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This paper presents a robust real-time object tracking system for human computer interaction in mediated environments with
interfering visual projection in the background. Two major contributions are made in our research to achieve robust object
tracking. A reliable outlier rejection algorithm is developed using the epipolar and homography constraints to remove false
candidates caused by interfering background projections and mismatches between cameras. To reliably integrate multiple estimates
of the 3D object positions, an efficient fusion algorithm based on mean shift is used. This fusion algorithm can also reduce tracking
errors caused by partial occlusion of the object in some of the camera views. Experimental results obtained in real life scenarios
demonstrate that the proposed system is able to achieve decent 3D object tracking performance in the presence of interfering
background visual projection.
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1. INTRODUCTION

Movement-driven mediated environments attract increasing
interests many interactive applications, including mediated
and interactive learning, performing arts, and rehabilitation,
just to name a few. The well-known immersive virtual reality
system CAVE [1] is a good example of such movement-
driven interactive environments. A mediated environment
has both a movement sensing/analysis module and a
feedback module. Users interact with the environment
through their body movements (e.g., 2D/3D locations,
facing direction, gestures), and/or by manipulating objects
being tracked. Based on the movement analysis results,
the feedback module produces real-time video and audio
feedback which correlates with the users’ movement. Figures
1(a) and 1(b) show examples of object tracking in mediated
environments.

Although a large amount of effort has been made to
develop video-based human movement analysis algorithms,
(e.g., [2, 3] see for recent literature survey), reliable tracking
and understanding of human movement in a mediated envi-
ronment remain a significant challenge to computer vision.

In this paper, we focus our discussion on robust 3D object
tracking in complex environment with dynamic, interfering
background visual projections. Objects can be tracked using
different sensing modalities. In spite of many commercially
available object tracking systems (e.g., InterSense IS-900
Precision Motion Tracker [4] built on hybrid ultrasound-
inertial tracking technology, and Flock of Birds electromag-
netic tracking from Ascension, Vt, USA [5]), video-based
systems pose as an attractive solution to object tracking
mainly due to its low cost. However, reliable and precise
tracking of multiple objects from video in visually mediated
environments is a nontrivial problem for computer vision.
Visual projections used as part of the real-time feedback in
a mediated environment often present a fast-changing and
dynamic background. Moreover, in many applications, the
background projections contain visual patterns similar to
the appearance of objects being tracked in terms of color,
brightness, and shape. We coin such background visual
patterns interfering background projection since they interfere
with vision-based tracking. False objects introduced by such
interfering background can easily cause tracking failure if
no enough care is taken. Multiple users interacting with
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Table 1: Characteristics of tracking systems.

Flock of birds [5] InterSense IS-900 [4] Vision-based tracker (proposed)

Data acquisition Electromagnetic fields Ultrasound/inertia sensors Color and IR cameras

Degree of freedom (DOF) 6 (location+orientation) 6 (location+orientation) 3 (location only)

Maximum tracking area (m2) 36 140 225

Accuracy (location) (mm) 1-2 2-3 4-5

Sensitivity (jitter) Sensitive to ambient Sensitive to number and Sensitive to IR sources

Electromagnetic environment Distribution of emitters

Update rate (frames per second) 144 180 40–60 (number of objects dependent)

cost Medium High ($29,900) Low ($6,000 with 6 cameras+1 PC)

each other in the environment often make the objects being
tracked partially or fully occluded in some of the camera
views. In addition, to increase the visibility of the visual
projection, the lighting condition of the environment is often
dimmed and suboptimal for video tracking. Reliable object
tracking in 3D space with dynamic interfering background
presents a challenging research problem. Many existing
object tracking algorithms focus on robust 2D tracking in
cluttered/dynamic scenes [6–8]. For example, [9] utilized
the epipolar geometry in a particle filtering framework to
handle object occlusions in crowded environments using
multiple collaborative cameras. Some 3D object tracking
algorithms utilize background subtraction and temporal
filtering techniques to track objects in 3D space with the
assumption of simple or stationary background [10, 11].
References [12, 13] used the planar homography to establish
the object correspondence in overlapping field of view (FOV)
between multiple views. Thus, tracking is limited in 2D
plane coordinate systems essentially. Different from these
existing methods, our approach uses the planar homography
to remove the 2D false candidates on the known planes, and
objects are tracked in 3D space. Moreover, to the best of
our knowledge, no existing vision-based systems have been
reported to be able to reliably track objects in 2D or 3D in
environments with the interfering background projections
that we are dealing with in this paper.

To overcome the aforementioned challenges, in this
paper we present a working system we have developed for
real-time 3D tracking of objects in a mediated environment
where interfering visual feedback is projected onto the
ground and vertical planes. The ground plane covered by
white mats using an overhead projector through a reflecting
mirror. The vertical plane visualizes the projections from
a projector outside the tracking space. To deal with the
dimmed lighting conditions, we use custom-made battery-
powered glowing balls with built-in color LEDs as the objects
to be tracked by the system. Different balls emit different
color light spectrums. To alleviate the ambiguity caused by
visual projections, we adopt a multimodal sensing frame-
work using both color and infrared (IR) cameras. IR cameras
are immune to visual projections while color cameras are
necessary to maintain the target identities. IR-reflective
patches were put on the balls to make them distinct from the
background in the IR cameras. Homography mappings for

(a) (b)

Figure 1: Examples of mediated environments with interfering
background visual projections ((a) photo courtesy of Ken Howie,
Studios, copyright 2007 Arizona State University, (b) photo cour-
tesy of Tim Trumble Photography, copyright 2007 Arizona State
University).

all camera pairs with respect to the planes are recovered and
used to remove false candidates caused by the projections on
those planes. To better handle occlusions and minimize the
effects on the objects’ 3D locations caused by partial occlu-
sion or outliers, we use a mixture of Gaussian to represent
the multimodal distribution of all objects being tracked for
each frame. Each mixture component corresponds to a target
object with a Gaussian distribution. The kernel-based mean-
shift algorithm is deployed for each object to find the optimal
3D location. Kalman filtering finally smoothes 3D location
and provides a predicted 3D location for outlier rejection and
kernel bandwidth selection. The proposed tracking system
has been tested in various real-life scenarios, for example, for
embodied and mediated learning [14]. Satisfactory tracking
results have been obtained. Table 1 summarizes comparison
of the proposed vision-based tracking with the state-of-the-
art tracking techniques, namely Ascension’s Flock of Birds
and the IS-900 system from InterSense, Mass, USA. Clearly
the proposed vision-based tracking system is much cheaper
than the other two popular tracking systems, while with
comparable location tracking performance. As mentioned in
the future work, we are extending the proposed system by
including inertial sensors for the orientation recovery of the
objects.

2. OBJECT APPEARANCEMODEL

To ensure the visibility of the visual feedback, the ambient
illumination needs to be on a dim level. As a result, a
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color object is very hard to be seen by color cameras. The
object identity cannot be maintained in such low ambient
illumination. Therefore, we use custom-designed battery-
driven glowing balls with sufficient built-in color LEDs as
tracking objects. Sufficient small IR-reflective patches are
attached on them evenly so that they can be detected as bright
blobs in IR cameras lightened by infrared illuminators.
The reason that we use infrared illuminators instead of
plugging in infrared LEDs in glowing balls is due to the
fact that infrared LEDs consume much more power than
color LEDs. A fully charged battery usually can last about
two hours to power a glowing ball at sufficient brightness
level for tracking. In fact, the tracking objects can be in
any shape since the 2D shape is not exploited in tracking.
In our experiments, we use balls as tracking objects since
they are easy to be manipulated by subjects, for example,
tossed between two interacting subjects. Multiple objects
can be tracked by our proposed system. One assumption
made in the system development is that different objects are
identifiable by their unique colors, that is, two objects cannot
share the same color.

2.1. Colormodel

Color histogram provides an effective feature for object
tracking as it is computationally efficient, robust to partial
occlusion, and invariant to rotation and 2D size scaling. We
adopt hue, saturation, value (HSV) color space because it
separates out hue (color) from saturation and brightness
channels, and hue channel is relatively reliable to identify
different color objects under varying illuminations. A color
histogram H j for the target object j is computed in
the tracking initialization stage using a function b(qi) ∈
{1, . . . ,Nb} that assigns the hue value qi to its corresponding
bin:

H j =
{
h(u)(Rj)

}
u=1...Nb

= λ

NRj∑

i=1

δ
[
b(qi)− u

]
, (1)

where δ is the Kronecker delta function, λ is the normalizing
constant, and NRj is the number of pixels in the initial object
region Rj . In our practice, we divide the hue channel into
Nb = 16 bins in order to make the tracker less sensitive
to color changes due to visual projections on the objects.
We observe that a glowing ball emits stable color spectrums
in two hours given that the battery is fully recharged. The
histogram is not updated during the tracking in that the
visual feedback might be projected on objects.

2.2. Gray-scale threshold

We use gray-scale thresholding method to detect the reflec-
tive objects that have bright blobs in IR camera views.
Since all objects being tracked share the same reflective
material, they have the same gray scale lower- and upper-
bound thresholding parameters T = {Tmin, Tmax}. The
gray-scale thresholding parameters are determined in the
tracking initialization stage and need to be adjusted only

when the infrared spectrum of the ambient illumination is
substantially changed.

3. MULTIVIEW TRACKING

3.1. System overview

An overview of the proposed tracking system is given by the
diagram shown in Figure 2. We will briefly introduce each
module.

Initialization

The tracking initialization is to manually obtain camera
projection matrices, homogeneous plane coefficients, and
the histogram of objects, and the gray-scale thresholds for
IR cameras. It is a one-time process, and all the parameters
can be saved for the future use.

2D localization and outlier rejection

Object histogram and gray-scale thresholds are used to locate
the target in the color and IR camera view, respectively. 2D
search region predicted by Kalman filtering helps removing
2D false candidates.

2D pairwise verification

A pair of 2D candidates from two different views is examined
by epipolar constraint and planar homography test. Label
information is considered in this step.

3D localization

Each valid pair corresponds to a 3D triangulation result.
The unlabeled pair from two different IR cameras might be
obtained from 2D false candidates such as reflective or bright
spots. The predicted 3D location and velocity from Kalman
filtering help detecting those false pairs.

Multiview fusion

The distribution of all the objects being tracked is mod-
eled as a mixture of Gaussian. Each mixture component
corresponds to a target object. The kernel-based mean-shift
algorithm is employed for each target to find the optimal 3D
location.

Kalman filtering and occlusion handling

Each target is assigned a Kalman filter that plays the role
of a smoother and predictor. The partial occlusions are
alleviated by the mean-shift algorithm while the complete
occlusions that occur in some camera views are automatically
compensated by other nonoccluded camera views.

3.2. System calibration and tracking initialization

System calibration consists of camera calibration, scene
calibration, and object template extraction. The cameras
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Figure 2: Diagram of the proposed object tracking system.

are calibrated using the multicamera self-calibration toolkit
developed by Svoboda et al. [15]. We use a small krypton
flashlight bulb as the calibration object that is visible in both
color and IR cameras. Given N camera projection matrices
{Pi}Ni=1, the fundamental matrices, {Fi j}Ni, j=1;i /= j , which are

useful to enforce the epipolar constraint, can be computed
easily [16].

The purpose of the scene calibration is to obtain the
equations of the 3D planes on which visual feedback is
projected. In our case, they are the ground plane and
vertical plane. The plane equation is used to get the planar
homography which removes visual projections on the plane.
The reason that we do not use 2D feature correspondences
to compute homography is that the color points projected
on the plane are invisible in IR cameras. Thus, we fit a plane
based on the 3D point locations computed by triangulation
using the 2D feature correspondences in color cameras. Once
we have the 3D plane equations and camera projection
matrices, planar homography {Hi j}Ni, j=1;i /= j can be computed

between any different cameras.
An object template includes object’s gray-scale threshold,

color histogram, and 2D size range in each camera view.
Currently, the object templates are obtained manually as part
of the system calibration process. The color histogram is

computed for each color camera by choosing the area of an
object in that camera view, while the gray-scale thresholds
are learned by waving a reflective ball evenly in 3D mediated
space and then extracting blobs’ minimum and maximum
brightness values in IR cameras. The 2D size of an object is
useful to reject 2D false candidates in each camera view. The
2D size range (i.e., minimum and maximum size values) for
each object is retrieved by counting the number of pixels in
the object’s corresponding segmented region in each camera
view.

System calibration and object templates can be saved
in the system configuration, from which tracking can be
restored efficiently and bypasses the initialization stage
whenever it restarts. An object template needs to be reini-
tialized only if its color is changed.

3.3. 2D localization and outlier rejection

In our mediated environment, the background subtraction is
not helpful to detect desired objects because of the projected
visual feedback and human interaction in the space. There-
fore, we directly segment out the object candidates based on
its color histogram and gray-scale thresholds for the color
and IR cameras, respectively. Given a color image, we identify



H. Jin and G. Qian 5

all the pixels with hue values belonging to the object’s color
histogram. Given a gray-scale image from an IR camera, we
segment out all the pixels whose brightness values are within
Tmin and Tmax. Then, we employ connected component
analysis to get all pixel-connected blobs in both gray-scale
or color image. A blob is valid only if its size is within the
corresponding object’s size range. Finally, we take the blob’s
center to represent its 2D coordinates. Size control is useful
to combat the background projection, especially when a ball
is submerged by a large projection with similar color in some
color camera views. After size control, the projection will be
removed from the list of valid 2D candidates. Essentially, the
ball is considered to be “occluded” by the projection in such
cases.

For color images, we further verify each valid blob l
by comparing its histogram Hl, with the object template
histogram H using the Bhattacharyya coefficient metric,
which represents a similarity metric with respect to the
template histogram. The metric is given by

ρ
(
Hl, H

) =
Nb∑

b=1

√
h(b)
l h(b), (2)

where Nb is the number of bins, and h(b)
l is the normalized

value for bin b in the lth blob’s histogram Hl. ρ(Hl, H) ranges
from 0 to 1, with 1 indicating a perfect match. A blob is a
valid object candidate only if its Bhattacharyya coefficient
is greater than a certain similarity threshold Ts. A small
threshold Ts = 0.8 was taken because of high occurrence of
uniformly colored targets in our applications.

To remove 2D outliers introduced by cluttered and
dynamic scenes, we specify a search region. It is given by a
circular region centered at the predicted 2D location which
is reprojected from 3D Kalman predicted location (3.7). The

radius of the search region T(k,i)
2D (t) for object k in camera

view i is determined by

T(k,i)
2D (t) =

⎧
⎨

⎩

TH, Δ(k,i)
2D (t) ≤ TH,

α·Δ(k,i)
2D (t), otherwise,

(3)

where Δ(k,i)
2D (t) is the 2D pixel distance, the object is expected

to travel from t − 1 to t. Given the final location estimates
of the object at t − 1 and t − 2, the 2D locations of object k
in camera view i in the two previous frames can be found.

Δ(k,i)
2D (t) is then computed as the pixel distance between these

two 2D locations. α is a scaling factor. TH is the lower bound
for the search radius. In our implementation, we set α = 1.5
and TH = 10 pixels. A 2D blob for the target is identified as
an outlier if it is out of the target’s search region. After this
2D outlier rejection step, for each object k a candidate list of

2D locations {X (n)
k,i (t)} is formed in every camera view i at

time t. n is the index of the valid blob in 2D candidate list.
In an IR camera view, the 2D candidate list of an object

consists of the blobs within the search region of the object.
In a color camera view, the valid 2D candidates of an object
are blobs inside the search region with a histogram similarity
(Bhattacharyya distance) above a threshold to that object.

Please note that when two objects are close to each other
in an IR camera view with overlapping search areas, a 2D
candidate is allowed to be included in the candidate lists of
both objects.

3.4. 2D candidate pair verification

Point correspondences from two or more camera views are
needed to compute 3D locations using triangulation. An

initial set of candidate pairs {X (n)
k,i (t),X (m)

k, j (t)}
i< j

is formed

by pairing up 2D candidates in different views. When these
pairs are formed, 2D candidates associated with different
objects are not allowed to be paired up. The resulting list of
2D candidate pairs might include false candidate pairs not
corresponding to any object, such as pairs related to floor
projections, or pairs not related to any physical objects in the
space.

To remove such false pairs, we first verify each pair by the
epipolar constraint, that is, XT

2 F21X1 = 0. Pairs with epipolar
distance ED(X2,X1) < TED are classified into the valid pair
set Xe, where TED is the epipolar distance threshold.

Due to the visual feedback projected on the ground
plane or vertical plane, some projections sharing a similar
color histogram with the target may be observed in two
color camera views. Such projections satisfy the epipolar
constraint. To remove projections, we apply the planar
homography test against the pairs in Xe. The pair that has
passed the homography test, that is, ‖X2 − H21X1‖ > TH ,
is not corresponding to projections and will be put into the
final valid pair set X, where TH is the homography test
threshold.

The object, however, may actually be laid on or close to
one of the planes for visual projection. To prevent valid pairs
from being removed by the homography test in this case, we
first search through all the color-IR pairs to see if there is
any color-IR pair {Xe

2,Xe
1} ∈ Xe satisfying ‖X2 −H21X1‖ <

TH . If there are such color-IR pairs, there is a good chance
that the ball is on the floor. All the indices of related color
blobs in those color-IR pairs are recorded in a valid blob
list B. If a color-color candidate pair fails the homography
test (i.e., they satisfy the homography constraint w.r.t. the
ground plane), but one of the blobs is in B, meaning that
the ball is on the plane and it is expected for the related color
blobs to fail the homography test, this color-color pair is still
regarded as a valid pair and put into the final valid pair set
X. In our experiment, we set both TED and TH to a small
value (3 pixels). After this step of 2D candidate verification,

X = {Xn}Np

n=1 is established, where Np is the number of valid
2D pairs.

3.5. Triangulation and outlier rejection

The 3D positions of the objects need to be computed using
the filtered list of 2D pairs. Triangulation is commonly used
to localize a 3D point from its 2D projections in two or
more camera views. Although multiple 2D pairs of the same
object can be triangulated to find the corresponding 3D
location, it is challenging to reliably segment IR-IR pairs
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Figure 3: Comparison of two fusion methods. (a) 3D location is computed by taking the mean of all 3D points; (b) 3D location is obtained
by kernel-based mean-shift algorithm.

to multiple objects. In our proposed approach, 2D pairs
on the list are first triangulated separately to generate a list
of 3D candidates. Then, the final position estimates of the
objects are obtained through a multiview fusion procedure
as detailed in Section 3.6.

For each pair Xn ∈ X, the corresponding 3D candidate
location Zn is obtained using triangulation. A set of 3D

candidates {Zn}Np

n=1 can be created. Recall that each object
is identified or labeled by a unique color emitted from the
built-in LEDs. A 3D candidate obtained from a non IR-IR
pair (i.e., a color-color pair or a color-IR pair) carries the
object label because of the availability of color information.
Such color 3D candidates are also called labeled candidates.
On the other hand, IR cameras are color-blind. As a result, a
3D candidate obtained from an IR-IR pair has no color labels
associated to it. These candidates are referred to as unlabeled
candidates. Although an IR-IR pair does associate to an
object based on the 2D search regions, this association is
not exploited to label IR-IR pairs since one IR-IR pair might
associate to more than one objects if these objects are close
to each other in the 3D space. Instead of explicitly assigning
multiple labels to 3D candidates from such ambiguous IR-
IR pairs, all IR-IR pairs and the resulting 3D candidates are
simply treated as unlabeled candidates. Section 3.6 shows
how these unlabeled candidates are fused with the labeled
candidates through mean shift to find the final estimate of
the 3D object locations.

Although the 2D pair list has been filtered using the
epipolar and homography constraints, it is still possible that
some of the 3D candidates do not actually relate to any
objects being tracked. A false 2D pair candidate appears to
be valid if the two points happen to be on their epipolar
lines. A false 3D candidate can also be formed by projections
on human body. Similarly reflective surfaces and spots, such
as watches and glasses, may form as false IR-IR pairs. These
pairs are still alive through the pairwise candidate verifica-
tion. To eliminate the outliers caused in these scenarios, we
perform the following 3D outlier rejection step based on the
Kalman predication introduced in Section 3.7.

Let Z(n)
k,t be the nth 3D candidate for object k at time

t, and let Z̃k,t be the corresponding prediction from the

Kalman filter. Z(n)
k,t is considered to be within a search sphere

of object k if ‖Z(n)
k,t − Z̃k,t‖ ≤ T(k)

3D(t), where T(k)
3D(t) indicates

the tolerance of outliers at time t for object k. A labeled 3D

candidate outside the search sphere centered at the associated
object is rejected as an outlier. So is an unlabeled candidate
outside the search spheres of all the objects. Similar to the
2D outlier rejection by a circular search region, a spherical

search region is used to remove outliers. T(k)
3D(t) is set to

be β·Δ(k)
3D(t), where Δ(k)

3D(t) is the expected displacement of

the object between t − 1 and t. Δ(k)
3D(t) is estimated as the

distance between the final 3D location estimates of the object
at t − 1 and t − 2. Theoretically, the scaling parameter β
depends on the frame rate of the system and the motion of
the object. However, since the frame rate of the system is
nearly constant within a short period of time, it is reasonable
to use a constant scaling parameter. To cope with possible
abrupt object motion, we set β = 2 which has proven to be
working well in our experiments.

A lower bound for T(k)
3D(t) is also set to secure a valid

search region for slowly moving or nearly static objects.
In our experiments, this lower bound is set to be 22.5 cm.
After rejecting outliers, the list of verified 3D candidates C
is generated. At the same time, each individual object also
has its own sublist of 3D candidates based on the color
(only applicable to labeled candidates) and position of the 3D
candidates. Please also note that one unlabeled candidate can
be included in the sublists of two or more close-by objects.

3.6. Multiview fusion

Given the list of 3D candidates C, we need to estimate the
3D locations of the objects being tracked. A straightforward
solution is to compute the mean of the 3D candidates on
the sublist of an object and use that as the position estimate
of the object. However, this method is error-prone since the
sublist of 3D candidates of an object and the 3D candidates
are noisy. Some of the candidates are biased due to partial
occlusion when the object is only partially visible in one or
more video cameras, resulting in an inaccurate 2D centroid
extraction. In addition, when two objects (e.g., A and B) are
close in 3D space, a 3D unlabeled candidate of A might be
in the neighborhood of B, and vice versa. Thus, sublist of
candidates of an object might contain some 3D candidates
which actually belong to some other nearby objects.

To tackle this issue, the location distribution of all the
objects being tracked is considered to be a mixture of Gaus-
sian (MoG), with each mixture component corresponding
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to one object. Object tracking is cast into a mode seeking
problem using the 3D candidates. Consequently, the effect of
missing 3D candidates due to the complete occlusion in some
views, inclusion of unlabeled candidates of other objects,
and biased 3D localization caused by partial occlusion
on the tracking results will be significantly reduced by
selecting proper forms of kernel and weight functions. Since
the goal is to locate the modes from the 3D candidates,
instead of learning the complete parameters of the MoG
using the expectation-maximization (EM) algorithm, a fast
mode-seeking procedure based on mean shift is taken in
our proposed approach. Figure 3 shows comparison of two
fusion methods with associated 2D reprojection errors,
namely, the mean of 3D candidates and the mode obtained
by kernel-based mean-shift algorithm. It can be seen that
mean shift provides smaller reprojection error.

The mean-shift algorithm is an efficient and nonpara-
metric method for clustering and mode seeking [17–19]
based on kernel density estimation. Let S be a finite set of
sample points. The weighted sample mean at x is

m(x) =
∑

s∈SKh(s− x)w(s)s
∑

s∈SKh(x− s)w(s)
, (4)

where Kh(·) is the kernel function, h is the bandwidth
parameters, and w(·) is the weight function. Mean shift
recursively moves the center of the kernel to a new location
by the mean-shift vector Δx = m(x) − x. The mean-shift
procedure is guaranteed to be convergent if the kernel K(x)
has a convex and monotonically decreasing profile k(‖x‖2)
[18]. An important property of the mean-shift algorithm is
that the mean-shift vector computed using the kernel G is an
estimate of the normalized density gradient computed using
the kernel K , where G satisfies the relationship g(‖x‖2) =
−ck′(‖x‖2), c is a normalizing constant. g and k are
the profiles of kernel G and K , respectively. In order to
facilitate real-time implementation, we take advantage of the
intermediate results, namely, the prediction and covariance
matrix of Kalman filtering (see Section 3.7) to approximate
the initial center and bandwidth.

Integration of mean shift and Kalman filter has been
introduced in [18], where mean shift is used to locate the
optimal target position in an image based on the prediction
from a Kalman filter. Then, the result of mean shift is used as
the measurement vector to the Kalman filter. Our proposed
approach for multiview fusion follows [18] in spirit in terms
of the relationship of mean shift and Kalman filter. The
major difference between our approach and is that we use
mean shift as a fusion mechanism to find optimal object
3D locations using both labeled and unlabeled 3D position
candidates obtained from triangulation of point pairs.

Center initialization

A good initial center will expedite the convergence of the
mean-shift procedure. For each object being tracked, there
is one corresponding center initialized. In our approach,
y = (yx, yy , yz), the predicted location by the Kalman filter at
the previous frame is taken as the initial center since y gives
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Figure 4: Histogram comparison of mean-shift iterations with
different initial centers.

a good guess of object location at the current frame. Note
that another possible choice for the initial center is taking the
weighted mean of the 3D candidates. We compare the mean-
shift iterations with these two initial centers and the same
bandwidth using a 1420-frame video sequence (sequence
1). In the histogram shown in Figure 4, x-axis indicates
the number of mean-shift iterations while y-axis indicates
the number of frames corresponding to each iteration. For
instance, to converge to optimal points, about 750 frames
take 4 iterations using Kalman prediction as initial center,
while about 600 frames take the same iterations using
weighted mean as initial center. The iteration histogram
shows that our approximation takes slightly more mean-shift
iterations. But the approximation gains the benefit of no
extra computation for initial center.

Bandwidth selection

A proper bandwidth for the kernel function is critical to
the mean-shift algorithm in terms of estimation perfor-
mance and efficiency [20]. Reference [21] lists four different
techniques for bandwidth selection. In [22], the bandwidth
selection theorem is shown that if the true underlying
distribution of samples is a Gaussian N (µ,Σ), for the fixed-
bandwidth mean shift, the optimal bandwidth for a Gaussian
kernel Kh that maximizes the bandwidth-normalized norm
of the mean shift vector is given by h = Σ.

In our approach, MoG is used to represent the joint
position distribution of all the object, and the marginal
distribution of a single object is described by a single
Gaussian. In practice, Σ the true covariance matrix of the
Gaussian related to an object is unknown. However, Σ̃ the
corresponding covariance matrix of the predicted object
position in Kalman filter provides a good approximation
to Σ since it resembles the uncertainty of the sample point
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Table 2: Coefficients of fitted planes.

Plane Homogeneous coefficients

Ground plane [−0.0022, 0.0039, 0.9999, 0.0132]

Vertical plane [0.9889,−0.1338, 0.0628, 0.0144]

distribution. Thus in our proposed approach, h = (hx,hy ,hz)

is formed by the diagonal terms of Σ̃.

Kernel setup

Labeled sample points have explicit identity information
while unlabeled ones do not. Two different kernel functions
are applied to labeled and unlabeled sample points. Both
kernel functions share the same bandwidth h. Since a labeled
3D candidate is expected to be within an ellipsoid centered
at the mode, and all the 3D candidates within the ellipsoid
are considered equally important from the perspective of the
kernel function, a truncated flat kernel (6) is used for the
labeled 3D candidates. Let Qh be an ellipsoid centered at y
with three axes given by h:

Qh(x, y) = (xx − yx)2

h2
x

+
(xy − yy)2

h2
y

+
(xz − yz)

2

h2
z

− 1.

(5)

The truncated flat kernel for labeled samples is given by

Kh(x− y) =
{

1, if Qh(x, y) < 0,

0, otherwise.
(6)

On the other hand, we assume that the contribution to the
mode estimation made by an unlabeled 3D candidate is less
than that of a labeled candidate. The contribution of an
unlabeled 3D candidate to the mode estimation is computed
according to the distance from the unlabeled point to the
mode so that a distant point has small contributions. Hence,
a truncated Gaussian kernel (7) is applied to all unlabeled
sample points as follows:

Kh(x− y) =

⎧
⎪⎨

⎪⎩

exp
{
− ‖x− y‖2

max2(hx,hy ,hz)

}
, if Qh(x, y) < 0,

0, otherwise.
(7)

Weight assignment

All the sample points in the final set are the survivors through
the 2D pairwise verification process and 3D outlier rejection.
Each 3D point is associated with a small epipolar distance
dED(x) < TED. Thus, the epipolar distance is a good indicator
to represent the weight of each sample point. A Gaussian
kernel (8) is used to compute the weight for each sample
point:

w(x) = e−d
2
ED(x)/α, (8)

where α = 2T2
ED.
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Figure 5: Illustration of the real system setup in top-down view.

The above mean-shift procedure iteratively updates the
position estimates of all objects being tracked. The position
of one object is considered converged when the norm of
corresponding mean-shift vector is less than a prechosen
threshold (e.g., 0.5 mm in our implementation).

3.7. Smoothing and prediction using kalman filter

In the proposed tracking system, Kalman filters are used
to smooth position estimates obtained using mean shift
and predict object positions for the next time instant. Each
target object is assigned with a Kalman filter to perform
smoothing and prediction based on a first-order motion
model. The position estimates obtained using mean shift are
treated as measurements and input to the Kalman filters. The
smoothed 3D locations are then used as the final tracking
results of the objects. It is possible, and perhaps desirable,
to estimate the measurement noisy covariance matrix based
on the results of the mean shift. In our implementation, to
reduce computational cost a constant diagonal measurement
noisy covariance matrix is used instead. The results obtained
are still good enough for our applications. The predicted
object locations are projected onto all camera views to
form 2D search region for the next time instant. These 2D
search regions can substantially reduce the number of 2D
false candidate blobs as described in Section 3.3. Similarly,
these location predictions also serve as centers of searching
spheres for 3D outlier rejection as discussed in Section 3.5. In
addition, the covariance matrices of the predicted positions
also inform the bandwidth selection in Section 3.6.

3.8. Handling complete occlusion and tracking failure

When complete occlusion occurs in some camera views, the
2D candidates in other nonoccluded camera views can still
be coupled to form pairs for triangulation. As long as an
object is visible in at least two camera views, the tracking
of the object can be consistently achieved. Sometimes due
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Color #1

Color #2

Color #3

IR #1

IR #2

IR #3

#85 #398 #426 #429 #723

Figure 6: Two-object tracking results using sequence 1. A large amount of interfering visual patterns was present in the background. Bold
green (red) circles indicate the reprojected 2D locations of the green (red) object. The slim red circles show the 2D candidates in each camera
view. The large slim yellow circles are the predicted search regions for the removal of 2D false candidates. The mean (μ) and std (σ) of the
reprojection errors in pixels are as follows. For the green object, μ1 = 0.823 and σ1 = 0.639. For the red object, μ2 = 0.758 and σ2 = 0.607.
Note that the blue points are deliberately added as the interfering background projections, which are different from tracking objects’ colors,
to test the robustness of our tracking approach.

to severe occlusions or fast and abrupt moving direction
changes, an object is only detected in one camera view or
completely invisible by all the cameras. Consequently, no
valid 2D pair of the object can be formed in such scenarios
and the tracking system issues a tracking failure event for this
object as no pair exists. To recover the tracking of the missing
object, we search valid color-IR pairs in the whole image in
both color and IR camera views, without enforcing distance-
based outlier rejection scheme according to search regions.
During the detection phase of a lost object, the existence of
a color-color pair matching, the color of the object, or an
IR-IR pair alone cannot claim the detection of the object
since a color-color pair may be caused by background visual
projection, and an unlabeled IR-IR pair does not provide any
identity information and it may not actually correspond to
any objects to be tracked. In this case, most of outliers are
removed by color-IR pair selection, and the final result is
refined by mean-shift-based multiview fusion. Once a lost
object has been detected, the tracking can be resumed.

Occasionally, an occluded object will reappear again
shortly at a position close to where it got lost. In such
cases, there is no need to search the object in the entire
image. To accommodate such scenarios, some extra steps are
taken in our current system implementation as shown in the
right column in Figure 2. In the current implementation, a
missing-frame counter (MFC) is associated to each object
being tracked. When an object is not visible in at least two
cameras views, the corresponding MFC is triggered to count
the number of frames that the object is continually missing.
When the reading of the MFC is less than a certain threshold
MTH , for example, 25 frames in our implementation, the
tracking system will keep trying to search for the object
in all of the camera views within search regions according
to its 3D location at the last time instant when the object
was successfully tracked. If the object reappears in the
search regions of two of more camera views during this
period, the MFC will be set to zero and the tracking of
the object continues. If the object cannot be found during
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Color #1
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Figure 7: Three-object tracking results using sequence 2. The statistics of the reprojection errors in pixels are μ1 = 0.788 and σ1 = 0.609 for
the green object, μ2 = 0.891 and σ2 = 0.681 for red object, and μ3 = 0.884 and σ3 = 0.523 for the blue object.

this period, the MFC gets reset and the systems start to
search for the object in the whole images from all the camera
views according to the procedure described in the previous
paragraph.

4. EXPERIMENTAL RESULTS
AND PERFORMANCE ANALYSIS

The proposed tracking system has been implemented using
six CCD cameras (Dragonfly 2, Point Grey Research, Ariz,
USA), including three color cameras and three IR cameras.
Figure 5 illustrates the real system setup in top-down view.
The cameras are mounted about 14 feet high from the
ground on a steel truss. The tracking system software is
programmed using C++ with multithreading on a PC (Intel
Xeon 3.6 GHz, 1 GB RAM) running Windows XP. Image
resolution is set to 320 × 240. All cameras are synchronized
and calibrated in advance. The dimension of the space
is aligned to predefined coordinate systems with 1 unit
= 15 feet. To better cover the activity space, large FOVs
are applied to all the cameras. So, lens distortion [16] is
also recovered for each frame using the camera calibration

toolbox [23]. Visual projections are projected onto two
planes—the ground plane and a vertical plane parallel to y-
axis at the boundary of the capture volume. Table 2 shows
the homogeneous coefficients of the two planes. This system
runs in real-time at 60 fps when tracking three objects, and
40 fps when tracking six objects. In this six-camera setting,
approximately 10∼18 pairs per object will appear in the final
2D pair set. The number of pairs varies based on occlusions
and the number of neighboring objects. Occlusions cause
missing pairs while neighboring objects result in more
unlabeled IR-IR pairs appearing in the final set.

To evaluate and analyze the performance of the tracking
system, a large amount of fast time changing visual patterns
was projected onto the ground and vertical planes. These
visual patterns often carry similar colors to the objects
being tracked. In this section, tracking results obtained using
three sequences are presented to demonstrate the robust
tracking performance of the proposed system in the presence
of interfering visual projection, occlusion, and multiple
subjects in the space. Sequence 1 shows reliable tracking
of two objects with interfering visual projection on the
multiple projection planes. Sequence 2 has three objects and
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#53 #221 #284 #388 #801

Figure 8: Two-ball tracking results using sequence 3. Four people were moving in the space and interacting with the mediated environment.
The statistics of the reprojection errors in pixels are μ1 = 0.732 and σ1 = 0.511 for the green object, and μ2 = 0.755 and σ2 = 0.549 for the
red object.

frequent occlusion. In sequence 3, four subjects interact with
the mediated environment using two objects. Partial and
complete occlusions also frequently occur in sequence 3.

In the first experiment using sequence 1 (1420 frames
long), two glowing balls (green and red, 6 inches in diameter)
patched with reflective material were tracked with interfering
visual patterns of similar color projected onto two planes.
Sample frames from all six cameras (frames 85, 398, 426,
429, and 723) are shown in Figure 6 with reprojected 2D
locations (small bold circles) and search regions (large slim
circles) superimposed for both objects. The bold green and
red circles indicate the green and red objects’ 2D locations
reprojected from the final 3D locations, respectively. The
large slim yellow circle is the predicted search region used to
remove 2D false candidates. In these frames, a great amount
of 2D false candidates did appear in the entire image but
they were effectively removed through the predicted search
region. The plane projections were successfully eliminated
by the homography test. Some bright spots, for example, the
spots on the upper body of the subjects in frames 398 and
723 in all three IR cameras, had no much negative effects
on tracking due to 3D outlier rejection and mean-shift-
based multiview fusion steps introduced earlier. Objects can

be continually tracked when they were put on the ground
plane without being confused with floor projections. Object
identities were successfully maintained in some challenging
scenarios, for example, when two objects were rolling on
the ground plane and passing by each other in frames 426
and 429. In this case, it can be seen from Figure 6 that the
centers of the reprojected 2D locations were exactly on the
objects being tracked. We also projected final 3D location
onto all camera views and calculated the average reprojection
error over all cameras for each frame. In this experiment,
the reprojection errors over all the frames are 0.823 pixels
with standard deviation 0.639 pixels for the green object, and
0.758 pixels with standard deviation 0.607 pixels for the red
object.

The second sequence (see Figure 7) is 658 frames long,
consisting of three moving objects with interfering visual
patterns projected on the two projection planes. A person
switches green and red objects between his hands around
frames 103, 128, 200, and 298. Partial and complete
occlusions occurred in these views but the objects were
tracked accurately without lose or exchanging of identities.
In frame 482, three objects were placed on the ground
plane at the same time, and objects were covered by bowing
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Figure 9: Trajectories of the two objects in sequence 1 between
frame 400 and frame 500. The two objects were rolling on the
ground plane and passing by each other.

persons in some views. In such severe occlusions with
similar color visual projection, all three objects were still
tracked accurately. The reprojection errors over all frames
in sequence 2 are 0.788 pixels with standard deviation 0.609
pixels for the green ball, 0.891 pixels with standard deviation
0.681 pixels for the red object, and 0.884 pixels with standard
deviation 0.523 pixels for the blue object.

In Figure 8, there are 1180 frames. In this experiment,
two balls were successfully tracked in the presence of
four people moving in the space and interacting with the
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Figure 10: Trajectories of the three objects in sequence 2 between
frame 100 and frame 200. The green and red objects were
manipulated by one subject, and the blue object was handled by
another person.

mediated environment. A large amount of moving visual
patterns with varying illumination was projected on both
planes. Occlusions of the objects occurred frequently during
the tracking. In frame 801, it can be seen that two balls
were put close to each other. However, our system can
still maintain precise tracking in this challenging case. The
objects were successfully tracked in the whole sequence. The
average 2D reprojection errors for the green and red ball are
0.732 and 0.755 pixels with standard deviation 0.511 and
0.549 pixels, respectively.
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Table 3: Jerk cost of trajectory.

Sequence
Jerk Cost

Object 1 Object 2 Object 3

1 0.0355 0.1813 N/A

2 0.0149 0.1266 0.0098

3 0.0184 0.0126 N/A

Our method is able to recover and resume the correct
tracking of the same object when it is lost as described in
Section 3.8. The false object detection rate after tracking
failure in the tested sequences is less than 1% in the
recovery phase. A false object detection may happen when
the changing background has similar color to the lost
object, and there exists an IR-color pair which satisfies both
epipolar constraint and homography test coincidentally. The
probability of the coincident scenario is very low in practice.

Since ground truth data of the object 3D positions is
not available to benchmark our tracking system, the jerk
cost was computed to gauge the tracking accuracy and
consistency. Reference [24] notes that the smoothness of a
trajectory can be quantified as a function of jerk, which is
the time derivative of acceleration. Hence, jerk is the third-
time derivative of location. For a system x(t), the jerk of that
system is

J(x(t)) = d3x(t)
dt3

. (9)

For a particular 3D trajectory x(t) that starts at t1 and ends
at t2, the smoothness can be measured by calculating a jerk
cost:

JC(x) =
∫ t2

t1

(
d3xx(t)

dt3

)2

+
(d3xy(t)

dt3

)2

+
(

d3xz(t)
dt3

)2

dt.

(10)

Three subsequences of 101 frames were selected, one
from each video sequence. Table 3 lists the jerk cost of
tracked object trajectories in these subsequences. Small jerk
cost indicates smooth motion. The 3D trajectories and X , Y ,
and Z positions over time of objects are plotted. Figure 9
shows these trajectories between frames 400 and 500 of
sequence 1. In the first half of this subsequence, the two
objects were rolling on the ground plane and passing by
each other very closely. Figure 10 shows trajectories between
frames 100 to 200 from sequence 2, in the beginning of
which the green and red objects were very close to each other.
Trajectories of two objects from frame 700 to 800 of sequence
3 are presented in Figure 11.

5. CONCLUSIONS AND FUTUREWORK

This paper reports a real-time system for multiview 3D
object tracking for interactive mediated environments with
dynamic background projection. The experiment results
show that the reported system can robustly provide accurate
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Figure 11: Trajectories of the two objects in sequence 2 from frame
700 to 800.

3D object tracking in the presence of dynamic visual
projection on multiple planes. This system has found
important applications in embodied and mediate learning
(http://ame2.asu.edu/projects/ameed/). It can also be easily
used in many other visually mediated environment to pro-
vide reliable object tracking for embodied human computer
interaction. We are currently working on integrating built-
in inertial sensors such as accelerometers and rotation
rate sensors with vision-based tracking. In so doing, the
orientation information of the object can also be recovered.
In addition, inertial information can improve and maintain
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consistent tracking when the object is completely visually
occluded in all camera views.
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