is being streamed over a network where band-
width is constrained, or stored on a computer where storage

Figure 3: From left to right: an original video frame, the same frame
compressed (MPEG4 at 4 Kbps), blurred with a Gaussian filter with
a standard deviation of 12, and with jitter level 12 applied.

space may be limited, is usually compressed using a codec.
Most modern mobile phones are capable of recording and
transmitting video recordings, and these are normally highly
compressed to reduce bandwidth requirements. The MPEG4
codec was used as it is a modern and popular format, used
commonly for sharing files on the Internet. Each video file
in the test set was compressed to 7 different levels of bitrate,
that is, 512, 256, 128, 64, 32, 16, 8, 4 Kbps.

3.2.2. Blurring

Image blurring represents real-world situations where the
video camera loses focus on the speaker (many webcams
must be manually focused) or situations where the speaker is
far away from the camera. In such a situation, the portion of
the video frame containing the speaker’s mouth will be very
small and may have to be interpolated to a higher resolution
to work with a lip feature extraction system. The test videos
were blurred using Gaussian filters with 7 different standard
deviation values, that is, 4, 8, 12, 16, 20, 24, 28.

3.2.3. Jitter

Jitter represents either camera shake, supposing the camera is
not mounted securely, or problems with the accurate track-
ing and centering of the mouth when the speaker’s head is
moving. In a real-world application, it is unlikely that a user
would keep his head as still as the subjects in our data, so it
is assumed that the tracking of the mouth ROI would not be
as smooth when his head is moving. Jitter is applied by tak-
ing each clean video frame and adding a random variation to
the coordinates and orientation of the mouth ROI. The new
resulting video gives the impression that the speakers mouth
is shifting and rotating randomly at each frame inside the
ROI. Different levels of jitter are generated by scaling the ran-
dom variation. For example, jitter level 10 corresponds to a
random rotation in the range [−10◦, 10◦] and separate ran-
dom translations along the x and y axes, both in the range
[−10, 10] pixels. Six jitter levels were used on the test video
data, that is, 2, 4, 6, 8, 10, 12.
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For all 3 methods, the corruption levels used were cho-
sen to produce a good range of recognition accuracies from
approximately random to optimal.

4. EXPERIMENTS

The following experiments all involve speaker-independent
digit recognition. The HMM models consisted of 10 states
per digit, with each state represented by Gaussian mixture
models with 4 mixtures. For all experiments, the models were
trained using noise-free video data from 200 subjects, and
tested using the data from the remaining 95 subjects.

Prior to each of the image transforms, the mouth ROI
in each video frame is converted to the YUV colorspace and
only the Y channel is kept, as this retains the image data least
effected by the video compression. This was cropped by a
fixed amount, subsampled, and then passed as the input to
the image transforms.

4.1. Transform parameters

Some preliminary experiments were performed to deter-
mine the appropriate image resolution for input to the image
transforms, and it was found that images of 16×16 pixels (as
used in [15, 16]) provided slightly better performance than
32 × 32 pixel images, so we used the 16 × 16 pixel images
here.

In some previous studies using DCT features, the DC
component (i.e., the first component) is excluded [16] but
in others it is retained [15]. Preliminary experiments showed
that including the DC component gave slightly improved
recognition performance, so we have included it in all our
DCT-based experiments.

Further, preliminary experiments specific to the DWT-
based features were carried out to identify which type of
wavelet was most effective, that is, which wavelet base and
level of decomposition are appropriate. The Haar wavelet,
two Daubechies wavelets (D4 and D6) [29], and the Antonini
wavelet [30] were examined. The two Daubechies wavelets
were selected because they had been shown to perform well
for lip reading by previous researchers [19]. The Antonini
wavelet was chosen because it is commonly used for image
compression, and is well known for being used by the FBI
for compressing fingerprint images [31]. We found that al-
though there was only a small variation in the performance
of these alternatives, the wavelet base and decomposition
level that performed the best were those of the Daubechies
4 wavelet, with 3 levels of decomposition (filter coefficients
[0.483, 0.837, 0.224,−0.129]). Hence, this was used in all the
subsequent experiments, and is what we imply by DWT from
here on.

A final postprocessing step applied in feature extraction
systems is feature normalization. This is especially important
in speaker-independent systems where interspeaker variabil-
ity must be modeled. Many systems employ mean subtraction
to achieve this normalized state, whereby the mean for each
feature is calculated over the utterance, and then subtracted
from that feature in every frame. This was the normalization
method we employed.

Figure 4: From left to right: original lip image, subsampled 16× 16
ROI, DCT coefficients with square 6×6 selection, and with triangle
6× 6 selection.

4.2. Comparison of feature set selectionmethods

The purpose of feature selection is to extract from the coeffi-
cients generated by an image transform a new set of values
which are suitable for recognition, that is, they have good
class discrimination and suitably low dimensionality. The
number of coefficients is usually proportional to the process-
ing time required by a recognition system to train models or
recognize data. Some feature selection methods are appro-
priate for some kinds of image transform, but inappropriate
for others.

The simplest type of feature selection is a fixed 2D mask.
The DCT and DWT transforms return a 2D matrix of coef-
ficients, and so coefficients can be selected from the parts of
those matrices which contain the most useful information.
Both transforms place the lowest frequency information in
the upper-left corner of the matrix, so extracting the coef-
ficients within a square aligned with the upper-left corner
of the matrix (see Figure 4) provides a set of low-frequency
coefficients suitable for recognition. The DCT coefficients,
however, are packed by ascending frequency in diagonal lines
so a triangle selection may be more appropriate.

For the DCT, both square and triangular 2D masks were
compared. Figure 5 shows speech recognition results in word
error rate (WER) using these feature selection methods with
DCT coefficients. At this stage only static features were used
to allow their selection to be optimized before introducing
dynamic features. Each feature selection method was used to
generate different sizes of final feature vector to show the op-
timum feature vector size for each method. As expected, the
triangle mask outperformed the square mask, as this includes
more of the coefficients corresponding to low frequencies.

For the DWT it does not make sense to extract co-
efficients using a triangular mask, because they are orga-
nized in squares, so only square mask selection was con-
sidered. Though the coefficients are packed into squares
whose widths and heights are 2N (where N is an integer),
square masks of any integer size were tried for completeness.
Figure 5 shows the performance the DWT coefficients with
square selection of features. The DWT coefficients were gen-
erated using the Daubechies 4 wavelet with 3 levels of decom-
position, as this was found to be optimal in Section 4.1.

The best performance result was found for a square mask
of size 8×8, which corresponds to all the detailed coefficients
of the 2nd and 3rd levels of decomposition, as well as the ap-
proximation coefficients of the 3rd. The number of 64 static
features, however, is a very large number before dynamic fea-
tures have even been considered. The DWT features are not
included in subsequent experiments as they required a much
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Figure 5: Recognition performance using different feature selection
methods applied to static DCT and DWT coefficients.
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Figure 6: Recognition performance using different feature selection
methods applied to static FDCT coefficients.

higher number of coefficients to achieve similar accuracy to
the other feature types.

The coefficients produced by the FDCT have a very high
dimensionality (2752) and are not organized in such a way
that it would make sense to use a 2D mask such as a triangle
or square. Because the FDCT is a nonlinear transformation,
it is appropriate to apply one of the linear data compression
transformations (PCA or LDA) in order to reduce the high-
dimensional coefficients to low-dimensional features. The
results of using both of those transformations on FDCT co-
efficients are shown in Figure 6. LDA outperformed PCA for
low numbers of coefficients (less than 20). For higher num-
bers of coefficients, PCA outperformed LDA, but the best re-
sult for any number was 21.90% for LDA with 16 coefficients,
making LDA the optimum selection method for FDCT coef-
ficients.

PCA and LDA were also used as first-stage image trans-
formations (Figure 7) by using the raw mouth images (sub-
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Figure 7: Recognition performance using PCA and LDA transfor-
mations of raw images to generate static features.

Table 1: Average (absolute) reduction in WER achieved using
(static + Δ) features compared to (static only) features and (static
+ Δ + ΔΔ) features compared to (static + Δ) features.

Image transform (Static + Δ) versus
(static only)

(Static + Δ + ΔΔ)
versus (static + Δ)

DCT 12.9% 1.5%

FDCT 8.7% 0.8%

PCA 9.4% 0.8%

LDA 8.1% 0.6%

sampled to 16 × 16) as inputs instead of coefficients from
other transformations. The coefficients returned from the
PCA and LDA transformations are ordered by significance,
and so a feature set with k features is formed by simply taking
the first k coefficients. Mirroring what was found for FDCT
coefficients, for approximately less than 20 coefficients, LDA
performed best, but for higher numbers, PCA performed
best.

4.3. Dynamic features

Dynamic features provide information about the change or
rate of change of the static features over time. It is well known
in acoustic-based speech recognition that dynamic features
provide valuable discriminative information. In this work,
we wished to assess the value of dynamic features in the visual
speech domain. The dynamic features we use in these exper-
iments were calculated as the first and second derivatives of
cubic splines constructed for each feature in each utterance.
We use Δ to denote the first derivative features (amount of
change) andΔΔ to denote the second derivative features (rate
of change). The final feature vector is formed by concatenat-
ing the static and dynamic features.

We compared the performance of feature vectors cover-
ing a range of sizes which included combinations of static
and dynamic features generated using each of the transforms
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Table 2: Summary of WERs achieved on clean video using the op-
timal feature vectors extracted from each image transform.

Image transform DCT FDCT PCA LDA

Selection method Triangle LDA — —

Vector size 30 18 50 18

WER (%) 12.11 14.64 13.43 13.65

discussed in the previous sections. It can be seen in Table 1
that in all cases the introduction of Δ features provides a
substantial average improvement in WER compared to us-
ing only static features. However, the further addition of ΔΔ
features provides only a small extra improvement whilst re-
quiring a 50% increase in the feature vector size. Therefore,
we decided to use only static + Δ features in our next series
of experiments.

Table 2 summarizes the recognition performance
achieved on clean video for each feature type using the
best feature selection method for that type (as chosen in
Section 4.2) and the feature vector size (consisting of static
features augmented with their Δ dynamic features) which
we found to give the best accuracy.

The overall accuracy of the recognition system is af-
fected by the vocabulary size and the visual similarity of
the words which are in the vocabulary. As the vocabulary
size is increased, there are more units which need to be
distinguished and hence be more potential for errors to be
made. However, it is the visual similarity of words which
causes recognition errors, so if the vocabulary of a system
is increased but includes words which are much more vis-
ibly distinct, then it is likely that the accuracy would im-
prove rather than deteriorate. For instance, if the size of
the vocabulary was only two words, then the potential for
error is much reduced compared to the ten-word vocab-
ulary for digit recognition. However, if the two-word vo-
cabulary includes just the words “pet” and “bet,” then the
accuracy of the system is likely to be very poor because
these two words are virtually indistinguishable visually. By
examining the confusion matrices generated in our recog-
nition experiments, we can see which digits are most eas-
ily recognized and which are most confusable. The confu-
sion matrix for DCT features from clean video showed that
the digit recognized correctly most often was “one” and the
digit recognized incorrectly most often was “nine.” Specifi-
cally, the most common mistake made was a “nine” being
incorrectly recognized as a “six.” Although “nine” and “six”
are acoustically very different, they actually involve similar
lip movements and hence appear similar to a lip reading sys-
tem.

4.4. Robustness to video corruption

The recognition performance of the optimal feature vectors
for each feature type was compared using the video corrup-
tion types described in Section 3.1. For video compression
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Figure 8: WERs achieved using optimal feature vectors for different
feature types on video data compressed at various levels of MPEG4
video compression.

(Figure 8) it can be seen that all of the feature types per-
form similarly and that they are affected in a uniform way
by increased video compression. We think that the similar-
ity in performance can be explained by the fact that this
kind of video compression causes corruption mainly to the
temporal information in the video. The compression algo-
rithm uses keyframes which means that some video frames
will be stored with little loss of information, but that sub-
sequent frames may repeat this information (appearing as
frozen frames). Thus, a frame may appear as uncorrupted,
and generate the same features as a clean frame, but those
features will represent an incorrect state when being recog-
nized by the HMM. This seems to indicate that in order
to improve recognition rates for visual speech recognition
on compressed video a new modeling and recognition ap-
proach would be needed which can deal with the occurrence
of skipped/frozen frames rather than a new type of visual fea-
ture. The performances of all our tested systems are quite sta-
ble until the bitrate drops below 32 Kbps. This would indicate
a minimum reliable operating constraint on the input video
for our standard HMM-based models.

For video frame blurring (Figure 9) all of the feature
types show good robustness, even at high levels where it
would be very difficult for a human to comprehend the con-
tent of the video. There is more difference between the per-
formance of the feature types here than in video compres-
sion, but DCT provides the best WER, as was also true for
the video compression experiments, albeit, to a lesser degree.
This is possibly to be expected as feature types which em-
phasize that low-frequency information (such as the DCT)
should be the most robust to blurring, which essentially de-
stroys high-frequency information and leaves low-frequency
information intact.

In contrast, for video frame jitter (Figure 10), the DCT
performs worst in almost all tested levels of corruption,
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Figure 9: WERs achieved using optimal feature vectors for different
feature types on video data at various levels of video frame blurring.

showing its high sensitivity and fragility to motion. PCA
performs worst at the highest levels of corruption and over-
all, the LDA transform performs the best with jitter, though
for the highest levels, the FDCT performs the best. How-
ever, the performance of all of the feature types deteriorates
quickly in the presence of even moderate levels of this type of
corruption, which shows the importance of robust video pre-
processing methods which can make corrections for transla-
tion and rotation of the mouth ROI, similar to the rotation
correction used in [16].

5. SUMMARY

In this paper, the performances of several image transform-
based feature extraction methods were compared for visual
speech recognition in clean and noisy video conditions. This
included the first reported results using FDCT-based fea-
tures. We have compared feature set selection methods for
some of the feature types and suggested the optimal method
in each case.

It was hoped that the FDCT would be able to capture
important and useful information about the speakers lip
contour which would not be captured by the more com-
monly used DCT and DWT transforms. However, the recog-
nition results in our experiments show that although the per-
formance is similar, it does not provide any improvement.
It may be the case that the FDCT method captures more
speaker specific information rather than speech information
and therefore may be a suitable feature type for use in vi-
sual speaker recognition systems. Furthermore, in this pa-
per we used the PCA and LDA transforms to select features
from the FDCT coefficients; however, alternative methods do
exist which could be used instead of these such as select-
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Figure 10: WERs achieved using optimal feature vectors for differ-
ent feature types on video data corrupted at various levels of video
frame jitter.

ing coefficients with the highest energy or variance as sug-
gested in [32] and these could perhaps provide some im-
provement.

We have also investigated the relative merit of augment-
ing the features with their associated dynamic features and
found that in clean recognition conditions a substantial im-
provement in recognition accuracy was gained by usingΔ dy-
namic features but that only a small additional benefit was
achieved through the introduction of ΔΔ dynamic features.
However, it is possible that the main benefits of using ΔΔ dy-
namic features would be seen when testing in noisy rather
than in clean conditions and this could be investigated in the
future.

A series of experiments were used to test the robustness
of the feature types to different forms and levels of video
noise. Specifically, tests were performed on video which was
subject to compression, blurring, and a novel form of video
corruption,called “jitter,” which simulated camera shake or
head movement. It was found that video compression de-
grades the performance of all the tested features in a uni-
form manner. We suggest that improving the HMM mod-
eling approach to cater for frozen video frames would be
a possible method of dealing with this type of corruption.
Jitter corruption was shown to have a strong negative ef-
fect on the performance of the tested features, even at quite
low levels of jitter, which demonstrates the importance of
robust and accurate video preprocessing methods to ensure
that the mouth ROI is correctly aligned for a visual speech
recognition system. From the tests on blurred video, it was
shown that the tested feature types are quite robust to this
form of corruption and that the DCT transform in particu-
lar was very robust even at levels of blurring where the con-
tent of the video data would be incomprehensible to a hu-
man.
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