
Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2008, Article ID 542808, 22 pages
doi:10.1155/2008/542808

Research Article
A Scalable Clustered Camera System for
Multiple Object Tracking

SenemVelipasalar,1 Jason Schlessman,2 Cheng-Yao Chen,2 Wayne H. Wolf,3 and Jaswinder P. Singh4

1 Electrical Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
2Electrical Engineering Department, Princeton University, Princeton, NJ 08544, USA
3School of Electrical and Computer Engineering, Georgia Institute of Technology, GA 30332, USA
4Computer Science Department, Princeton University, Princeton, NJ 08544, USA

Correspondence should be addressed to Senem Velipasalar, velipasa@engr.unl.edu

Received 1 November 2007; Revised 21 March 2008; Accepted 12 June 2008

Recommended by Andrea Cavallaro

Reliable and efficient tracking of objects by multiple cameras is an important and challenging problem, which finds wide-ranging
application areas. Most existing systems assume that data from multiple cameras is processed on a single processing unit or by
a centralized server. However, these approaches are neither scalable nor fault tolerant. We propose multicamera algorithms that
operate on peer-to-peer computing systems. Peer-to-peer vision systems require codesign of image processing and distributed
computing algorithms as well as sophisticated communication protocols, which should be carefully designed and verified to avoid
deadlocks and other problems. This paper introduces the scalable clustered camera system, which is a peer-to-peer multicamera
system for multiple object tracking. Instead of transferring control of tracking jobs from one camera to another, each camera in
the presented system performs its own tracking, keeping its own trajectories for each target object, which provides fault tolerance.
A fast and robust tracking algorithm is proposed to perform tracking on each camera view, while maintaining consistent labeling.
In addition, a novel communication protocol is introduced, which can handle the problems caused by communication delays
and different processor loads and speeds, and incorporates variable synchronization capabilities, so as to allow flexibility with
accuracy tradeoffs. This protocol was exhaustively verified by using the SPIN verification tool. The success of the proposed system
is demonstrated on different scenarios captured by multiple cameras placed in different setups. Also, simulation and verification
results for the protocol are presented.

Copyright © 2008 Senem Velipasalar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

This paper takes a holistic view of the problems that need to
be solved to build scalable multicamera systems. Scalability
has two aspects: computation and communication. In order
to address scalability in both of these aspects, we present
the scalable clustered camera system (SCCS), which is a
distributed smart camera system for multiobject tracking. In a
smart camera system, each camera is attached to a computing
component, in this case different CPUs. In other words, in
SCCS, a different processing unit is used to process each
camera, which provides scalability in computation power.
Moreover, processing units communicate with each other
in a peer-to-peer fashion eliminating the need for a central
server, and thus providing scalability on the communication
side and also removing a single point of failure.

Reliable and efficient tracking of objects by multiple
cameras is an important and challenging problem, which
finds wide-ranging application areas such as video surveil-
lance, indexing and compression, gathering statistics from
videos, traffic flow monitoring, and smart rooms. Due to
the inherent limitations of a single visual sensor, such as
limited field of view and delays due to panning and tilting,
using multiple cameras has become inevitable for object
tracking in applications requiring increased coverage of
areas. Multiple cameras can enhance the capability of vision
applications, providing fault-tolerance and robustness for
issues such as target occlusion. Hence, many research groups
have studied multicamera systems [1–30].

Yet, using multiple cameras to track multiple objects
poses additional challenges. One of these challenges is

2 EURASIP Journal on Image and Video Processing

the consistent labeling problem, that is, establishing cor-
respondences between moving objects in different views.
Multicamera systems, rather than treating each camera
individually, compare features and trajectories from different
cameras in order to obtain history of the object movements,
and handle the loss of the target objects which may be caused
by occlusion or errors in the background subtraction (BGS)
algorithms.

Different approaches have been taken to solve the
consistent labeling problem. Kelly et al. [14] assume that
all cameras are fully calibrated. Funiak et al. [31] propose
a distributed calibration algorithm for camera networks.
Chang and Gong [8] and Utsumi et al. [25] employ fea-
ture matching. Yet, relying on feature matching can cause
problems as the features can be seen differently by different
cameras due to lighting variations. In addition, calibrating
cameras fully is expensive and impractical to install by the
end user, since it requires some expert intervention.

Kettnaker and Zabih [15] use observation intervals and
transition times of objects across cameras for tracking.
Lee et al. [18] assume that the intrinsic camera parameters
are known and use the centroids of the tracked objects to
estimate a homography and to align the scene ground plane
across multiple views. Khan and Shah [16] present a method
that uses field of view (FOV) lines and does not require the
cameras to be calibrated. However, due to the way the lines
are recovered, they may not be localized reliably, and if there
is dense traffic around the FOV line, the method can result
in inconsistent labels. More recently, Calderara et al. [6, 7]
and Hu et al. [12] presented methods for consistent labeling
making use of the principle axes of people.

Cai and Aggarwal [5] present a system in which only
the neighboring cameras are calibrated to their relative
coordinates. Targets are tracked using a single camera view
until the system predicts that the active camera will no longer
have a good view of the object. The tracking algorithm then
switches to another camera. Nguyen et al. [22] introduce a
system in which all cameras are calibrated, and the most
appropriate camera is chosen to track each object. The
tracking job is assigned to the camera that is closest to
the object. However, with a handoff or switching approach,
even though increased coverage is provided, and objects can
be tracked for longer periods of time, the tracking is still
being performed on one camera view at a time. This is
not a fault-tolerant approach, since the camera responsible
for tracking can break down, and detecting and recovering
from this, if recovery is possible, can introduce some delay.
In addition, the camera assigned for the tracking of an
object may not have the view of the object we are interested
in. For instance, the camera closest to a person may be
viewing that person from the back while the interest is seeing
that person’s face. Moreover, occlusions, merging/splitting of
objects, foreground blobs that are detected incompletely may
cause frequent switching of cameras.

In order to provide fault-tolerance, robustness, and mul-
tiple views of the tracked targets, objects in the overlapping
regions of the fields of view of cameras should be tracked
simultaneously on those views with consistent labels. This
way, even if a camera breaks down, other cameras can still

continue tracking and trajectories of the same object from
different views can be obtained. Also, in the case of occlusion
or loss of target objects, data about the object features and
trajectories in different camera views can be exchanged to
keep the trajectories updated in all camera views.

As cameras become less expensive, many systems will use
large numbers of cameras for better coverage and higher
accuracy. Thus, scalability and computational efficiency of
multicamera systems are very important issues that need
to be addressed. The performance and scalability of such
systems should not be debilitated with additional cameras.
Although many groups have developed methods to combine
data from multiple cameras, much less attention has been
paid to the computational efficiency and scalability. Many
existing systems assume that multiple cameras are processed
on a single CPU or by a centralized server. However, these are
not scalable approaches, and they introduce a single point
of failure. Chang and Gong [8] propose a system that is
implemented on an SGI workstation with two cameras. For
a single CPU system, the amount of processing necessary to
track multiple objects on multiple views can be excessive for
real-time performance. Moreover, scalability is debilitated
as each additional camera imposes greater performance
requirements.

In order to increase processing power, and handle mul-
tiple video streams, distributed systems have been employed
instead of using a single CPU. In a distributed system,
different CPUs are used to process inputs from differ-
ent cameras. Yet, most existing distributed multicamera
systems use a centralized server/control center. Yuan et al.
[30] present a distributed surveillance system in which
computers are connected to a server, and camera units do
not collaborate with each other or exchange information.
Collins et al. [9, 10] introduced the VSAM system, where all
resulting object hypotheses from all sensors are transmitted
at every frame back to a central operator control unit.
Nguyen et al. [20] propose a multicamera system where all
the local processing results are sent to a main controller.
Lo et al. [32] introduce a multisensor distributed system
where a central server coordinates the processing of the
sensor inputs. Krumm et al. [17] present a multicamera mul-
tiperson tracking system for the EasyLiving project. They use
two sets of color stereo cameras, each connected to its own
computer. A program called stereo module locates people-
shaped blobs, and reports the 2D ground plane locations
of these blobs to a tracking program running on a third
computer. Using a central server or a control unit for data
coordination/integration simplifies some problems, such
as video synchronization and communication between the
algorithms handling the various cameras. But server-based
multicamera systems have a bandwidth scaling problem,
since the central server can quickly become overloaded with
the aggregate sum of messages/requests from an increased
number of nodes. Also, the server is a single point of failure
for the whole system. In addition, server-based systems
are not practical in many realistic environments, and have
high installation costs. Besides the algorithm development,
hardware design and resource management have also been
considered for parallel processing. Watlington and Bove [33]

Senem Velipasalar et al. 3

propose a data-flow model and use a distributed resource
manager to support parallelism for media processing.

The aforementioned problems of server-based systems
necessitate the use of peer-to-peer systems, where individual
nodes communicate with each other without going through
a centralized server. Several important issues need to be
addressed when designing peer-to-peer systems. First, com-
munication between processing elements takes a significant
amount of time. This necessitates the design of tracking algo-
rithms requiring relatively little interprocess communication
between the nodes. Decreasing the number of messages
between the nodes also requires a careful design and choice
of when to trigger the data transfer, what data to send in what
fashion, and to whom to send this data. The system must
also maintain the consistency of data across nodes as well as
operations upon the data without use of a centralized server.
Also, even if the cameras and input video sequences are
synchronized, communication and processing delays pose a
serious problem. Depending on the amount of processing
each processor has to do, one processor can run faster/slower
than the other. Thus, when a processor receives a request,
it may be ahead/behind compared to the requester. These
issues mandate efficient and sophisticated communication
protocols for peer-to-peer systems.

Atsushi et al. [1] use multiple cameras attached to
different PCs connected to a network. They calibrate the
cameras to track objects in world-coordinates, and send
message packets between stations. Ellis [11] also uses a
network of calibrated cameras. Bramberger et al. [3] present
a distributed embedded smart camera system with loosely
coupled cameras. They use predefined migration regions to
handover the tracking process from one camera to another.
But, these methods do not discuss the type and details of
communication, and how to address the communication and
processing delay issues.

As stated previously, peer-to-peer systems require effi-
cient and sophisticated communication protocols. These
protocols find use in real-time systems, which tend to
have stringent requirements for proper system functionality.
Hence, the protocol design for these systems necessitates
transcending typical qualitative analysis using simulation
and instead, requires verification. The protocol must be
checked to ensure that it does not cause unacceptable issues
such as deadlocks and process starvation, and has correctness
properties such as the system eventually reaching specified
operating states.

Verification of communication protocols is a rich
topic, particularly for security and cryptographic systems.
Karlof et al. [34] analyzed the security properties of two
cryptographic protocols. Evans and Schneider [35] veri-
fied time-dependent authentication properties of security
protocols. Vanackère [36] modeled cryptographic protocols
as a finite number of processes interacting with a hostile
environment, and proposed a protocol analyzer trust for
verification. Finally, a burgeoning body of work exists per-
taining to the formal verification of networked multimedia
systems. Bowman et al. [37] described multimedia stream as
a timed automata, and verified the satisfaction of quality of
service (QoS) properties including throughput and end-to-

end latency. Sun et al. [38] proposed a testing method for
verifying QoS functions in distributed multimedia systems,
where media streams are modeled as a set of timed automata.

Our previous work [27, 28] introduced some of the tools
necessary towards building a peer-to-peer camera system.
The work presented in [28] performs multicamera tracking
and information exchange between cameras. However, it was
implemented on a single CPU in a sequential manner, and
the tracking algorithm used required more data transfer.
This paper presents SCCS together with its communication
protocol and its exhaustive verification results. SCCS is a
scalable peer-to-peer multicamera system for multiobject
tracking. It is a smart camera system wherein each camera
is attached to a computing component, in this case different
CPUs. The peer-to-peer communication protocol is designed
so that the number of messages that are sent between the
nodes is decreased, and the system synchronization issue is
addressed.

A computationally efficient and robust tracking algo-
rithm is presented to perform tracking on each camera
view, while maintaining consistent labeling. Instead of
transferring control of tracking jobs from one camera to
another, each camera in SCCS performs its own tracking
and keeps its own trajectories for each target object, thus
providing fault tolerance. Cameras can communicate with
each other to resolve partial/complete occlusions, and to
maintain consistent labeling. In addition, if the location
of an object cannot be determined at some frame reliably
due to the errors resulted from BGS, the trajectory of
that object is robustly updated from other cameras. SCCS
keeps trajectories updated in all views without any need for
an estimation of the moving speed and direction, even if
the object is totally invisible to that camera. Our tracking
algorithm deals with the cases of merging/splitting on a
single camera view without sending requests to other nodes
in the system. Thus, it provides coarse object localization
with sparse message traffic.

In addition, we introduce a novel communication pro-
tocol that coordinates multiple tracking components across
the distributed system, and handles the processing and com-
munication delay issues. The decisions about when and with
whom to communicate are made such that the frequency and
size of transmitted messages are kept small. This protocol
incorporates variable synchronization capabilities, so as to
allow flexibility with accuracy tradeoffs. Nonblocking sends
and receives are used for message communication, since for
each camera it is not possible to predict when and how many
messages will be received from other cameras. Moreover, the
type of data that is transferred between the nodes can be
changed, depending on the application and what is available,
and our protocol remains valid and can still be employed. For
instance, when full calibration of all the cameras is tolerated,
the 3D world coordinates of the objects can be transferred
between the nodes. We exhaustively verified this protocol
with success by using the SPIN verification tool.

We introduced the initial version of the SCCS and
its communication protocol in [29, 39]. We extended the
communication protocol to address real-time concerns, and
to handle conflicts in received replies. In this paper, we

4 EURASIP Journal on Image and Video Processing

Invis.

p(i)
1

p(i)
2

p(i)
3

p(i)
4

p(i)
b1 p(i)

b2

Ci

p(i)
r1, j

p(i)
r2, jp(i)

m, j

L
j,r
i

(a)

Invis.

Invis.

p
(j)
1

p
(j)
2

p
(j)
3

p
(j)
4

p
(j)
b1,i

p
(j)
b2,i

C j

p
(j)
r1

p
(j)
r2

p
(j)
m

Li,bj

L1,l
j

(b)

Figure 1: p
(j)
b1,i and p

(j)
b2,i are the corresponding locations of p(i)

b1
and p(i)

b2
, respectively, and the recovered FOV line passing through p

(j)
b1,i and

p
(j)
b2,i is shown with a dashed green line on the view of C j .

present this protocol and its verification results in detail. We
also compare the number of messages that need to be sent
around in a server-based scenario and in our system, and
present results of this comparison. We show that, contrary
to the server-based scenario, the total number of messages
sent around by our system is independent of the number of
trackers in each camera view. In addition, we compare the
server-based system scenario with our peer-to-peer system
in terms of the message loads on the individual nodes, and
show that the number of messages a single node has to
handle is considerably less in our peer-to-peer system. We
present results of different sets of experiments that were
performed to obtain the speed up provided by SCCS, to
measure average data transfer accuracy and average waiting
time. Experimental results demonstrate the success of the
proposed peer-to-peer multicamera tracking system, with
a minimum accuracy of 94.2% and 90% for new label
and lost label cases, respectively, with a high frequency
of synchronization. We also present the results obtained
after exhaustively verifying the presented communication
protocol with different communication scenarios.

The rest of the paper is organized as follows: Section 2
describes the computer vision algorithms in general. More
specifically, the recovery of FOV lines, the consistent labeling
algorithm, and the tracking algorithm are described in
Sections 2.1.1, 2.2, and 2.3, respectively. The communication
protocol is introduced in Section 3, and its verification and
obtained results are described in Section 4. Section 5 presents
the experimental results obtained with several different video
sequences with varying difficulty, and Section 6 concludes
the paper.

2. MULTICAMERAMULTIOBJECT TRACKING

2.1. Field of view (FOV) lines

Khan and Shah [16] introduced the FOV lines, and showed
that when FOV lines are recovered, the consistent labeling
problem can be solved successfully. The 3D FOV lines of
camera C i are denoted by Li,s [16], where s ∈ {r, l, t, b}
correspond to one of the sides of the image plane. The
projections of the 3D FOV lines of camera C i onto the image

plane of camera C j will result in 2D lines denoted by Li,sj , and
called the FOV lines.

2.1.1. Recovery of field of view lines

Khan and Shah [16] recover FOV lines by observing
moving objects in different views and using entry/exit events.
However, since the method relies on object movement in
the environment, there needs to be enough traffic across a
particular FOV line to be able to recover it. In addition, the
output of this method can be affected by the performance of
the BGS algorithm. Depending on the size of the objects, they
may not be detected instantly or entirely, and thus, FOV lines
may not be located reliably.

Since FOV lines will play an important role in our
consistent labeling algorithm and also in our communication
protocol later, it is necessary to recover all of them in a robust
way. We present robust and reliable methods for recovering
FOV lines and for consistent labeling. The method presented
for the recovery of FOV lines does not rely on the object
movement in the scene or on the performance of BGS
algorithms. This way, all visible FOV lines in a camera view
can be recovered at the beginning even if there is no traffic
at the corresponding region. In addition, there is no need
to know the intrinsic or extrinsic camera parameters. It is
assumed that cameras have overlapping fields of view, and
the scene ground is planar. Then a homography is estimated
to recover the FOV lines.

The inputs to the proposed system are four pairs of
corresponding points (chosen offline on the ground plane)
on two camera views. These points in the views of C i

and C j are denoted by P(i) = {p(i)
1 , . . . , p(i)

4 } and P(j) =
{p(j)

1 , . . . , p
(j)
4 }, respectively, and are displayed in black in

Figure 1. Let �p(i)
k = (x(i)

k , y(i)
k , 1)T , where k ∈ {1, . . . , 4},

denote the homogeneous coordinates of the input point

p(i)
k = (x(i)

k , y(i)
k). Then, a homography (H) is estimated

from {�p(i)
1 , . . . , �p(i)

4 } and {�p(j)
1 , . . . , �p(j)

4 } by using the direct
linear transformation algorithm described by Hartley and
Zisserman [40].

Senem Velipasalar et al. 5

(a) Setup 1—Camera 1 (b) Setup 1—Camera 2 (c) Setup 2—Camera 1 (d) Setup 2—Camera 2

Figure 2: (a)-(b) and (c)-(d) show the recovered FOV lines for two different camera setups. The shaded regions are outside the FOV of the
other camera.

(a) (b) (c)

Figure 3: (a), (b), and (c) show the recovered FOV lines. The shaded regions are outside the FOV of the other cameras.

The image of the camera view whose FOV lines will be
recovered on the other view is called the field image. After the
homography is estimated, the system finds two points on one
of the boundaries of the field image, so that each of them is
in general position with the four input points. Then it checks
with the user that these boundary points are coplanar with
the four input points. Let us denote the two points found on
the image boundary s of the camera C i by p(i)

s1 = (x(i)
s1 , y(i)

s1)

and p(i)
s2 = (x(i)

s2 , y(i)
s2), where s ∈ {r, l, t, b} correspond to one

of the sides of the image plane (Figure 1). The corresponding

locations of (x(i)
s1 , y(i)

s1) and (x(i)
s2 , y(i)

s2) on the view of camera

C j are denoted by p
(j)
s1,i = (x

(j)
s1,i, y

(j)
s1,i) and p

(j)
s2,i = (x

(j)
s2,i, y

(j)
s2,i),

and computed by using

H�p(i)
sn
∼= �p(j)

sn,i, (1)

where n ∈ {1, 2}, �p(i)
sn = (x(i)

sn , y(i)
sn , 1)T , and �p(j)

sn,i denotes the

homogeneous coordinates of p
(j)
sn,i = (x

(j)
sn,i, y

(j)
sn,i). x

(j)
sn,i and y

(j)
sn,i

are obtained by normalizing �p(j)
sn,i, so that its third entry is

equal to 1. Once p
(j)
s1,i and p

(j)
s2,i are obtained on the other

view, the line going through these points defines the FOV
line corresponding to the image boundary s of the camera
C i. Two points are found on each boundary of interest and
the FOV line corresponding to that boundary is recovered
similarly. Let us illustrate these steps by an example referring
to Figure 1. Let the boundary of interest be the bottom
boundary of the view of C i, thus side s is b. The system finds

p(i)
b1

and p(i)
b2

on this boundary, which are displayed in green
in Figure 1(a), as described above. Then, the corresponding
locations of these points on the view of C j are computed by

using (1). These corresponding points are denoted by p
(j)
b1,i

and p
(j)
b2,i, and are displayed in green in Figure 1(b). The line

going through p
(j)
b1,i and p

(j)
b2,i is the FOV line corresponding to

the bottom boundary of camera C i. This line is denoted by
Li,bj , and is shown with a dashed green line on the view of C j

in Figure 1(b).
Figures 2 to 4 show the recovered FOV lines for different

video sequences and camera setups. Although there was
no traffic along the right boundary of Figure 2(b), the
corresponding FOV line is successfully recovered as shown
in Figure 2(a).

2.1.2. Checking object visibility

As stated previously, Li,sj denotes the projection of the 3D
FOV line Li,s onto the view of C j and is represented by
the equation of the line, which is written as y = Sx + C.

Henceforth, a point p
(j)
m = (x

(j)
m , y

(j)
m) will be considered on

the visible side of Li,sj if sign(y
(j)
m − Sx

(j)
m − C) = sign(y

(j)
a −

Sx
(j)
a − C), where (x

(j)
a , y

(j)
a) are the coordinates of the p

(j)
a

which is any one of the input points in P(j).
When an object O(j) enters the view of C j , BGS is applied

first and a bounding box around the foreground (FG) object
is obtained. Then, its visibility in the view of C i is checked

by employing Li,sj . The midpoint (p
(j)
m) of the bottom line of

the bounding box of the object is used as its location. If this
point lies on the visible side of Li,sj , for all s ∈ {r, l, t, b}, then

it is deduced that O(j) is visible by C i (Figure 1).

6 EURASIP Journal on Image and Video Processing

(a) (b) (c)

Figure 4: (a), (b), and (c) show the recovered FOV lines. The shaded regions are outside the FOV of the other cameras.

2.2. Consistent labeling

The consistent labeling scheme of Khan and Shah [16] is
based on the minimum distance between FG objects and a
FOV line. However, performing the labeling based only on
the FOV lines can be error-prone as more than one object can
be in the vicinity of the line especially in crowded scenes, or
multiple people can enter one view at the same time. Also, if
the entry of an object is detected with a delay due to the errors
in BGS, the corresponding object in the other camera will
move further away from the line which may cause another
object with the wrong label to be closer to the FOV line.

Instead of relying only on the FOV lines, the following
steps are employed for more robustness: first, the visibility
of a new object O(j), entering the view of C j from side
s, by C i is checked as described in Section 2.1.2. Then,

the corresponding location (p(i)
m, j) of p

(j)
m in the view of

C i is calculated by using (1) as depicted in Figure 1. The
foreground objects in the view of C i, which were on the

invisible side of L
j,s
i and move in the direction of the visible

side of the line, are determined. From those foreground

objects, the one that is closest to the point p(i)
m, j is found, and

its label is given to the O(j). Similarly, if multiple people enter
the scene simultaneously, the algorithm uses their calculated
corresponding locations in the other view to resolve the
ambiguity.

2.3. The tracking algorithm: coarse object localization
with sparsemessage traffic

Our proposed tracking algorithm allows for sparse message
traffic by handling the cases of merging and splitting within
a single camera view without sending request messages to
other cameras.

First, FG objects are segmented from the background
in each camera view by using the BGS algorithm presented
by Stauffer and Grimson [41], which employs adaptive
background mixture models. Then, connected component
analysis is performed, which results in FG blobs. When a new
FG blob is detected within the camera view, a new tracker
is created, and a mask for the tracker is built where the FG
pixels from this blob and background pixels are set to be 1
and 0, respectively. The box surrounding the FG pixels of the
mask is called the bounding box. Then, the color histogram of

the blob is learned from the input image, and is saved as the
model histogram of the tracker.

At each frame, the trackers are matched to detected
FG blobs by using a computationally efficient blob tracker
which uses a matching criteria based on the bounding
box intersection and the Bhattacharya coefficient ρ(y) [42]
defined by

ρ(y) ≡ ρ
[
p(y), q

] =
∫ √

pz(y)qzdz. (2)

In (2), z is the feature representing the color of the target
model and is assumed to have a density function qz while
pz(y) represents the color distribution of the candidate FG
blob centered at location y. The Bhattacharya coefficient is
derived from the sample data by using

ρ̂(y) ≡ ρ
[
p̂(y), q̂

] =
m∑

u=1

√
p̂u(y)q̂u, (3)

where q̂ = {q̂u}u=1...m, and p̂(y) = { p̂u(y)}u=1...m are
the probabilities estimated from the m-bin histogram of
the model and the candidate blobs, respectively. These
probabilities are estimated by using the color information
at the nonzero pixel locations of the masks. If the bounding
box of an FG blob intersects with that of the current model
mask of the tracker, the Bhattacharya coefficient between the
model histogram of the tracker and the color histogram of
the FG blob is calculated by using (3). The tracker is assigned
to the FG blob which results in the highest Bhattacharya
coefficient, and the mask, and thus the bounding box, of
the tracker are updated. The Bhattacharya coefficient with
which the tracker is matched to its object is called the
similarity coefficient. If the similarity coefficient is greater
than a predefined distribution update threshold, the model
histogram of the tracker is updated to be the color histogram
of the FG blob to which it is matched.

Based on this matching criteria, when objects merge,
multiple trackers are matched to one FG blob, and the
labels of all matched trackers are displayed on this blob, as
shown in Figures 5, 6, 23, and 24. The masks of the trackers
are then updated in the previously discussed fashion. The
trackers that are matched to the same FG blob are put into
a merge state, and in this state their model histograms are
not updated. When objects split from each other, trackers

Senem Velipasalar et al. 7

(a) Frame 530 (a′) Frame 530 (b) Frame 570 (b′) Frame 570 (c) Frame 590 (c′) Frame 590

Figure 5: Example of successfully resolving a merge. (a), (b), (c), (a′), (b′), and (c′) show the original images, and the tracked objects with
their labels, respectively.

(a) Frame 795 (b) Frame 815 (c) Frame 877 (d) Frame 920 (e) Frame 950

Figure 6: Example of resolving the merging of multiple objects.

are matched to their targets based on the bounding box
intersection and Bhattacharya coefficient criteria mentioned
above.

There may be rare but unfavorable cases where an FG
object, appearing after the split of merged objects, may not
be matched to its tracker. We deal with these cases as follows:
denote two trackers by T1 and T2, and their target objects by
O1 and O2, respectively. When these objects merge, O1∪2 is
formed, and T1 and T2 are both matched to O1∪2. After O1

and O2 split, BTiOj are calculated, where {i, j} ∈ {1, 2}, and
BTiOj denotes the Bhattacharya coefficient calculated between
the histograms of Ti and Oj . Based on BTiOj , both T1 and
T2 can still be matched to O2, for instance, and stay in the
merge state. Denote the similarity coefficient of Ti by STi .
Thus, in this case, ST1 = B12 and ST2 = B22. This can
happen because the model distributions of the trackers are
not updated during themerge state, and there may be changes
in the color of O1 during and after merging. Another reason
may be O1 and O2 having similar colors from the outset.
When this occurs, O1 is compared against the trackers which
are in the merge state and intersect with the bounding box of
O1. That is, it is compared against T1 and T2, and BT1O1 and
BT2O1 are calculated. Then, O1 is assigned to the tracker Ti∗ ,
where

i∗ = argmin
i∈{1,2}

(
STi − BTiO1

)
. (4)

If a foreground blob cannot be matched to any of the
trackers, and if there are trackers in the merge state, the
unmatched object is compared against those trackers by
using the logic in (4), which is also applicable if there are
more than two trackers in the merge state as shown in Figures
6 and 23.

As stated previously, this algorithm provides coarser
object localization and decreases the message traffic by not
sending a request message each time a merging or splitting
occurs. If the exact location of an object in the blob, formed
after the merging, is required, we propose another algorithm
that can be used at the expense of more message traffic:

when a tracker is in the merge state, other nodes that can
see its most recent location can be determined as described
in Section 2.1.2, and a request message can be sent to these
nodes to retrieve the location of the tracker in the merge state.
If the current location of the tracker is not visible by any of
the other cameras, then the mean-shift tracking [42] can be
activated.

The mean-shift tracking is error-prone since it can be
distracted by the background. It is also computationally
more expensive. Thus, when a tracker is in the merge state,
it is preferable to send messages to other nodes, and request
the location of this tracker, if its most recent location is in
their FOV. Thus, this algorithm requires additional message
traffic. We proposed this second algorithm as an alternative
if the exact location of each tracker in the merge state
is required. The experiments presented in Section 5 were
performed by using the first proposed algorithm as the
tracking component of the SCCS.

3. INTER-CAMERA COMMUNICATION PROTOCOL

One issue that needs to be addressed when using peer-to-
peer systems is that communication is expensive and takes
a significant amount of time. Also, the number of messages
that are sent between the nodes should be decreased to
save power and increase speed. Another issue is maintaining
consistency for data across cameras as well as operations
upon the data without the use of a centralized server. Even
if the cameras and input video sequences are synchronized,
communication and processing delays pose a serious prob-
lem. The processors will have different amounts of processing
to do, and may also run at different processing rates. These,
coupled with potential network delays, cause one processor
to be ahead of/ behind the others during execution. Thus,
when a processor receives a request, it may be ahead/behind
compared to the requester. Hence, system synchronization
becomes very important to ensure the transfer of coherent
vision data between cameras. All these issues mandate an
efficient and sophisticated communication protocol.

8 EURASIP Journal on Image and Video Processing

Tracker container

Check lost Check new

Receive lost Receive new

Update
tracker container

MPI
library

Find label of
closest tracker

Find coordinates
of input label

FG

blobs
Synch frame Synch frame

new label req new label req

lst label req

lst label rep

lst label req

lst label rep

new label rep new label rep

Camera Ci Camera Cj

Figure 7: Communication between two cameras.

The protocol of SCCS utilizes point-to-point communi-
cation, as opposed to some previous approaches that require
a central message processing server. Our approach offers a
latency advantage and removes the single point of failure.
Moreover, nodes do not need to send the state of the trackers
to a server at every single frame. Thus, contrary to the server-
based scenario, the total number of messages sent around
by our system is independent of the number of trackers in
each camera view. This decreases the number of messages
considerably as will be discussed in Section 3.5. Furthermore,
compared to server-based systems, the proposed protocol
decreases the message load on each node. This design is
more scalable, since for a central server implementation, the
server quickly becomes overloaded with the aggregate sum of
messages and requests from an increased number of nodes.

In this section, the protocol of SCCS is presented, which
is a novel peer-to-peer communication protocol that can
handle communication and processing delays and hence
maintain consistent data transfer across multiple cameras.
This protocol is designed by determining the answers to the
following questions.

(a) When to communicate: determining the events which
will require the transfer of data from other cameras.
These events will henceforth be referred to as request
events.

(b) With whom to communicate: determining the cameras
to which requests should be sent.

(c) What to communicate: choosing the data to be
transferred between the cameras.

(d) How to communicate: designing the manner in which
the messages are sent, and determining the points
during execution at which data transfers should be
made.

The protocol is designed so that the number of messages
that are sent between the nodes is decreased, and the system
synchronization issue is addressed.

The block diagram in Figure 7 illustrates the concepts
discussed in this section. It should be noted that, at some
point during execution, each camera node can act as the
requesting or replying node. The implementation of the
proposed system consists of a parallel computing cluster
with communication between the nodes performed by the
message passing interface (MPI) library [43]. In this work,
the use of MPI is illustrative but not mandatory since it,
like other libraries, provides well-defined communication
operations including blocking/nonblocking send and receive,
broadcast, and gathering. MPI is also well defined for
inter- and intra-group communication and can be used
to manage large camera groups. We take advantage of the
proven usefulness of this library, and treat it as a transparent
interface between the camera nodes.

3.1. When to communicate: request events

A camera will need information from the other cameras
when (a) a new object appears in its FOV, or (b) a tracker
cannot be matched to its target object. These events are called
request events, and are referred to as new label and lost label
events, respectively. If one of these events occurs within a
camera’s FOV, the processor processing that camera needs to
communicate with the other processors.

In the new label case, when a new object is detected in
the current camera view, it is possible that this object was
already being tracked by other cameras. If this is the case,
the camera will issue a new label request to those cameras
to receive the existing label of this object, and to maintain
consistent labeling.

Camera C i could also need information from another
node when a tracker in C i cannot be matched to its target
object, and this is called the lost label case. This may occur,
for instance, if the target object is occluded in the scene or
cannot be detected as an FG object at some frame due to the
failure of the BGS algorithm. In this case, a lost label request

Senem Velipasalar et al. 9

will be sent to the appropriate node to retrieve and update
the object location.

Another scenario where communication between the
cameras may become necessary is when trackers are merged
and the location of each merged object is required. However,
if the exact location of the object is not required, and
coarser localization is tolerated, then the tracking algo-
rithm introduced in Section 2.3 can be used to handle the
merging/splitting within single camera view without sending
request messages to the other nodes.

3.2. With whom to communicate

The proposed protocol is designed such that rather than
sending requests to every single node in the system, requests
are sent to the processors who can provide the answers for
them. This is achieved by employing the FOV lines.

When a request needs to be made for an object O(j) in
the view of C j , the visibility of this object by camera C i is
checked using the FOV lines as described in Section 2.1.2.
If it is deduced that the object is visible by C i, a request
message targeted for node i is created and the ID of the target
processor, which is i in this case, is inserted into this message.
Similarly, a list of messages for all the cameras that can see
this object is created.

3.3. What to communicate

The protocol sends minimal amounts of data between
different nodes. Messages consist of 256-byte packets, with
character command tags, integers, and floats for track labels
and coordinates, respectively, and integers for camera ID
numbers. Clearly, this is significantly less than the amount
of data inherent in transferring streams of video or even
image data and features. Considering that integers and floats
are 4 bytes, and a character is 1 byte, we currently do not
use all of the 256 bytes. As more features are discovered
that are useful and important to transfer between cameras,
they will be inserted into the message packets. Messages
that are sent between the processors are classified into four
categories: (1) new label request messages, (2) lost label
request messages, (3) new label reply messages, and (4) lost
label reply messages.

3.3.1. New label request case

If an FG object viewed by camera C i cannot be matched to
any existing tracker, a new tracker is created for it, all the
cameras that can see this object are found by using the FOV
lines, and a list of cameras to communicate is formed. A
request message is created to be sent to the cameras in this
list. The format of this message is

Cmd tag Target id Curr id Side x y Curr label.
(5)

In this case, Cmd tag is a character array that holds
NEW LABEL REQ indicating that this is a request message
for the new label case. Target id and Curr id are integers.

Target id is the ID of the node to which this message is
addressed, and Curr id is the ID of the node that processes
the input of the camera which needs the label information.
For instance, Curr id is i in this case. These ID numbers
are assigned to the nodes by MPI at the beginning of the
execution. Side is a character array that holds information
about the side of the image from which the object entered
the scene. Thus, it can be right, left, top, bottom, or middle.
The next two entities, x and y, are floats representing

the coordinates of the location (p(i)
m) of the object in the

coordinate system of C i. Finally, Curr label is an integer
holding the temporary label given to this object by C i. The
importance and benefit of using this temporary label will be
clarified in Sections 3.4 and 5.

3.3.2. Lost label request case

For every tracker that cannot find its match in the current
frame, the cameras that can see the most recent location of its
object are determined by using FOV lines. Then, a lost label
request message is created to be sent to the appropriate nodes
to retrieve the updated object location. The format of a
lost label message is

Cmd tag Target id Curr id Lost label x y. (6)

Cmd tag is a character array that holds LOST LABEL REQ
indicating that this is a request message for the lost label
case. Target id and Curr id are the same as described above.
Lost label is an integer that holds the label of the tracker,
which could not be matched to its target object. Finally, x
and y are floats that are the coordinates of the latest location

(p(i)
m) of the tracker in the coordinate system of C i.

3.3.3. New label reply case

If node j receives a message, and the Cmd tag of this message
holds NEW LABEL REQ, then node j needs to send back a
reply message. The format of this message is

Cmd tag Temp label Answer label Min pnt dist.
(7)

In this case, Cmd tag is a string that holds NEW LABEL
REP indicating that this is a reply message to a new label
request. Temp label and Answer label are integers.
Temp label is the temporary label given to a new object
by the requesting camera, and Answer label is the label
given to the same object by the replying camera. Finally,
Min pnt dist is the distance between the corresponding
location of the sent point and the current location of the
object.

As stated in Section 3.3.1, the NEW LABEL REQ mes-
sage has information about the requester ID, side, and object

coordinates in the requester coordinate system. Let p(i)
m =

(x, y) denote the point sent by node i. When camera node j
receives this message from node i, the corresponding location

of p(i)
m in the view of C j is calculated by using (1) as described

in Section 2.1.1, and this corresponding location is denoted

10 EURASIP Journal on Image and Video Processing

by p
(j)
m,i. If the received Side information is not middle, the

FOV line, Li,sj , corresponding to this side of the requester
camera view is found. Then, the FG objects in the view of
C j , which were on the invisible side of Li,sj and move in the
direction of the visible side of the line, are determined. From
those FG objects, the one that is closest to the point p

(j)
m,i

is found, and its label is sent back as the Answer label. If,
on the other hand, the received Side information is middle,
then it means that this object appeared in the middle of the
scene. In this case, FOV lines cannot be used, and the label
of the object that is closest to the p

(j)
m,i is sent back as the

Answer label. The Min pnt dist that is included in the reply

message is the distance between p
(j)
m,i and the location of the

object that is closest p
(j)
m,i.

The proposed protocol also handles the case where the
labels received from different cameras do not match. In this
case, the label is chosen so that Min pnt dist is the smallest
among all the reply messages.

3.3.4. Lost label reply case

If node j receives a message from node i, and the Cmd tag of
this message holds LOST LABEL REQ, then node j needs to
send back a lost label reply message to node i. The format of
this message is

Cmd tag Lost label x reply y reply. (8)

Cmd tag is a string that holds LOST LABEL REP indicating
that this is a reply message to a lost label request. Lost label
is an integer, which is the label of the tracker in C i that could
not be matched to its target object. When node j receives a
lost label request, it sends back the coordinates of the current
location of the tracker with the label Lost label as x reply
and y reply. These coordinates are floats, and are in the
coordinate system of C j . When a reply message is received
by node i, the corresponding point of the received location
is calculated on the view of C i as described in Section 2.1.1,
and the location of the tracker is updated.

3.4. How to communicate

The steps so far provide an efficient protocol both by
reducing the number of times a message must be sent as
well as the message size. This part of the protocol addresses
the issue of handling the communication and processing
delays without using a centralized server. This process will
henceforth be called the system synchronization. It should be
noted that system synchronization is different from camera or
input video synchronization as mentioned above.

The SCCS protocol utilizes nonblocking send and receive
primitives for message communication. This effectively
allows for a camera node to make its requests, noting the
requests it made, and then continuing its processing with the
expectation that the requestee will issue a reply message at
some point later in execution. This is in contrast to blocking
communication where the execution is blocked until a reply
is received for a request. With blocking communication, the

potential for parallel processing is reduced, as a camera node
may be stuck waiting for its reply, while the processing
program will likely require stochastic checks for messages.
It is very difficult for each camera to predict when and
how many messages will be received from other cameras.
In the nonblocking case, checks for messages can take place
in a deterministic fashion. Another possible problem with
blocking communication is the increased potential for dead-
locks. This can be seen by considering the situation where
both cameras are making requests at or near simultaneous
instances, as neither can process the other node’s request
while each waits for a reply.

System synchronization ensures the transfer of coherent
vision data between cameras. To the best of our knowledge,
existing systems do not discuss how to handle commu-
nication and processing delays without using blocking
communications. Even if the cameras are synchronized or
time-stamp information is available, communication and
processing delays pose a problem for peer-to-peer camera
systems. For instance, if cameraC i sends a message to camera
C j asking for information, it incurs a communication delay.
When camera C j receives this message, it could be on
a frame behind camera C i depending on the amount of
processing its processor has to do, or it can be ahead
of C i due to the communication delay. As a result, the
data received may not correspond to the data appropriate
to the requesting camera’s time frame. To alleviate this
and achieve system synchronization, our protocol provides
synchronization points, where all nodes are required to wait
until every node has reached the same point. These points
are determined based on a synchronization rate which will
henceforth be called synch rate. Synchronization points occur
every synch rate frames.

Between two synchronization points, each camera
focuses on performing its local tracking tasks, saving the
requests that it will make at the next synchronization point.
When a new object appears in a camera view, a new label
request message is created for this object, and the object is
assigned a temporary label. Since a camera node does not
send the saved requests, and thus cannot receive a reply until
the next synchronization point, the new object is tracked
with this temporary label until receiving a reply back. Once a
reply is received, the label of this object is updated.

Typical units of synchronization rate are time-stamp
information for live camera input, or specific frame number
for a recorded video. Henceforth, to be consistent, we
refer to the number of video frames between each syn-
chronization point when we use the terms synchronization
rate or synchronization interval. There is no deterministic
communication pattern for vision systems, so it is expected
that the camera processors will frequently have to probe for
incoming request messages. Although the penalty of probing
is smaller than that of a send or receive operation, it is still
necessary to decrease the number of probes because of power
constraints. In order to decrease the amount of probing, we
make each camera probe only when it finishes its local tasks
and reaches a synchronization point.

Figure 8 shows a diagram of the system synchronization
mechanism. This figure illustrates the camera states at the

Senem Velipasalar et al. 11

Probing
prev done &
processing

req/rep

Sending
self done &
processing

req/rep

Processing
tracking &

sending
request

Probing
all done &
processing

request

Prev done
received

All done
received

Prev done
not

received

Finished
tracking

Not
finished
tracking

Not
finished

Finish
sending
self done

&
processing

reply

Not finished

Ci−1
Ci+1

Ci

Figure 8: Camera states at the synchronization point.

synchronization point. In the first state, the camera finishes
its local tracking, and the processor sends out all of its saved
requests. Then, the camera enters the second state and begins
to probe to see if a done message has been received from
the previous camera. If not, this node probes for incoming
requests from the other nodes and replies to them while
waiting for the replies to its own requests. When the done
message is received from the previous camera the camera
enters the third state. When all of its own requests are
fulfilled, it sends out a done message to the next camera. In
the fourth state, each camera node still processes requests
from other cameras, and keeps probing for the overall done
message. Once it is received, a new cycle starts and the node
returns back to the first state.

The done messages in our protocol are sent by using a ring
type of message routing to reduce the number of messages.
Thus, each node receives a done message only from its
previous neighbor node and passes that message to the next
adjacent node when it finishes its own local operations and
has received replies to all its requests for that cycle. However,
based on the protocol, all the cameras need to make sure that
all the others already have finished their tasks before starting
the next interval. Thus, a single pass of the done message is
insufficient. If we have N cameras (C i, i = 0, . . . ,N − 1), a
single pass of the done message will be from C 0 to C 1, C 1 to
C 2, and so on. In this case,C i−1 will not know whetherC i has
finished its task since it will only receive done messages from
C i−2. Thus, a second ring pass or a broadcast of an overall
done message will be needed. In the current implementation,
the overall done message is broadcasted from the first camera
in the ring since the message is the same for every camera.

This protocol can handle the problems caused by com-
munication delays and different processor loads and speeds,
and incorporates variable synchronization capabilities, so as
to allow flexibility with accuracy tradeoffs. As will be illus-
trated in Section 5 by Figures 18 and 19, the synchronization

rate affects how soon a new label is received from the other
cameras. In this protocol, the synchronization rate can be
set by the end user depending on the system specification.
Different synchronization rates are desirable in different
system setups. For instance, for densely overlapped cameras,
it is necessary to have a shorter synchronization interval
because an object can be seen by several cameras at the
same time, and each camera may need to communicate with
others frequently. On the other hand, for loosely overlapped
cameras, the synchronization interval can be longer since the
probability for communication is lower and as a result, excess
communication due to superfluous synchronization points is
eliminated.

3.5. Comparison of the number ofmessages for
a server-based scenario and for SCCS

3.5.1. A server-based system scenario for multicamera
multiobject tracking

As stated before, server-based multicamera systems have a
bandwidth scaling problem, and are limited by the server
capacity. In order to illustrate the excessive number of
messages and the load a server needs to handle, and compare
these to the number of messages for our peer-to-peer
communication protocol, we will introduce a server-based
system scenario in this section. In this server-based system,
the nodes keep the server updated by sending it messages
for each tracker in their FOV. To make a fair comparison
between this scenario and our communication protocol, we
assume that these messages are sent at the synchronization
points, which were defined in Section 3.4. In practice, due to
different processing rates of the distinct processors coupled
with communication delays, a server keeps the received data
buffered to provide consistent data transfer between the
nodes. However, this is not a practical approach since the

12 EURASIP Journal on Image and Video Processing

Number of synchronization points

1000080006000400020000
Number of nodes

30
20

10
0

To
ta

ln
u

m
be

r
of

m
es

sa
ge

s

0

1

2

3

4

5

6

7

8
×106

T = 20

T = 15

T = 10

T = 5

T = 1

(a)

Number of synchronization points
100008000

6000400020000
Number of nodes

30
20

10
0

To
ta

ln
u

m
be

r
of

m
es

sa
ge

s

0

1

2

3

4

5

6

7

8
×106

T = 1, 5, 10, 15, 20

(b)

Figure 9: Comparison of the total number of messages for the server-based scenario and our peer-to-peer protocol: (a) and (b) show the total
number of messages that need to be sent, for T = 1, 5, 10, 15, 20, with the server-based scenario and our peer-to-peer protocol, respectively.
T is the number of trackers in a camera view. For our peer-to-peer protocol, the same surface represents all different values of T .

buffer size may need to be very large. Thus, we designed
this scenario so that the server does not need a buffer. The
nodes are required to wait at each synchronization point
until they receive an overall done message from the server. At
a synchronization point, each node needs to send a message
for each tracker. These messages also indicate if the node
has a request from any of the other nodes or not. Then, the
server handles all these messages, determines the replies for
each request, if there were any, and sends the replies to the
corresponding nodes. The nodes update their trackers after
receiving the replies, and acknowledge the server that they
are done. After receiving a done message from all the nodes,
the server sends an overall done message to the nodes so that
nodes can move on. Based on this scenario, the total number
of messages that are sent can be determined by using

Mserver = S× 2×N +
N∑

i=1

Ei + S×
N∑

i=1

Ti, (9)

where S is the number of synchronization points, N is the
number of nodes/cameras and Ei is the total number of
events that will trigger requests in the view of camera C i.
Ti is the total number of trackers in the view of C i, and in
this formula, without loss of generality, it is assumed that,
for camera C i, Ti remains the same during the video. In the
server-based case, all these messages go through the server,
and this argument will be revisited below.

On the other hand, for our protocol employed in SCCS,
the total number of messages that are sent around is equal to

MSCCS = S× (2×N − 1) + 2× (N − 1)×
N∑

i=1

Ei. (10)

It should be noted that, when calculating MSCCS, this
equation considers the worst possible scenario, where it is
assumed that all the cameras in the system view a common

portion of the scene, and all the events happen in this
overlapping region. This setup is highly unlikely since N
cameras will be setup so that they are spatially distributed,
and can cover a larger portion of the scene. In this worst-
case scenario, in our peer-to-peer protocol, N nodes will send
N − 1 request messages to the other nodes for Ei events and
will receive N − 1 replies, hence the 2 × (N − 1) × ∑N

i=1 Ei
term. At each synchronization point, each node will send a
done message to its next neighbor in the ring, and the first
node will send an overall done message to N−1 nodes, hence
the S× (2×N − 1) term.

As seen from (10), contrary to the server-based scenario,
the total number of messages sent around by our system is
independent of the number of trackers in each camera view,
since the communication is done in a peer-to-peer manner.
This fact can also be seen by comparing Figures 9(a) and
9(b). These figures were obtained by setting Ei = 20 and Ti =
T , for all i, where T ∈ {1, 5, 10, 15, 20}. It should be noted
that Figures 9(a) and 9(b) are plotted so that their vertical
axes have the same scale. As can be seen in Figure 9(b), for
our peer-to-peer protocol, the same surface represents all
the different values of T since the total number of messages
is independent of the number of trackers in each camera
view. In addition, (9) and (10), and Figure 9 show that the
server-based scenario does not scale well with the increasing
number of trackers in each camera view.

Now, we will compare the server-based system scenario
with our peer-to-peer system in terms of the message loads
on the individual nodes, which is a very important point.
By load, we mean the number of messages that go through
a node. In other words, we will compare the number of
messages handled by the server in the server-based scenario
and by the individual nodes of the SCCS. For the server-
based scenario, all of the messages in (9) go through the
server. Whereas, in SCCS, one ordinary node i has to send
only S + (N − 2) × Ei +

∑N
k=1 Ek messages and receive

Senem Velipasalar et al. 13

Number of

synchronization points

10000
6000

2000
Number of nodes

30252015105

To
ta

ln
u

m
be

r
of

m
es

sa
ge

s

0

0.5

1

1.5

2

2.5
×106

Server

SCCS node sending
the overall done msg.

Other nodes
of SCCS

(a) T = 5

Number of

synchronization points

10000
6000

2000
Number of nodes

30252015105

To
ta

ln
u

m
be

r
of

m
es

sa
ge

s

0

1

2

3

4

5

6
×106

Server

SCCS node sending
the overall done msg.

Other nodes
of SCCS

(b) T = 15

Figure 10: Comparison of the message loads: number of messages handled by the server in the server-based scenario and by the nodes of
SCCS. (a) and (b) show the number of messages that are sent and received by the server and by the nodes of SCCS for T = 5 and T = 15,
respectively.

Number of synchronization points
100008000600040002000Number of nodes

30252015105

To
ta

ln
u

m
be

r
of

m
es

sa
ge

s

0

0.5

1

1.5

2

2.5
×106

Server-based

SCCS

(a) T = 5

Number of

synchronization points

10000
6000

2000
Number of nodes

30252015105

To
ta

ln
u

m
be

r
of

m
es

sa
ge

s

0

1

2

3

4

5

6
×106

Server-based

SCCS

(b) T = 15

Figure 11: Comparison of the total number of messages for the server-based scenario and our peer-to-peer protocol for T = 15 and T = 20.
For SCCS, it was assumed that all cameras have overlapping views and all events happen in overlapping region, which is highly unlikely.

2×S+(N−2)×Ei+
∑N

k=1 Ek messages. The node j sending the
overall done message has to send S×N+(N−2)×Ej+

∑N
k=1 Ek

messages, and receive S + (N − 2) × Ej +
∑N

k=1 Ek messages.
These numbers are plotted in Figures 10(a) and 10(b) for
T = 5 and T = 15, respectively. As can be seen, the number
of messages sent or received by the server is much larger than
the number of messages sent or received by any node of the
SCCS.

Figures 11(a) and 11(b) compare the total number of
messages sent in the server-based scenario and our peer-to-
peer protocol for T = 5 and T = 15, respectively, where
Ti in (9) is set to be T , for all i ∈ 1, . . . ,N . It should be
noted that this is the total number of messages. As stated
before, in the server-based scenario, all of these messages
go through the server. However, as seen in Figure 10, in

our peer-to-peer protocol, each node handles a portion of
this total number of messages. Thus, the load on a server
is much larger than the load on the individual nodes of the
SCCS. Another very important point to note is that the total
number of messages for the SCCS is obtained for the worst
possible scenario, where it is assumed that all the cameras
in the system view a common portion of the scene, and all
the events happen in this overlapping region. This is a highly
unlikely case, since in real-life settings not all the cameras
will have overlapping fields of view. Thus, in an N-node
system, when an event happens in the view of camera C i,
it will only send request messages to the cameras which have
overlapping fields of view with C i, and can see this event. In
other words, it will not need to send N − 1 messages, and

the 2× (N − 1)×∑N
i=1 Ei term in (10) will be much smaller.

14 EURASIP Journal on Image and Video Processing

Number of synchronization points

54321

N
u

m
be

r
of

st
at

es

0

5000

10000

15000

20000

25000

30000

35000

79 747
3751

12259

30879

(a) Scenario (a)

Number of synchronization points

54321

N
u

m
be

r
of

st
at

es

0

10000

20000

30000

40000

50000

60000

70000

106 875
4770

19369

65630

(b) Scenario (b)

Number of synchronization points

54321

N
u

m
be

r
of

st
at

es

0e + 00

1e + 07

2e + 07

3e + 07

4e + 07

5e + 07

6e + 07

7e + 07

5.46e2 2.16e4 4.35e5

5.85e6

6.27e7

(c) Scenario (c)

Figure 12: Number of states reached during verification of different communication scenarios.

For example, let us consider the case where there are N = 32
nodes in the system, Ei = 40, and every camera overlaps with
3 other cameras (not withN−1 = 31 cameras as in the worst-
case scenario). Then there will be a 10% decrease in the total
number of messages sent by SCCS compared to the worst-
case calculations. Even with the worst case assumptions for
the SCCS, the total number of messages sent is still much
less than that of a server-based system, as can be seen in
Figure 11.

4. VERIFICATION OF THE PROTOCOL

Communicating between nodes in a peer-to-peer fashion
and eliminating the use of a centralized server remove the
single point of failure, decreases the number of messages
sent around, and provide scalability and latency advantages.
However, this requires a sophisticated communication pro-
tocol, which finds use in real-time systems having stringent
requirements for proper system functionality. Hence, the
protocol design for these systems necessitates transcending
typical qualitative analysis using simulation; and instead,
requires verification. The protocol must be checked to ensure
that it does not cause unacceptable issues such as deadlocks
and process starvation, and has correctness properties such
as the system eventually reaching specified operating states.
Formal verification methods of protocols can be derived
from treating the individual nodes of a system as finite state
automata. These then emulate communication through the
abstraction of a channel.

SPIN is a powerful software tool used for the formal ver-
ification of distributed software systems [44]. It can analyze
the logical consistency of concurrent systems, specifically of
data communication protocols. A system is described in a
modeling language called Promela (process meta language).
Communication via message channels can be defined to
be synchronous or asynchronous. Given a Promela model,
SPIN can either perform random simulations of the sys-
tem execution or it can perform exhaustive verification of
correctness properties. It goes through all possible system
states, enabling designers to discover potential flaws while
developing protocols. This tool was used to analyze and

Table 1: Comparison of exhaustive verification outputs for
synch rate of 1.

No. of
states

State-vector size
(bytes)

Total memory
usage (MB)

Depth

2 Proc. (a) 12259 496 3.017 159

3 Proc. (b) 19369 1252 3.217 182

3 Proc. (c) 5846880 1252 146.417 202

verify the communication protocol used in SCCS and
described in Section 3.

To analyze and verify the communication protocol of the
SCCS, we first described our system by using Promela. We
modeled three different scenarios: (a) a 2-processor system
with full communication, where full communication means
every processor in the system can send requests and replies to
each other, (b) a 3-processor system, where the first processor
can communicate with the second and third, the second
processor can only communicate with the first, and the third
one only replies to incoming requests, and (c) a 3-processor
system with full communication. The reason of modeling
scenario (b) is clarified below.

After modeling different scenarios, we first performed
random simulations. With random simulation, every run
may produce a different type of execution. In all the
simulations of all three scenarios, all the processors of
the model are terminated properly. However, each random
simulation goes through one possible set of states. Thus, an
exhaustive search of the state space is needed to guarantee
that the protocol is error-free. We performed exhaustive
verification of the three different scenarios with different
synchronization rates. We also inserted an assertion into the
model to ensure that a processor starts a new synchronization
interval only if every processor in the system has sent a
done message at the synchronization point. All of our three
scenarios have been verified exhaustively with no errors.
Table 1 shows the results obtained, where the synch rate
is 1, and there are 4 synchronization points. (a), (b), and
(c) correspond to the scenarios described above. As can be
seen in the table, when three processors are used with full
communication, the number of states becomes very high

Senem Velipasalar et al. 15

(a) (b) (c) (d)

Figure 13: (a) Locations of the cameras for the first camera setup; (b) environment state for the lost label experiments; (c) a photograph of
the first camera setup; (d) the view of the environment state from one of the cameras in the first setup.

(a) (b) (c) (d)

Figure 14: (a) Locations of the cameras for the second camera setup; (b) environment state for the lost label experiments; (c) a photograph
of the second camera setup showing two cameras placed on one side; (d) another photograph of the second camera setup showing the one
camera placed on the opposite side.

compared to other scenarios, thus the search requires more
memory. Scenario (b) was modeled so that we can compare
scenario (c) to (b), and see the increase in the number of
states and memory requirement. The total memory usage in
the table is the “total actual memory usage” output of the
SPIN verification. This is the amount after the compression
performed by SPIN, and includes the memory used for a
hash table of states.

Figure 12 shows the number of states reached with the
three scenarios, and with different number of synchroniza-
tion points. For the 3-processor and full communication
scenario, the number of states increases very fast with
increasing number of communication points. Since the
memory requirement increases with the number of states,
the scenario (c) requires the largest amount of memory for
verification. In addition, when the synch rate is increased,
the number of states increases for the same number of
synchronization points, as the requests of the local trackers
are saved until the next synchronization point, and then sent
out. These results illustrate that, as is well known in the field
of communications, verification of complicated protocols is
not a straightforward task. Also, careful modeling of the large
systems having many possible states is very important for
exhaustive verification.

Another important issue is how to handle system failure
and reconfiguration. In order to address this issue with

the ring type of message routing, we will incorporate
the following steps into our communication protocol. We
consider two cases of system failure: nonfunctioning cameras
and nonfunctioning processors. For the nonfunctioning
camera case, the processor itself can detect this type of
failure, and then issue a broadcast message to other cameras
which have overlapping fields of view with the failing camera.
By checking the field of view overlap first, we will not
broadcast to all the cameras in the network and thus decrease
the number of messages. Those cameras will receive this
failure indication message at the synchronization point. They
will then recheck their pending label requests before sending
them, and reassign, if possible, any messages pertaining to
the nonfunctioning camera node.

Processor failure is more challenging to detect internally.
To achieve this, we propose to employ a lifetime checking
mechanism. We will treat each done message as a heartbeat
signal, and use a time-out criterion to detect the processor
failure. If processor Pi, which corresponds to camera i, does
not receive correspondence from Pi−1 after ttime-out, it will
assume that there is a problem, and seek to determine
whether the problem is with Pi−1 or any processor before it.
So Pi will send a checking message to Pi−2. If Pi−2 has already
sent out its done message to Pi−1, it will send back a response
to Pi, and this will indicate a failure in Pi−1. Then Pi will
issue a broadcast message to every camera in the group and

16 EURASIP Journal on Image and Video Processing

update the group information. Cameras having overlapping
fields of view with Pi−1 will ignore Pi−1. This will implicitly
form an updated communication ring as well. On the other
hand, if Pi sends a checking message to Pi−2, and Pi−2 replies
that it is still waiting for a done message from Pi−3, then Pi−1

is potentially not at fault, and thus Pi would simply keep
waiting. In this way, a fault at Pi−3 or further left in the ring
will be handled only by its right neighbor, which reduces
complexity as well as overhead due to fault checking.

Although this checking mechanism consumes time, the
elapsed time will be bounded by a limit set by the user. That
is, the checking and updating will be completely finished
by ttime-out + tnon-functioning, where tnon-functioning is the time
for sending and receiving one message (since all the camera
nodes do the same checking at the same time) plus the time
for a broadcast.

5. EXPERIMENTAL RESULTS

5.1. Camera setups

We have implemented SCCS on Linux using PC platforms
and Ethernet. The system consists of a parallel computing
cluster with uniprocessor nodes, each with a 1.5 GHz CPU.
This section describes the results of experiments on a 3-
camera 3-CPU system. Different types of experiments with
different camera setups and video sequences of varying
difficulty have been performed by using SCCS and the
proposed communication protocol.

Figures 13 and 14 show the two different camera setups
and two types of environment states used for the indoor
experiments. We formed different environment states by
placing or removing occluding structures, for instance a
large box in our case, into the environment. As shown in
Figures 13(a) and 14(a), we placed three cameras in two
different configurations in a room. In the first configuration,
all cameras are on one side of the room, whereas in the
second configuration, two cameras are placed on one side,
and the third one is placed on the opposite side. Figures
13(a) versus 13(b), and 14(a) versus 14(b) illustrate the two
different environment states, that is, scenes with or without
an occluding box. As seen in Figures 13(c), 13(d), 14(c),
and 14(d), three remotely controlled cars/trucks have been
used to experiment with various occlusion, merging, and
splitting cases. We also captured different video sequences by
operating one, two, or three cars at a time.

First, processing times of a single processor system and
a distributed multicamera system incorporating peer-to-
peer communication were compared. Figure 15 shows the
speedup attained using our system relative to a uniprocessor
implementation for two cases: processing input from two
cameras and from three cameras. In the figure, processing
times are normalized with respect to the uniprocessor case
processing inputs from three cameras, which takes the
longest processing time. As can be seen, the uniprocessor
approach does not scale very well as processing the input
from three cameras takes 3.57 times as long compared to
processing input from two cameras. Whereas, in our case,
processing inputs from three cameras by using three CPUs

Configuration

3 Proc
3 Cam

2 Proc
2 Cam

1 Proc
3 Cam

1 Proc
2 Cam

E
xe

cu
ti

on
ti

m
e

0

0.2

0.4

0.6

0.8

1

0.28

1

0.083 0.098

Figure 15: Comparison of the processing times required for
processing inputs from two and three cameras by a uniprocessor
system and by SCCS. 2Proc-2Cam and 3Proc-3Cam denote the
times required by SCCS.

takes only 1.18 times as long compared to processing inputs
from two cameras by using two CPUs. Hence, it is demon-
strated that the execution time required is maintained,
without significant increase, while adding the beneficial
functionality of an additional camera. In addition, our
approach provides 3.37× and 10.2× speedups for processing
inputs from two and three cameras, respectively, compared
to a uniprocessor system.

5.2. Waiting time experiments

In this set of experiments, we measured the average elapsed
time between the instance an event occurs and the next
synchronization point, where the reply of the request
corresponding to this event is received. Henceforth, this
elapsed time will be referred to as waiting time. For instance,
if the synch rate is 10, then the synchronization points will
be located at frames 1, 11, 21, . . . , 281, 291, 301 . . ., and so on.
If a new object appears in a camera’s FOV at frame 282, then
the waiting time will be 9 frames, as the next synchronization
point will be at frame 291.

Figure 16 shows the average waiting time for experiments
performed with different video sequences with different
synch rate values. As can be seen, even when the synch rate
is 60 frames, the average waiting times are 33.06 and 26.3
frames for different video sequences.

5.3. Accuracy of the data transfer

In this set of experiments, we measured the accuracy of the
data transfer and data updates. This accuracy is determined
by the following formula:

data transfer accuracy = #correct updates
total requests

∗100, (11)

Senem Velipasalar et al. 17

Synchronization rate (frames)

60301051

A
ve

ra
ge

w
ai

t
ti

m
e

be
tw

ee
n

ev
en

t
an

d
re

pl
y

(f
ra

m
es

)

0

5

10

15

20

25

30

35

2.91
5.07

13.55

33.06

(a)

Synchronization rate (frames)

60301051

A
ve

ra
ge

w
ai

t
ti

m
e

be
tw

ee
n

ev
en

t
an

d
re

pl
y

(f
ra

m
es

)

0

5

10

15

20

25

30

35

2.11

5.08

12.69

26.3

(b)

Figure 16: Waiting times for different videos and environment setups; (a) and (b) show the waiting times for the videos captured with
indoor setup 1 and indoor setup 2, respectively.

Synchronization rate (frames)

N
ew

la
be

l
Lo

st
la

be
l

1

N
ew

la
be

l
Lo

st
la

be
l

5

N
ew

la
be

l
Lo

st
la

be
l

10

N
ew

la
be

l
Lo

st
la

be
l

30

N
ew

la
be

l
Lo

st
la

be
l

60

A
ve

ra
ge

ac
cu

ra
cy

(%
)

0

20

40

60

80

100

120

80 80

Communication error
Correct

(a)

Synchronization rate (frames)

N
ew

la
be

l
Lo

st
la

be
l

1

N
ew

la
be

l
Lo

st
la

be
l

5

N
ew

la
be

l
Lo

st
la

be
l

10

N
ew

la
be

l
Lo

st
la

be
l

30

N
ew

la
be

l
Lo

st
la

be
l

60

A
ve

ra
ge

ac
cu

ra
cy

(%
)

0

20

40

60

80

100

120
94.2 94.7 94.2

94.7 93.8 90 93.8
95.3

Communication error Correct
Vision error

(b)

Synchronization rate (frames)

N
ew

la
be

l
Lo

st
la

be
l

1

N
ew

la
be

l
Lo

st
la

be
l

5

N
ew

la
be

l
Lo

st
la

be
l

10

N
ew

la
be

l
Lo

st
la

be
l

30

N
ew

la
be

l
Lo

st
la

be
l

60

A
ve

ra
ge

ac
cu

ra
cy

(%
)

0

20

40

60

80

100

120

90 88.9 90 90 80 90.9

70

60

Communication error Correct
Vision error

(c)

Figure 17: Average accuracy of the data transfer for indoor (a), (b) and outdoor (c) sequences.

where #correct updates represents the number of times
a new label or lost label request is correctly fulfilled and
the corresponding tracker is correctly updated (its label or
its location). The determined accuracy values are shown
in Figure 17. Red and green segments correspond to the
error percentages caused by communication and vision
algorithms, respectively. Communication errors depend on
the synch rate, because when synch rate increases, nodes
exchange data less often. Let the synch rate be 60 frames.

If node A loses an object at frame 121, for instance, it will
be able to send a LOST LABEL REQ to node B at frame
180. During these 59 frames, the object of interest can
disappear or merge with other objects in camera B’s view,
which will cause an error in the reply. This effect can be
seen from Figure 17, where errors related to communication
increase, in general, with increasing synch rate. Overall,
for a synch rate of 1, the system achieves a minimum of
94.2% accuracy for the new label requests/updates on both

18 EURASIP Journal on Image and Video Processing

(a1) Camera 1—frame 2373 (b1) Camera 2—frame 2373 (c1) Camera 3—frame 2373

(b2) Camera 2—frame 2378 (b3) Camera 2—frame 2381

Figure 18: New label example for the first camera setup with a synch rate of 10.

(a1) Camera 0—frame 1468 (b1) Camera 1—frame 1468 (c1) Camera 2—frame 1468

(b2) Camera 1—frame 1496 (b3) Camera 1—frame 1501

Figure 19: New label example for the second camera setup with a synch rate of 60.

indoor and outdoor videos. For the lost label requests, a
minimum of 90% accuracy is achieved for both indoor and
outdoor videos with a synch rate of 1. Further, even with
allowing the processors to operate up to 2 seconds without
communication, a minimum of 90% accuracy is still attained
for new label requests with indoor sequences, while 90.9%
accuracy is obtained for the outdoor sequence. Again, with
allowing the processors to operate up to 2 seconds without
communication, a level of 80% or higher accuracy is attained

for lost label requests with indoor sequences, while 60%
accuracy is obtained for the outdoor sequence.

Figures 18, 19, and 23 illustrate the success of the
consistent labeling algorithm, where the same objects are
given the consistent labels in different camera views. Figures
18 and 19 show examples of receiving the label of a new
tracker from the other nodes, and updating the label of
the tracker in the current view accordingly. For Figure 18,
the synch rate is 10. As can be seen in Figure 18(b1), when

Senem Velipasalar et al. 19

(a1) Frame 681 (a2) Frame 686 (a3) Frame 691 (a4) Frame 696

(a5) Frame 716 (a6) Frame 721 (a7) Frame 736 (a8) Frame 741

· · ·

· · ·

Figure 20: Lost object example for the first camera setup with a synch rate of 5.

(a1) Camera 1—frame 810 (b1) Camera 2—frame 810 (c1) Camera 3—frame 810

(a1) Frame 810 (a2) Frame 832 (a3) Frame 852 (a4) Frame 914

Figure 21: Lost object example for the second camera setup with a synch rate of 1.

(a) Frame 1876 (b) Frame 2001 (c) Frame 2013 (d) Frame 2045

Figure 22: Lost object example for the outdoor sequence with a synch rate of 1.

(a1) Cam. 1—frame 1902 (a2) Cam. 1—frame 2151 (a3) Cam. 1—frame 2301 (a4) Cam. 1—frame 2476

(b1) Cam. 3—frame 1902 (b2) Cam. 3—frame 2151 (b3) Cam. 3—frame 2301 (b4) Cam. 3—frame 2476

Figure 23: Successfully resolving the merging/splitting of three objects.

20 EURASIP Journal on Image and Video Processing

(a) Frame 411 (b) Frame 431 (c) Frame 436

Figure 24: Successfully resolving a merge/split event on a PETS sequence.

Input video

Setup 1
indoor

Setup 2
indoor

PETS
outdoor

A
cc

u
ra

cy
(%

)

0

20

40

60

80

100 95% 94.12%

75%

Figure 25: Accuracy of handling merge/split cases for indoor and
outdoor sequences.

the car first appears in the view of camera 2, it is given a
temporary label of 52, and is tracked with this label until
the next synchronization point. Then, the correct label is
received from the other nodes in the system and the label
of the tracker in the view of camera 2 is updated to be 51
as seen in Figure 18(b3). Figure 19 is another example for a
synch rate of 60 for the second camera setup. Again, the label
of the tracker, created at frame 1468 and given a temporary
label of 56, is updated successfully at frame 1501 from the
other nodes in the system.

Figures 20, 21, and 22 show examples of updating the
location of a tracker, whose target object is lost, from the
other nodes. For Figure 20, the synch rate is 5, and the
views of the three cameras are as seen in Figures 18(a1),
18(b1) and 18(c1). As seen in Figures 20(a1) through 20(a8),
the location of the car behind the box is updated every 5
frames from the other nodes, until it reappears. Figure 21 is
another example for a synch rate of 1 for the second camera
setup. The location of the tracker is updated at every frame.
Figure 22 shows an example, where the location of people
occluded in an outdoor sequence is updated.

Figures 23 and 24 show examples of SCCS dealing with
the merge/split cases on a single camera view for indoor

Synchronization rate (frames)

60301051

N
u

m
be

r
of

m
es

sa
ge

s

0

100

200

300

400

500

600

10

574

238

128

52
30

New label
Lost label

Figure 26: Number of new label and lost label requests for
different synch rates.

and outdoor videos, respectively. The accuracy of giving
the correct labels to objects after they split is displayed in
Figure 25.

Figure 26 shows the number of new label and lost label
requests for different synchronization rates for the video
captured by the first camera setup with the box placed in the
environment. As expected, with a synch rate of 1, a lost label
request is sent at each frame as long as the car is occluded
behind the box. Thus, the number of lost label requests is the
highest for the synch rate of 1, and decreases with increasing
synch rate.

6. CONCLUSIONS

This paper has presented the scalable clustered camera
system, which is a peer-to-peer multicamera system for
multiple object tracking. Each camera is connected to a
CPU, and individual nodes communicate with each other
directly eliminating the need for a centralized server. Instead
of transferring control of tracking jobs from one camera
to another, each camera in the presented system keeps its

Senem Velipasalar et al. 21

own trajectories for each target object, which provides fault
tolerance. A fast and robust tracking algorithm was proposed
to perform tracking on each camera view, while maintaining
consistent labeling.

Peer-to-peer systems require sophisticated communica-
tion protocols that can handle communication and process-
ing delays. These protocols need to be evaluated and verified
against potential deadlocks, and their correctness properties
need to be checked. We introduced a novel communication
protocol designed for peer-to-peer vision systems, which
can handle the communication and processing delays. The
reasons of processing delays include heterogenous proces-
sors, different loads at different processors, and instruc-
tion and task scheduling within the node processing unit.
The protocol presented in this paper incorporates variable
synchronization capabilities. Moreover, compared to server-
based systems, it decreases the number of messages that a
single node has to handle as well as the total number of
messages that need to be sent considerably. We then analyzed
and exhaustively verified this protocol, without any errors or
redundancies, by using the SPIN verification tool.

Video sequences with varying levels of difficulty have
been captured by using different camera setups and environ-
ment states. Different experiments were performed to obtain
the speed up provided by SCCS, to measure average data
transfer accuracy and average waiting time. Experimental
results demonstrate the success of the SCCS, with high data
transfer accuracy rates.

REFERENCES

[1] N. Atsushi, K. Hirokazu, H. Shinsaku, and I. Seiji, “Tracking
multiple people using distributed vision systems,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation (ICRA ’02), vol. 3, pp. 2974–2981, Washington,
DC, USA, May 2002.

[2] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, “A real-
time computer vision system for measuring traffic parame-
ters,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR ’97), pp.
495–501, San Juan, Puerto Rico, USA, June 1997.

[3] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and
H. Schwabach, “Distributed embedded smart cameras for
surveillance applications,” Computer, vol. 39, no. 2, pp. 68–75,
2006.

[4] Q. Cai and J. K. Aggarwal, “Automatic tracking of human
motion in indoor scenes across multiple synchronized video
streams,” in Proceedings of the 6th IEEE International Confer-
ence on Computer Vision (ICCV ’98), pp. 356–362, Bombay,
India, January 1998.

[5] Q. Cai and J. K. Aggarwal, “Tracking human motion in
structured environments using a distributed-camera system,”
IEEE Transactions on Pattern Analysis andMachine Intelligence,
vol. 21, no. 11, pp. 1241–1247, 1999.

[6] S. Calderara, R. Cucchiara, and A. Prati, “Group detection
at camera handoff for collecting people appearance in multi-
camera systems,” in Proceedings of the IEEE International
Conference on Advanced Video and Signal Based Surveillance
(AVSS ’06), pp. 36–41, Sydney, Australia, November 2006.

[7] S. Calderara, R. Cucchiara, and A. Prati, “Bayesian-
competitive consistent labeling for people surveillance,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
30, no. 2, pp. 354–360, 2008.

[8] T.-H. Chang and S. Gong, “Tracking multiple people with a
multi-camera system,” in Proceedings of the IEEE Workshop on
Multi-Object Tracking (WOMOT ’01), pp. 19–26, Vancouver,
Canada, July 2001.

[9] R. T. Collins, A. J. Lipton, T. Kanade, et al., “A system for
video surveillance and monitoring: VSAM final report,” Tech.
Rep. CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon
University, Pittsburgh, Pa, USA, May 2000.

[10] R. T. Collins, A. J. Lipton, H. Fujiyoshi, and T. Kanade, “Algo-
rithms for cooperative multisensor surveillance,” Proceedings
of the IEEE, vol. 89, no. 10, pp. 1456–1477, 2001.

[11] T. Ellis, “Multi-camera video surveillance,” in Proceedings of
the 36th IEEE Annual International Carnahan Conference on
Security Technology (ICCST ’02), pp. 228–233, Atlantic City,
NJ, USA, October 2002.

[12] W. Hu, M. Hu, X. Zhou, T. Tan, J. Lou, and S. Maybank, “Prin-
cipal axis-based correspondence between multiple cameras for
people tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 4, pp. 663–671, 2006.

[13] O. Javed, S. Khan, Z. Rasheed, and M. Shah, “Camera handoff:
tracking in multiple uncalibrated stationary cameras,” in
Proceedings of the Workshop on Human Motion (HUMO ’00),
pp. 113–118, Austin, Tex, USA, December 2000.

[14] P. H. Kelly, A. Katkere, D. Y. Kuramura, S. Moezzi, S. Chat-
terjee, and R. Jain, “An architecture for multiple perspective
interactive video,” in Proceedings of the 3rd ACM International
Conference on Multimedia (MULTIMEDIA ’95), pp. 201–212,
San Francisco, Calif, USA, November 1995.

[15] V. Kettnaker and R. Zabih, “Bayesian multi-camera surveil-
lance,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR ’99), vol.
2, pp. 253–259, Fort Collins, Colo, USA, June 1999.

[16] S. Khan and M. Shah, “Consistent labeling of tracked objects
in multiple cameras with overlapping fields of view,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
25, no. 10, pp. 1355–1360, 2003.

[17] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S.
Shafer, “Multi-camera multi-person tracking for EasyLiving,”
in Proceedings of the 3rd IEEE International Workshop on Visual
Surveillance (VS ’00), pp. 3–10, Dublin, Ireland, July 2000.

[18] L. Lee, R. Romano, and G. Stein, “Monitoring activities from
multiple video streams: establishing a common coordinate
frame,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 758–767, 2000.

[19] C. Madden, E. D. Cheng, and M. Piccardi, “Tracking people
across disjoint camera views by an illumination-tolerant
appearance representation,” Machine Vision and Applications,
vol. 18, no. 3-4, pp. 233–247, 2007.

[20] K. Nguyen, G. Yeung, S. Ghiasi, and M. Sarrafzadeh, “A
general framework for tracking objects in a multi-camera
environment,” in Proceedings of the 3rd International Workshop
on Digital and Computational Video (DCV ’02), pp. 200–204,
Cleanvater Beach, Fla, USA, November 2002.

[21] N. T. Nguyen, H. H. Bui, S. Venkatesh, and G. West,
“Recognizing and monitoring high-level behaviors in complex
spatial environments,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR ’03), vol. 2, pp. 620–625, Madison, Wis, USA, June
2003.

22 EURASIP Journal on Image and Video Processing

[22] N. T. Nguyen, S. Venkatesh, G. West, and H. H. Bui,
“Multiple camera coordination in a surveillance system,” Acta
Automatica Sinica, vol. 29, no. 3, pp. 408–422, 2003.

[23] H. Pasula, S. J. Russell, M. Ostland, and Y. Ritov, “Tracking
many objects with many sensors,” in Proceedings of the
16th International Joint Conference on Artificial Intelligence
(IJCAI ’99), pp. 1160–1171, Stockholm, Sweden, July-August
1999.

[24] I. Pavlidis, V. Morellas, P. Tsiamyrtzis, and S. Harp, “Urban
surveillance systems: from the laboratory to the commercial
world,” Proceedings of the IEEE, vol. 89, no. 10, pp. 1478–1497,
2001.

[25] A. Utsumi, H. Mori, J. Ohya, and M. Yachida, “Multiple-
camera-based human tracking using non-synchronous obser-
vations,” in Proceedings of 4th Asian Conference on Computer
Vision (ACCV ’00), pp. 1034–1039, Taipei, Taiwan, January
2000.

[26] S. Velipasalar, L. M. Brown, and A. Hampapur, “Specifying,
interpreting and detecting high-level, spatio-temporal com-
posite events in single and multi-camera systems,” in Pro-
ceedings of the International Workshop on Semantic Learning
Applications in Multimedia (SLAM) in Conjunction with IEEE
Conference on Computer Vision and Pattern Recognition, pp.
110–117, New York, NY, USA, June 2006.

[27] S. Velipasalar and W. Wolf, “Recovering field of view lines
by using projective invariants,” in Proceedings of the IEEE
International Conference on Image Processing (ICIP ’04), vol. 5,
pp. 3069–3072, Singapore, October 2004.

[28] S. Velipasalar and W. Wolf, “Multiple object tracking and
occlusion handling by information exchange between uncal-
ibrated cameras,” in Proceedings of the IEEE International
Conference on Image Processing (ICIP ’05), vol. 2, pp. 418–421,
Genova, Italy, September 2005.

[29] S. Velipasalar, J. Schlessman, G.-Y. Chen, W. Wolf, and J.
P. Singh, “SCCS: a scalable clustered camera system for
multiple object tracking communicating via message passing
interface,” in Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME ’06), pp. 277–280, Toronto,
Canada, July 2006.

[30] X. Yuan, Z. Sun, Y. Varol, and G. Bebis, “A distributed visual
surveillance system,” in Proceedings of the IEEE Conference on
Advanced Video and Signal Based Surveillance (AVSS ’03), pp.
199–204, Miami, Fla, USA, July 2003.

[31] S. Funiak, M. Paskin, C. Guestrin, and R. Sukthankar, “Dis-
tributed localization of networked cameras,” in Proceedings of
the 5th International Conference on Information Processing in
Sensor Networks (IPSN ’06), pp. 34–42, Nashville, Tenn, USA,
April 2006.

[32] B. P. L. Lo, J. Sun, and S. A. Velastin, “Fusing visual and audio
information in a distributed Intelligent surveillance system for
public transport systems,” Acta Automatica Sinica, vol. 29, no.
3, pp. 393–407, 2003.

[33] J. A. Watlington and V. M. Bove Jr., “A system for parallel
media processing,” Parallel Computing, vol. 23, no. 12, pp.
1793–1809, 1997.

[34] C. Karlof, N. Sastry, and D. Wagner, “Cryptographic voting
protocols: a systems perspective,” in Proceedings of the 14th
USENIX Security Symposium (USENIX Security ’05), pp. 33–
49, Baltimore, Md, USA, August 2005.

[35] N. Evans and S. Schneider, “Analysing time dependent
security properties in CSP using PVS,” in Proceedings of the
6th European Symposium on Research in Computer Security
(ESORICS ’00), pp. 222–237, Toulouse, France, October 2000.

[36] V. Vanackère, “The TRUST protocol analyser, automatic and
efficient verification of cryptographic protocols,” in Proceed-
ings of the Verification Workshop (VERIFY ’02), pp. 17–27,
Copenhagen, Denmark, July 2002.

[37] H. Bowman, G. Faconti, and M. Massink, “Specification and
verification of media constraints using UPPAAL,” in Proceed-
ings of the 5th Eurographics Workshop on the Design, Specifi-
cation and Verification of Interactive Systems (DSV-IS ’98), pp.
261–277, Abingdon, UK, June 1998.

[38] T. Sun, K. Yasumoto, M. Mori, and T. Higashino, “QoS
functional testing for multi-media systems,” in Proceedings of
the 23rd IFIP International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE ’03), pp. 319–334,
Berlin, Germany, September-October 2003.

[39] S. Velipasalar, C.-H. Lin, J. Schlessman, and W. Wolf, “Design
and verification of communication protocols for peer-to-peer
multimedia systems,” in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME ’06), pp. 1421–
1424, Toronto, Canada, July 2006.

[40] R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Cambridge University Press, Cambridge,
UK, 2001.

[41] C. Stauffer and W. E. L. Grimson, “Adaptive background
mixture models for real-time tracking,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR ’99), vol. 2, pp. 246–252, Fort
Collins, Colo, USA, June 1999.

[42] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking
of non-rigid objects using mean shift,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR ’00), vol. 2, pp. 142–149, Hilton
Head Island, SC, USA, June 2000.

[43] The MPI Standard, September 2001, http://www.unix.mcs
.anl.gov/mpi.

[44] G. J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley, Boston, Mass, USA, 2004.

	1. INTRODUCTION
	2. MULTICAMERA MULTIOBJECT TRACKING
	2.1. Field of view (FOV) lines
	2.1.1. Recovery of field of view lines
	2.1.2. Checking object visibility

	2.2. Consistent labeling
	2.3. The tracking algorithm: coarse object localization with sparsemessage traffic

	3. INTER-CAMERA COMMUNICATION PROTOCOL
	3.1. When to communicate: request events
	3.2. With whom to communicate
	3.3. What to communicate
	3.3.1. New label request case
	3.3.2. Lost label request case
	3.3.3. New label reply case
	3.3.4. Lost label reply case

	3.4. How to communicate
	3.5. Comparison of the number of messages for a server-based scenario and for SCCS
	3.5.1. A server-based system scenario for multicamera multiobject tracking

	4. VERIFICATION OF THE PROTOCOL
	5. EXPERIMENTAL RESULTS
	5.1. Camera setups
	5.2. Waiting time experiments
	5.3. Accuracy of the data transfer

	6. CONCLUSIONS
	REFERENCES

