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1. INTRODUCTION

Image super-resolution (SR) is a popular research area for
producing high-resolution (HR) images with better details.
The approach taken is to combine the information in a se-
quence of low-resolution (LR) images which have subpixel
shifts with respect to each other. Most image SR algorithms
assume a mathematical model for the imaging process, which
could have generated the sequence of LR frames from the un-
known HR image. However, these models are only approxi-
mations to reality, and model violations often occur because
of the approximate nature of the model itself, because of in-
accuracies in its parameter estimation (such as blur and mo-
tion parameters) and because of accidental scene changes.
These model violations even small in number can be detri-
mental to SR estimation.

Robust statistics [1-4] has emerged as a family of theo-
ries and techniques for estimation while dealing with devi-
ations from the idealized model assumptions. In particular,
robust M-estimation has been found very effective in many
computer vision applications such as optical flow estimation
[5], robust denoising [6], and robust anisotropic diffusion
[7]. The reader is referred to [8] for a review of the appli-
cations of robust statistics in computer vision. Robust M-
estimation has been explored recently in SR reconstruction.

Capel [9] used Huber functions in the prior term in the con-
text of MAP (maximum a posteriori) estimation. El-Yamany
etal. [10] developed an adaptive M-estimation scheme using
the robust Lorentzian error norm in the data fidelity term,
without regularization. Patanavijit et al. [11, 12] also demon-
strated the use of the Lorentzian error norm in both the data
fidelity and regularization terms of the objective function. In
this paper, we attempt to address the problem of color im-
age SR in a robust, adaptive M-estimation framework. The
proposed approach was first introduced in [13].

2. PROBLEM FORMULATION

A number of observation models have been proposed in the
literature for image SR reconstruction [9-28]. In this paper,
we employ the following observation model for color image
SR

Yix = DHEX; +Ziy, k=12,...,L, i=RG,B, (1)

where L is the number of LR frames. X; and Y;x are the
ith color component of the unknown HR image, and the
kth LR frame, respectively. The matrices D and H repre-
sent the down-sampling operator and the point spread func-
tion (PSF) of the optical system, respectively. In this paper,
we assume that we are dealing with one optical system with
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space-invariant response, and hence D and H are assumed
to be the same for all the LR frames. Fj is the warping ma-
trix that represents the motion between the LR frames and
the unknown HR frame. Z;; represents the system noise.
It is worth mentioning that in (1), the LR and HR images
are represented as vectors obtained from the 2D images by
lexicographical ordering. Following the observation model
in (1) and recasting the SR problem in the generalized M-
estimation framework, the color SR output is the solution of
the following minimization:

I
X* = arg minz zp(DHFi,kXi - Yix)
i k=1

= argmmE Ep ik)

i k=1

(2)
i=R,G,B,

where X = [Xi Xg XB]T, E;x is the vector of the projec-
tion errors corresponding to the ith component of the kth
LR frame, and p is an even-symmetric function which has a
unique minimum at zero and satisfies the following condi-
tion:

a L L
X glp = Z DHFyt) y(Ey) =0, (3)
where p(E) = > ;p(e;) and y(E) = [y(e1) - -~ w(ej) -- Sk

p(ej) is a function applied to the element e; of the vector E.
y(e) is the first derivative of p with respect to e, and is re-
ferred to as the influence function [1-3].

The robustness of image SR reconstruction has been ad-
dressed recently in the literature [9-13, 17, 18, 21-27, 29, 30].
In the context of M-estimation, [17, 18] have addressed the
solution of (2) as a least-square (LS) estimation problem us-
ing the L, error norm, and the SR estimate is the solution of
the minimization

X* = argmmZsz ik)

i k=1

= argmlnzz }|E,k||2,

i k=1

(4)
i=R,G,B,

where p,(-) refers to the L, error norm. The solution of (4)
can be found iteratively using the gradient descent algorithm
as follows:

L
= X! - B> (DHFyx) 2 (E)

k=1

X(lJrl
(5)

M=

= X! - B> (DHF) EZkr i=R,G,B,

k

1

where y, () refers to influence function of the L, error norm,
and f3 is a step-size parameter. However, LS estimation ex-
hibits a poor performance in the presence of model viola-
tions. The reason for the nonrobustness of the L, error norm
lies in its influence function (its first derivative y,). As shown

in Figure 1 and in (5), y; is linear, assigning larger weights to
larger errors, and hence it is very vulnerable in the face of
outliers.

To increase the robustness of SR estimation, Farsiu et al.
[20-22] proposed the use of the L; error norm as a robust
alternative to the L, error norm, and the SR estimate is the
solution of the following minimization:

X* = argmmzzl)l ik)

i k=1

= argmanZHE,kHl,

i k=1

(6)
i=R,G,B,

where p;(+) refers to the L, error norm. The solution of (6)
can also be found iteratively using the gradient descent algo-
rithm as follows:

L

T
X!t = X! — B> (DHF;x) y1 (EY)
k=1

L
=X/ - B> (DHF;) 'sign(E}}), i=R,G,B,

(7)

where v, () refers to influence function of the L, error norm.
As shown in Figure 1 and in (7), the L, influence function,
Y1, is the sign function, and so all errors (small or large) are
assigned the same weights either 1 or —1, depending only
on their sign. The L, error norm is definitely more robust
than the L, in the presence of outliers because of its bounded
influence. However, because of its constant-valued influence,
which does not distinguish between small and large errors,
the resulting SR estimate often suffers from various artifacts.

To improve the robustness of the LS estimation,
Ivanovski et al. [27] proposed a pixel-level selection strat-
egy for outlier rejection. In [27], a similarity measure is used
to determine the usability of each pixel in the SR estima-
tion process. Then a hard threshold is empirically selected,
and a pixel is discarded from the estimation process if the
measure evaluated at the pixel location is greater than the
selected threshold. However, the performance of the algo-
rithms in [27] depends on the chosen threshold. In addition,
because of the pixel-level selection strategy, different pixel lo-
cations receive different contributions from neighboring LR
frames. These unequal contributions, which depend on the
pixels in the LR frames that satisfy the similarity condition,
result in newly introduced boundaries between regions of
different contributions as shown in [27]. In [26], a frame-
level selection strategy was proposed for outlier rejection. In
this strategy, the cross correlation between a reference frame
and a warped frame is computed, and if the correlation score
at a point is below a certain threshold, the corresponding
warped pixels are ignored in the SR reconstruction. However
as in [27], the performance of the reconstruction algorithm
in [26] depends on the selected hard threshold. If a small
threshold is chosen, a good frame could be rejected, thus re-
ducing the amount of available information that could have
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FIGURE 1: Plot of the Ly, Ly, and Lorentzian error norms and their corresponding influence functions. (All functions are normalized to demon-

strate the relative weight assigned to different error values.)

been taken advantage of to enhance the resolution of the tar-
get frame. On the other hand, if a large threshold is selected,
the contributions from incorrectly registered frames can be
detrimental to the reconstruction process, leading to poor SR
estimates.

Most of the methods that have been developed recently
in the literature for color image SR in the context of M-
estimation [28-31] use the L, or the L; error norm in the
data fidelity term of the objective function, and incorporate

an additional color regularization term to help in dealing
with the outliers and ill-posedness of the SR problem. How-
ever, the performance of such SR reconstruction schemes is
highly affected by the choice of the regularization function
and the corresponding regularization parameter as well, not
to mention the additional computational complexity associ-
ated with the joint optimization of both the data fidelity and
regularization terms of the objective function. In this paper,
we attempt to address the problem of robust color image SR
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in an M-estimation framework, without the use of color reg-
ularization in the objective function. The proposed approach
was first introduced in [13].

3. THE PROPOSED ALGORITHM

To improve the robustness of SR reconstruction, we propose
the use of robust error norms in the data fidelity term of
the objective function, in particular, the robust error norms
which correspond to the class of M-estimators known as re-
descending M-estimators [1-4]. For these estimators, the in-
fluence function y increases up to a point, which is referred
to as the outlier threshold, after which it starts to decrease
(redescend) as the error grows. Because of this behavior,
large errors falling beyond the outlier threshold are assigned
weights that decrease as the errors increase, thus providing
a soft outlier suppression or rejection if the weights are too
small. Of all redescending M-estimators, we are particularly
interested in estimators whose influence functions are differ-
entiable and have only one parameter, which will be deter-
mined from the available observations as shown later. Exam-
ples of these estimators are the Lorentzian, Geman & Mc-
Clure, and Tukey’s biweight [1-8]. In this paper, only the use
of the Lorentzian estimator is demonstrated. The Lorentzian
error norm is defined as

(8)

2., .2

e“+T

plest) = log[ 5 ],
T

where e and 7 are the error and the outlier threshold param-

eter, respectively. The Lorentzian influence function (which

is proportional to the first derivative of (8)) is given by

271e
ez + 12’

)

Note that the influence function in (9) is scaled, by multi-
plying by 7, to have a maximum weight of unity indepen-
dent of the outlier threshold value. This normalization is
particularly important in the proposed adaptive formulation
to ensure that all influence functions have the same weight
at their respective outlier thresholds. Figure 1 depicts plots
of the Lorentzian error norm and its influence function for
three different values of 7. These plots show how the influ-
ence function decreases faster for smaller 7, assigning lower
weights to the errors falling beyond the outlier threshold.

y(eT) =

3.1. The objective function

Recasting the problem of color image SR in a robust M-
estimation framework using redescending M-estimators, the
SR estimate is the solution of the following minimization:

L
X* = argminz Zp(DHF,v,kX,- —Yiis1)

i k=1

l (10)

L
= arg minz ZP(Ei,k§ 1), i=R,G,B,
X i k=1

where p is the Lorentzian (robust) error norm whose influ-
ence function is redescending [1-4], and 7 is the correspond-
ing outlier threshold.

Violations to the assumed mathematical model for the
imaging process in (1) result in large projection errors (E;),
which are referred to as outliers, and can be detrimental to the
reconstruction process if the estimation procedure does not
suppress or eliminate their contributions. The choice of the
outlier threshold 7 for a redescending M-estimator plays a vi-
tal role in dealing with these outliers. As shown in Figure 1,
the errors falling beyond 7 are assigned smaller weight as the
error grows, thus providing soft outlier suppression, or rejec-
tion if the weight is too small. Also for smaller 7, the influ-
ence function decays faster, assigning smaller weights to the
errors greater than the outlier threshold. Because of this be-
havior of redescending influence functions, choosing a fixed
outlier threshold for all the LR frames (and all color compo-
nents) would not be appropriate. If a small 7 is selected, the
contributions from all frames (inliers and outliers) will be
suppressed or rejected, leading to a poor SR estimate because
of the insufficient information to increase the spatial resolu-
tion of the target LR frame. On the other hand, if a large 7 is
selected, the outliers will contribute to the estimation proce-
dure, resulting in a poor SR estimate suffering from various
artifacts.

To appreciate this fact, Figures 2(f) and 2(g) display the
SR estimates for 7 = 10 and 7 = 70, respectively, for the
SMU Helmet sequence experiment detailed in Section 4.1.
From these results, it is shown that for a small threshold (7 =
10), the outliers are successfully eliminated, but the resulting
SR estimate is blurry and of poor quality because there are
no sufficient contributions from all the frames. On the other
hand, for a relatively large threshold (7 = 70), the resulting SR
estimate suffers from noticeable artifacts due to the outliers.

From these results, it is concluded that an adaptive proce-
dure is necessary to deal effectively with the outliers, yet con-
sider the contributions from all the good frames to enhance
the resolution of the target frame. In this adaptive proce-
dure, different outlier thresholds are assigned to different LR
frames depending on their similarity to the target frame, as
discussed later in Section 3.2. Recasting the problem of color
image SR in an adaptive, robust M-estimation framework us-
ing redescending M-estimators, the SR estimate is the solu-
tion of the following minimization:

L
X* =argmin > p(Bi;tix), i=RGB,  (11)
X i k=1

where p(E;x;7ix) is the Lorentzian error norm associated
with the ith color component of the kth LR frame, and 7 is
the corresponding outlier threshold. It is worth noting that
in the adaptive formulation in (11), different sets of out-
lier thresholds are calculated for each color component in
each of the LR frames. This strategy helps in dealing effec-
tively with the outliers that might appear in one color chan-
nel/frame and not in the other channels/frames (as shown
later in Section 4.2).

The calculation of the outlier threshold for redescending
M-estimators is usually done using statistical methods [1-4],
or based on problem-dependent choices [5-8, 10-12]. In the
proposed SR framework, we have developed an algorithm to
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FIGURE 2: 4X superresolution reconstruction results for the 16-frames SMU Helmet sequence: (a) original HR image (ground truth), (b) LR
frame #1, (c) LR frame #4, (d) SR estimate using L, error norm + Tikhonov regularization, (e) SR estimate using L, error norm + Tikhonov
regularization, (f) SR estimate using the Lorentzian error norm with a fixed outlier threshold 7 = 10 for all the LR frames. (g) SR estimate
using the Lorentzian error norm with a fixed outlier threshold 7 = 70 for all the LR frames, (h) SR estimate using the proposed adaptive

scheme without regularization, and (i) with Tikhonov regularization.

estimate 7;; from the LR frames, which is described in detail
in the following subsection.

3.2. Calculation of the outlier thresholds

3.2.1. Calculation of 7;;

In image SR reconstruction, we are interested in increasing
the resolution of a LR reference frame (Y;) using the infor-
mation in that frame and other available LR frames (Yx). In
this sense, the projection errors corresponding to the refer-
ence frame should all be considered in the estimation pro-
cess, that is, they are all inliers. For 8-bit data, the maximum
absolute value for the projection errors is 255 and hence a
reasonable choice for the outlier threshold for the reference
frame is 255. Therefore, we have set the outlier threshold for
the three color components of the reference frame (7;;) to
255.

3.2.2. Calculation of T;

To compute the outlier thresholds for the rest of the LR
frames, a metric that measures the similarity between the
reference frame and the kth motion-compensated LR frame
(Yi) is first computed. This metric is denoted by di =
d(Yy,Yy), where k = 1,2,3,...,L, and L is the number of
LR frames. The outlier threshold for a given LR frame is then
calculated as a function of this metric such that if dy — 0,
Tk — T, if dp — oo, theoretically, 7x — 0 and if di — dmax
(upper bound on d), 7x — Tmin (lower bound on 7). Un-

der these constraints, we consider the following exponential
function as a reasonable choice to calculate 7 from dj:

Te = T1e Wk = 2550k, (12)

The parameter « in (12) controls the decay of the exponential
function, and, given the two constraints above, it is calculated

as
1 (255)
a=—-——Ilog| —|.

dmax Tmin

(13)

The lower bound on the outlier threshold 7,;, is chosen to
be an arbitrarily very small number. In the experiments pre-
sented in this paper, T, was set to 1078, For the similarity
metric, we have used the normalized average sum of absolute

differences (SAD) between Y; and ?k, which is defined by

1 My N
dk—m;;|)’1(x,y)—yk(x,y)|- (14)

The normalized average SAD has an upper bound of unity,
that is, dmax = 1. Therefore a is computed as

a = log (255 x 10°) ~ 24. (15)

The outlier thresholds for the three color components of the
LR frames are thus computed as follows:

Tix = 255¢ 24k i =R,G,B, k =2,3,...,L, (16)

where d; is the normalized average SAD between the ith
color component of the reference LR frame (Y;) and the kth
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FIGURE 3: Superresolution reconstruction results of the 16-frames SMU Helmet sequence using the proposed approach: (a) plot of average SAD
values (dy’s) for the three color components, (b) plot of the outlier thresholds (7;’s) for the three color components, and plot of the Lorentzian
influence functions (yi’s) for (c) the red component, (d) green component, and (e) blue component. From (c) to (e), the red, green, and
magenta curves correspond to LR frame #4, LR frame #10, and LR frame #13, respectively.

motion-compensated LR frame (Yy). Figure 3 depicts plots
of the SAD measure values (di’s) and the outlier thresholds
(7¢’s) for the three color components (R, G, and B) of the
SMU Helmet sequence experiment explained in Section 4.1.
It is worth mentioning that the average SAD is one possible
measure to assess the similarity between the reference frame
and each of the motion-compensated LR frames. We have
chosen to use this measure because of its low computational

complexity, and because it captures the mismatch between
the two LR frames.

It is worth mentioning that the proposed algorithm for
computing the outlier thresholds is different from those in
[26, 27] in terms of the following. First, the outlier thresholds
in the proposed scheme are not hard thresholds, that is, er-
rors falling beyond a given outlier threshold are not rejected.
They are, however, assigned smaller weights as their values
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increase, providing gradual outlier suppression, or rejection
if the weights are too small (the errors are too large with re-
spect to the threshold). Second, the outlier thresholds are cal-
culated automatically from the available LR frames. Using a
distance (similarity) metric between each of the LR frames
and the target frame, the outlier thresholds are computed
such that the higher the dissimilarity between a given LR
frame and the reference frame, the smaller the correspond-
ing outlier threshold.

3.3. The update equation

To find the solution of (11), one might use Newton’s algo-
rithm. However, the influence function of redescending M-
estimators is bounded (as shown in Figure 1), and its deriva-
tive is not always positive and goes to zero at infinity, which
makes using Newton’s algorithm unreliable and convergence
is not guaranteed [3]. Therefore, we have chosen to use the
gradient descent method as discussed in what follows.

Using the iterative gradient descent algorithm, the update
equation minimizing (11) for the ith color component is

L
X =XJ -7 > Vp(ElTik), i=RG,B, (17)
k=1

where 7; is the step-size parameter corresponding to the ith
color component. Following the derivation in the appendix,
(17) can be written as

L
X;ﬁ-l =X/ - 771'2 (DHFi,k)TV’Zkr i=R,G,B, (18)
k=1

where Y7} is a vector whose jth element is V/(e;’,i,k; Tik), the
Lorentzian influence function evaluated at e, (the jth ele-
ment in Ef} ).

The choice of the step-size parameter #; plays an impor-
tant role in the convergence behavior of the gradient de-
scent method. If the step size is too large, divergence will
occur, while if the step size is too small, the rate of conver-
gence may be very slow [32]. Choosing a constant step size is
the simplest approach. However, constant step-size selection
is only useful in cases where an appropriate step-size value
is known or can be determined fairly easily [32]. For twice
differentiable robust error norms, such as the Lorentzian, a
proper constant step-size selection can be obtained using the
method of simultaneous over-relaxation (SOR) [5, 6, 33].
The SOR step size is defined as 1 = w/T, where 0 < w < 2
and T is an upper bound on the second partial derivative of
the p(e; 7) with respect to e. The exact choice of w only affects
the rate of convergence. In the proposed approach, w is set to
1 and the step size is approximated by # = 1/T = 1/2, for the
Lorentzian error norm. To achieve fast convergence, and mo-
tivated by the SOR algorithm [5, 6, 33], we used an adaptive
step size for each of the L terms in (18), that is,

L
Xr = X7 - S ik (DHFR) 'y?,, i=RG,B, (19)
k=1

7
where the step-size parameter 7 is computed as
Tik
Hik = 17 (20)

for the Lorentzian error norm. Having set the adaptive step
size as in (20), the convergence is also checked after each it-
eration, and if the cost function is not improving, then #;x
can be reduced by a small amount (e.g., 5%), otherwise it is
kept at its current value. In all the experiments we have con-
ducted, however, setting the step size as in (20) has shown fast
convergence (typically from 7 to 12 iterations), and so there
was no need to reduce the step size calculated in (20). In all
the experiments presented in this paper, the initial SR esti-
mate (X°) was found through bilinear interpolation of the
first (reference) LR frame.

4. EXPERIMENTAL RESULTS

In this section, the performance of the proposed SR recon-
struction scheme is evaluated and compared to methods us-
ing the L, and L, error norms in the data fidelity term and
Tikhonov regularization in the smoothness prior term in
the objective function. In all the experimental results pre-
sented here for L, and L; SR estimation, the gradient descent
method is used and is applied to each of the three color com-
ponents (R, G and B) separately to obtain the final SR esti-
mate, as shown below:

Lz!

L
X = X ﬁ{ > (DHFi,k)TE;korT(rx?) }

k=1
L1 :
L T
X = X1~ /3{ > (DHF) sign(EZk)+/\FT(l“Xf’)},
k=1

(21)

where I is a high-pass operator [20]. In this paper, the Lapla-
cian operator is used, which is approximated by the following
symmetric convolution kernel:

111
1
y=g |1 -8 1] (22)
111

Experiments with different values of the step-size parame-
ter (f3) and Tikhonov regularization parameter (1) were con-
ducted, and the one that gave the best visual quality is only
presented in the paper (same § and A were used for all the
three color components). For the SR experiments using the
proposed scheme without regularization, the algorithm de-
scribed in Section 3 is followed. For the results using the pro-
posed method with the inclusion of Tikhonov regularization,
the following update equation is used:

L
XM = X~ {Zm,k(DHF,-,k)ngk +)LFT(FX?)}. (23)
k=1
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FIGURE 4: 2X superresolution reconstruction results for the 12-frames Egyptian Mug sequence: (a) original HR frame #1 (ground truth), (b) LR
frame #1, (c) LR frame #5, (d) SR estimate using L, error norm + Tikhonov regularization. (e) SR estimate using L, error norm + Tikhonov
regularization, (f) SR estimate using the proposed algorithm without regularization, and (g) with Tikhonov regularization.

It is worth mentioning that although a number of superreso-
lution reconstruction algorithms that incorporate color reg-
ularization tying the color bands have been introduced in the
literature [29-31, 34], in this paper, however, we have not in-
cluded any such regularization terms in the objective func-
tion because this will obscure the impact of the influence
function of a given M-estimator. Also, the goal is to empha-
size the effect of the influence function on the reconstruction
process.

In this section, experiments with both synthetic and real
sequences are demonstrated, and the notation rx superreso-
lution is used to denote increasing the resolution of the first
(reference) frame in a given sequence by a factor of r in each
of the x and y directions.

4.1. 4x SR experiment: the SMU Helmet sequence

In this experiment, a sequence of 16 LR frames is syntheti-
cally generated from an HR image (the SMU Helmet image
shown in Figure 2(a)) as follows. A set of 16 integer shift pairs
(in both the x and y directions) is generated and the HR im-
age is shifted by these shift values. Frames #4 and #10 are
rotated and zoomed in, respectively, to create general affine
motion. The resulting 16 warped frames are then convolved
with a normalized 5 X 5 Gaussian kernel of zero mean and
variance of 0.5, and downsampled by a factor of 4 in both
the x and y directions. The MATLAB function fspecial is used
to generate the Gaussian kernel. A zero-mean Gaussian noise
is then added to the resulting LR frames such that each has
a signal-to-noise ratio of 25 dB. The MATLAB function im-
noise is used to add the Gaussian noise. It is worth mention-
ing that warping, blurring, downsampling, and noise addi-
tion are performed on each of the color components (R, G,
and B) of the HR image separately. To simulate motion es-

timation errors, a translational motion model is assumed.
In addition, a motion bias of 4 pixels (in the HR grid) is
added to the motion vector of frame #13 (to each of its three
color components). To simulate blur estimation errors, the
PSF is assumed to be a normalized 5 X 5 Gaussian kernel of
zero mean and unity variance. Figures 2(b) and 2(c) show LR
frames #1 and #4, respectively.

The SR estimate using the L, error norm and Tikhonov
regularization is shown in Figure 2(d). 8 and A were both set
to 0.1. From this result, it is shown that the L, estimate suffers
from noticeable artifacts due to the outliers (the shadows cor-
responding to the rotated and zoomed frames appear clearly
in the background). This result is not surprising, since the L,
error norm is vulnerable to the outliers because of its linear
influence function that assigns larger weights to larger errors,
and hence amplifies their influence in the estimation. The SR
estimate using the L; error norm and Tikhonov regulariza-
tion is shown in Figure 2(e). f and A were set to 2 and 0.02,
respectively. From this result, it is shown how using the L, er-
ror norm has suppressed the outliers compared to using the
L, error norm. However, as discussed in Section 2, because
of its constant valued influence function (+1), it results in a
blurry SR estimate of a relatively poor quality.

The SR reconstruction result using the proposed scheme
without regularization is shown in Figure 2(h). From this
result, it is observed how the proposed approach has suc-
cessfully suppressed the effect of the outliers, resulting in
artifacts-free SR estimate of crisp details. Figure 2(i) depicts
the SR estimate using the proposed scheme with Tikhonov
regularization (A = 0.2). The use of regularization slightly
improved the visual appearance of the SR estimate because
of the imposed smoothness constraint.

Figure 3 depicts plots of the average SAD (dy’s), the out-
lier thresholds (7x’s) and the Lorentzian influence functions
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FIGURE 5: Superresolution reconstruction results of the 12-frames Egyptian Mug sequence using the proposed approach: (a) plot of average
SAD values (d;’s) for the three color components, (b) plot of the outlier thresholds (7x’s) for the three color components, and plot of the
Lorentzian influence functions (y’s) for the (c) red component, (d) green component, and (e) blue component. From (c) to (e), the red
curves correspond to LR frames #4, #5, and #6, where the matryoshka doll occludes big parts of the scene.

(yx’s) for the 16 LR frames of the SMU Helmet sequence. In
Figures 3(c)-3(e), the red, green, and magenta curves corre-
spond to the LR frames #4, #10, and #13, respectively. From
these plots, it is shown how the average SAD measure cap-
tures the mismatch between the three outliers’ frames and
the reference (first) LR frame. It is also noted that the outlier
thresholds corresponding to frame #4 and #10 are consider-
ably small because of their extreme violation of the assumed
translational motion model. Whereas the outlier threshold

of frame #13 is relatively big because of the relatively small
mismatch due to the motion bias. It is also observed that
the influence functions corresponding to frames #4 and #10
decay very rapidly assigning almost negligible weight to the
projection errors of these two frames, and hence effectively
suppressing their effect in the estimation process. The influ-
ence function of LR frame #13, however, decays slightly faster
than those of the inliers’ frames, assigning lower weight to the
projection errors of frame #13.
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4.2. 2X SR experiment: the Egyptian Mug sequence

In this experiment, a sequence of 12 compressed frames
(MJPEG) is captured by a handheld camera, Canon Power
Shot A400. This sequence follows approximately the global
translation motion. Occlusion is introduced by moving a
matryoshka doll into the scene in 4 frames (4-7). The LR se-
quence of frames is obtained from the original HR sequence
captured by the camera via downsampling by a factor of 2 in
both the x and y directions. Figures 4(a)—4(c) show the origi-
nal HR frame #1 (ground truth), LR frame #1, and LR frame
#5 in which the matryoshka doll occludes the Egyptian-Mug,
respectively. It is worth mentioning that occlusion was intro-
duced intentionally in this sequence to simulate accidental
scene changes that typically occur in real video sequences. A
translational motion model is assumed, and the algorithm in
[35] is used to estimate the motion vectors for each of R, G,
and B components, separately. The unknown camera PSF is
assumed to be a normalized 5 X 5 Gaussian kernel of zero
mean and unity variance and the MATLAB function fspecial
is used to generate this kernel.

The SR estimate using the L, error norm and Tikhonov
regularization is shown in Figure 4(d). § and A were set to
0.5, and 0.1, respectively. From this result, it is shown that
the L, estimate suffers from excessive false color artifacts.
These artifacts result from the matryoshka doll whose color
is mostly yellow and red. The SR estimate using the L, error
norm and Tikhonov regularization is shown in Figure 4(e).
B and A were set to 2 and 0.025, respectively. From this result,

it is shown how using the L; error norm results in a better
estimate than that using the L, error norm. However, the SR
estimate also suffers from noticeable false (reddish) coloring.
The SR reconstruction results using the proposed scheme
without and with Tikhonov regularization (A = 0.15) are
shown in Figures 4(f) and 4(g), respectively. From these re-
sults, it is observed how the proposed approach results in a
SR estimate of crisp details and no color artifacts, even with-
out the use of color regularization in the objective function.

Figure 5 depicts plots of the average SAD (dy’s), the out-
lier thresholds (7x’s) and the Lorentzian influence functions
(yi’s) for the 12 LR frames of the Egyptian-Mug sequence.
In Figures 5(c)-5(e), the red curves correspond to the LR
frames #4—#6, in which the matryoshka doll occludes big po-
tions of the scene. From these plots, it is shown how the av-
erage SAD measure captures the mismatch between the out-
liers’ frames, in which the matryoshka doll occludes the Mug,
and the reference (first) LR frame. It is also noted that the
outlier thresholds corresponding to outliers’ frames for the
red component are considerably smaller than those for the
green and blue components, and those for the green compo-
nent are smaller than those for the blue component. This is
because the colors of the matryoshka doll are mostly red and
yellow. From these results, it is shown that computing differ-
ent outlier thresholds for each of the three color components
is very effective in dealing with outliers that might appear in
one (or more) color component and not in the rest of the
color components.

5. SUMMARY

In this paper, a new adaptive M-estimation framework has
been presented for robust color image super-resolution. Us-
ing a robust error norm in the data fidelity term of the objec-
tive function, and adapting the estimation process to each of
the low-resolution frames and each of the color components,
the proposed method effectively suppresses the outliers due
to model violations, and results in color SR images of crisp
details and no artifacts, without the use of regularization. Ex-
perimental results on both synthetic and real sequences have
demonstrated the superior performance of the proposed al-
gorithm over using the L, and the L, error norms in the ob-
jective function. We are currently investigating the extension
of the proposed solution to video sequences in which dealing
with local outliers will be addressed.

APPENDIX
DERIVATION OF (18)

Let E= DHFX - Y = AX — Y, where A is N x M. Then E
can be written as

anl a2 - adiMm X1 yal
a1 G -+ dMm X2 Y2
E= —

LAN1 AN2 * A4NM XM YN
S (A1)
! ayiXi " e
i=1

€
M

eN

aniXi — YN

Li=1 |

Since p(E) is an error norm, it follows that p(E) = >;p(e;)
and the derivative of p(E) with respect to X is

p(E) p(B) ap<E>]T
0x 0x> oxy 1

vp(E) - | (A2)

Let y(e) = dp(e)/de, applying chain rule and using (A.1),
(A.2) can be written as

N N T

Vp(E) = [Elaju//(ej) : jg,lalel/(e]‘)]
A3
—AT[y(e) - lew)] o

= Vp(B) = ATy(E) = (DHF)"y.
Substituting by (A.3) in (17), we get

L

XP=X! -0, Vp (Bl ik)
k=1

L
=X/ -n> (DHFy) v}, n=0,1,2,..., i=R,G,B.
k=1

(A.4)
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