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Many lecture recording and presentation systems transmit slides or chalkboard content along with a small video of the instructor.
As a result, two areas of the screen are competing for the viewer’s attention, causing the widely known split-attention effect. Face
and body gestures, such as pointing, do not appear in the context of the slides or the board. To eliminate this problem, this article
proposes to extract the lecturer from the video stream and paste his or her image onto the board or slide image. As a result,
the lecturer acting in front of the board or slides becomes the center of attention. The entire lecture presentation becomes more
human-centered. This article presents both an analysis of the underlying psychological problems and an explanation of signal
processing techniques that are applied in a concrete system. The presented algorithm is able to extract and overlay the lecturer
online and in real time at full video resolution.
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1. WEBCASTING CHALKBOARD LECTURES

If one wants to webcast a regular chalkboard presentation
held in a classroom or lecture hall, there are mainly two ways
to do this.

One possibility is to take a traditional video of the chalk-
board together with the lecturer acting in front of it and then
use standard webcasting products, such as Microsoft Win-
dows Media or RealMedia to transmit the video into the In-
ternet. The primary advantage of broadcasting a lecture this
way is that the approach is rather straightforward: the setup
for capturing a lecture is well known, and off-the-shelf In-
ternet broadcasting software is ready to be used for digitiz-
ing, encoding, transmitting, and playing back the classroom
event. Furthermore, the lecturer’s workflow is not disturbed
and nobody needs to become accustomed to any new devices.
Even though some projects have tried to automate the pro-
cess [1, 2], a major drawback of recording a lecture in the
“conservative way” is that it requires additional manpower
for camera and audio device operation. Yet the video com-
pression techniques used by traditional video codecs are not
suitable for chalkboard lectures: video codecs mostly assume
that higher frequency features of images are less relevant.
This produces either an unreadable blurring of the board
handwriting or a bad compression ratio. Vector format stor-

age is not only smaller, it is also favorable because semantics
is preserved. After a lecture has been converted to video, it
is, for example, not possible to delete individual strokes or
to insert a scroll event without recalculating and rendering
huge parts of the video again. Some projects have therefore
tried to recognize board content automatically; see, for ex-
ample, [3]. In most cases, however, this is hard to achieve,
because chalkboard drawings are sometimes also difficult to
read due to their low contrast. Figure 1 shows an example of
a traditional chalkboard lecture webcast with a commercial
Internet broadcasting program.

Knowing the disadvantages of the conservative approach,
several researchers have investigated the use of pen-based
computing devices, such as interactive whiteboards or tablet
PCs to perform lecture webcasting (see, e.g., [4, 5]). Using a
pen-based device provides an interesting alternative because
it captures handwriting and allows storage of the strokes in a
vector-based format. Vector-based information requires less
bandwidth, can be transmitted without loss of semantics,
and is easily rendered as a crisp image on a remote computer.
Still, a disadvantage is the low resolution of these devices
and the requirement for professors to change some teaching
habits and technical accessories. One of the systems that sup-
ports the creation of remote lectures held using a pen-input
device is our E-Chalk system [6], created in 2001. E-Chalk



2 EURASIP Journal on Image and Video Processing

Figure 1: A chalkboard lecture captured and replayed with com-
mercial Internet broadcasting systems. Due to the lossy compres-
sion and the low contrast, the chalkboard content is difficult to read.

Figure 2: A transmission of chalkboard lecture held with an inter-
active whiteboard. The creation of the board content is transmitted
as vector graphics while the voice of the instructor is played back in
the background. This way of doing remote lecturing is bandwidth
efficient and effective but lacks the perception of personality.

records the creation of the board content together with the
audio track of the lecturer and transmits both synchronized
over the Internet. The lecture can be received remotely either
using a Java applet client or using MPEG-4 (see Figure 2).

2. HANDWRITING ONLY IS NOT SATISFYING

During an evaluation, many students reported they found it
disturbing that the handwritten objects on the board appear
from the void during distance replay. The lecture appears im-
personal because there is no person acting in front of the
board. The replay lacks important information because the
so-called “chalk and talk” lecture actually consists of more

Figure 3: An example of the use of an additional video client to
convey an impression of the classroom context and a view of the
instructor to the remote student. This simple side-by-side replay of
the two visual elements results in technical problems and is cogni-
tively suboptimal.

than the content of the board and the voice of the instruc-
tor. Often, facial expressions of the lecturer bespeak facts be-
yond verbal communication and the instructor uses gestures
to point to certain facts drawn on the board. Sometimes, it
is also interesting to get an impression of the classroom or
lecture hall. Psychology suggests (see, e.g., [7]) that face and
body gestures contribute significantly to the expressiveness of
human communication. The understanding of words partly
depends on gestures as they are also used to interpret and dis-
ambiguate the spoken word [8]. All these shortcomings are
aggravated by board activity being temporarily abandoned
for pure verbal explanations or even nonverbal communica-
tion. In order to transport this additional information to a
remote computer, we added another video server to the E-
Chalk system. As shown in Figure 3, the video pops up as a
small window during lecture replay. The importance of the
additional video is also supported by the fact that several
other lecture-recording systems (compare, e.g., [9]) have also
implemented this functionality and the use of an additional
instructor or classroom video is also widely discussed in em-
pirical studies. Not only does an additional video provide
nonverbal cues on the confidence of the speaker at certain
points—such as moments of irony [10]—several experimen-
tal studies (for an overview, refer to [11]) have also provided
evidence that showing the lecturer’s gestures has a positive
effect on learning. For example, [12] has reported that stu-
dents are better motivated when watching lecture recordings
with slides and video in contrast to watching a replay that
only contains slides and audio. Reference [13] also shows
in a comparative study that students usually prefer lecture
recordings with video images over those without.

3. SPLIT ATTENTION

The video of the instructor conveys nonverbal information
that several empirical studies have shown to be of value
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Figure 4: The approach presented in this article (images created
using the algorithm presented in this article). The remote listener
watches a remote lecture where the extracted lecturer is overlaid
semitransparently onto the dynamic board strokes which are stored
as vector graphics. Upper row: original video; second row: seg-
mented lecturer video; third row: board data as vector graphics. In
the final fourth row, the lecturer is pasted semitransparently on the
chalkboard and played back as MPEG-4 video.

for the student. There are, however, several reasons against
showing a video of the lecturer next to slides or the black-
board visualization. The video shows the instructor together
with the board content; in other words, the board content
is actually transmitted redundantly. On low-resolution de-
vices, the main concern is that the instructor video takes up
a significant amount of space. The bigger the video is, the
better nonverbal information can be transmitted. Ultimately,
the video must be of the size of the board to convey every
bit of information. As the board resolution increases because
electronic chalkboards become better, it is less and less pos-
sible to transmit the video side-by-side with the chalkboard
content. Even though there still might be solutions for these
layout issues, a more heavily discussed topic is the issue of
split attention.

In a typical E-Chalk lecture with instructor video, there
are two areas of the screen competing for the viewer’s eye:
the video window showing the instructor, and the board or
slides window. Several practical experiments that are related
to the work presented here have been described in [14, 15].
Glowalla [13] tracked the eye movements of students while
watching a lecture recording that contains slides and an in-
structor video. His measurements show that students spend
about 70 percent of the time watching the instructor video
and only about 20 percent of the time watching the slides.
The remaining 10 percent of the eye focus was lost for ac-
tivities unrelated to lecture content. When the lecture replay
only consists of slides and audio, students spend about 60
percent of the time looking at the slide. Of course, there is
no other spot to focus attention on in the lecture record-
ing. The remaining 40 percent, however, were lost in dis-
traction. The results are not directly transferable to electronic
chalkboard-based lecture replays because the slides consist of
static images and the chalkboard window shows a dynamic
replay [16]. However, motion is known to attract human at-

tention more than static data (see, e.g., [17]), it is therefore
likely that the eyes of the viewer will focus more often on
the chalkboard, even when a video is presented. Although
the applicability of Glowalla’s study to chalkboard lectures is
yet to be proven, the example shows that, on a typical com-
puter screen, two areas of the screen may be competing well
for attention. Furthermore, it makes sense to assume that
alternating between different visual attractors causes cogni-
tive overhead. Reference [18] already discussed this issue and
provided evidence that “Students presented a split source of
information will need to expend a portion of their cogni-
tive resources mentally integrating the different sources of
information. This reduces the cognitive resources available
for learning.”

4. A SOLUTION

Concluding what has been said in the last two sections, the
following statements seem to hold.

(i) Replaying a traditional video of the (electronic) chalk-
board lecture instead of using a vector-based repre-
sentation is bandwidth inefficient, visually suboptimal,
and results in a loss of semantics.

(ii) If bandwidth is not a bottleneck, showing a video of
the instructor conveys valuable nonverbal content that
has a positive effect on the learner.

(iii) Replaying such a video in a separate window side-by-
side with the chalkboard content is suboptimal be-
cause of layout constraints and known cognitive issues.

The statements lead to an enhanced solution for the
transmission of the nonverbal communication of the in-
structor in relation to the electronic chalkboard content. The
instructor is filmed as he or she acts in front of the board
by using a standard video camera and is then separated by a
novel video segmentation approach that is discussed in the
forthcoming sections. The image of the instructor can then
be overlaid on the board, creating the impression that the lec-
turer is working directly on the screen of the remote student.
Figure 4 shows the approach. Face and body gestures of the
instructor then appear in direct correspondence to the board
events. The superimposed lecturer helps the student to bet-
ter associate the lecturer’s gestures with the board content.
Pasting the instructor on the board also reduces bandwidth
and resolution requirements. Moreover, the image of the lec-
turer can be made opaque or semitransparent. This enables
the student to look through the lecturer. In the digital world,
the instructor does not occlude any board content, even if
he or she is standing right in front of it. In other words, the
digitalization of the lecture scenario solves another “layout”
problem that occurs in the real world (where it is actually
impossible to solve).

5. RELATED APPROACHES

5.1. Transmission of gestures

The importance of transmitting gestures and facial expres-
sions is not specific to remote chalkboard lecturing. In
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a computer-supported collaborative work scenario, people
first work together on a drawing and then want to discuss
it by pointing to specific details of the sketch. For this rea-
son, several projects have begun to develop means to present
gestures in their corresponding context.

Two early projects of this kind were called Video-Draw
[19] and Video Whiteboard [20]. On each side, a person can
draw atop a monitor using whiteboard pens. The drawings
together with the arms of the drawer were captured using
an analog camera and transmitted to the other side, so that
each side sees the picture of the remote monitor overlaid on
their own drawings. Polarizing filters were used to omit video
feedback. The VideoWhiteboard uses the same idea, but peo-
ple are able to work on a large upright frosted glass screen and
a projector is used to display the remote view. Both projects
are based on analog technology without any involvement of
the computer.

Modern approaches include a solution by [21] that uses
chroma keying for segmenting the hands of the acting per-
son and then overlaying it ona shared drawing workspace.
In order to use chroma keying, people have to gesture atop
a solid-blue surface and not on top of their drawing. This
is reported to produce confusion in several situations. LIDS
[22] captures the image of a person working in front of a
shared display with a digital camera. The image is then trans-
formed via a rough background subtraction into a frame
containing the whiteboard strokes and a digital shadow of
the person (in gray color). The VideoArms project by [23]
works with touch-sensitive surfaces and a web camera. Af-
ter a short calibration, the software extracts skin colors and
overlays the extracted pixels semitransparently over the im-
age of the display. This combined picture is then transmitted
live to remote locations. The system allows multiparty com-
munication, that is, more than two parties. Reference [24]
presents an evaluation of the VideoArms project along with
LIDS. He argues that the key problem is still a technical one:
“VideoArms” images were not clear and crisp enough for
participants. [...] the color segmentation technique used was
not perfect,producing on-screen artifacts or holes and some-
times confusing users.”

In summary, the presented approaches tried to work
around either object extraction or the technical requirements
for the segmentation that made the systems suboptimal. It is
therefore important that the lecturer segmentation approach
is either easily used in classroom and/or after a session; and
technical requirements do not disturb the classroom lecture.

5.2. Segmentation approaches

The standard technologies for overlaying foreground objects
onto a given background are chroma keying (see, e.g., [25])
and background subtraction (see, e.g., [26]). For chroma
keying, an actor is filmed in front of a blue or green screen.
The image is then processed by analog devices or a com-
puter so that all blue or green pixels are set to transpar-
ent. Background subtraction works similarly: a static scene
is filmed without actors once for calibration. Then, the ac-
tors play normally in front of the static scene. The filmed
images are then subtracted pixel by pixel from the initially

calibrated scene. In the output image, regions with pixel dif-
ferences near zero are defined transparent. In order to sup-
press noise, illumination changes, reflections of shadows,
and other unwanted artifacts, several techniques have been
proposed that extend the basic background subtraction ap-
proaches. Mainly, abstractions are used that substitute the
pixelwise subtraction by using a classifier (see, e.g., [27]). Al-
though nonparametric approaches exist, such as [28], per-
pixel Gaussian Mixture Models (GMM) are the standard
tools for modeling a relatively static background (see, e.g.,
[29]). These techniques are not applicable to the given lec-
turer segmentation problem because the background of the
scene is neither monochromatic nor fixed. During a lecture,
the instructor works on the electronic chalkboard and thus
causes a steady change of the “background.”

Even though the background color of the board is black
(RGB value (0,0,0)), the camera sees a quite different pic-
ture. In particular, noise and reflections make it impossible
to threshold a certain color. Furthermore, while the instruc-
tor is working on the board, strokes and other objects ap-
pear in a different color from the board background color
so that several colors have to be subtracted. A next exper-
iment consisted of matching the blackboard image on the
screen with the picture seen by the camera and subtracting
them. During the lecture recording, an additional program
regularly makes screenshots. The screenshots contained the
board content as well as any frame insets and dialogs shown
on the screen. However, subtracting the screenshots from the
camera view was impractical. In order to match the screen
picture and the camera view, lens distortion and other ge-
ometric displacements have to be removed. This requires a
calibration of the camera before each lecture. Taking screen-
shots with a resolution of 1024 × 768 pixels or higher is not
possible at high frame rates. In our experiments, we were able
to capture about one screenshot every second and this took
almost a hundred percent of the CPU time. Furthermore, it
is almost impossible to synchronize screen grabbing with the
camera pictures. In a regular lecture, many things may hap-
pen during a second. Still, a matching between the colors in
the camera view and the screenshots has to be found.

Much work has been done on tracking (i.e., localization)
of objects for computer vision, for example, in robotic soccer
[30], surveillance tasks [31], or traffic applications [32]. Most
of these approaches concentrate on special features of the
foreground, and in these domains, real-time performance
is more relevant than segmentation accuracy as long as the
important features can be extracted from each video frame.
Separating the foreground from more or less dynamic back-
ground is the object of current research.

Many systems use complex statistical methods that re-
quire intensive calculations not possible in real time (e.g.,
[33]) or use domain-specific assumptions (a typical example
is [34]). Numerous computationally intensive segmentation
algorithms have also been developed in the MPEG-4 research
community, for example, [35]. For the task investigated here,
the segmentation should be as accurate as possible. A real-
time solution is needed for live transmission of lectures. Ref-
erence [36] presents a video segmentation approach that uses
the optical flow to discriminate between layers of moving
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Figure 5: A sketch of the setup for lecturer segmentation. An elec-
tronic chalkboard is used to capture the board content and a camera
records the instructor acting in front of the board.

pixels on the basis of their direction of movement. In order
to be able to track an object, the algorithm has to classify it
as one layer. However, a set of pixels is grouped into a layer if
they perform the same correlating movement. This makes it
a useful approach for motion-based video compression but
it is not perfectly suited for object extraction. Reference [37]
is combining motion estimation and segmentation by inten-
sity through a Bayesian belief network to a spatiotemporal
segmentation. The result is modeled in a Markov-Random
field, which is iteratively optimized to maximize a condi-
tional probability function. The approach relies purely on in-
tensity and movement, and is therefore capable of segment-
ing grey scale. Since the approach also groups the objects by
the similarity of the movement, the same limitations as in
[36] apply. No details on the real time capability were given.

6. SETUP

In E-Chalk, the principal scenario is that of an instructor
using an electronic chalkboard in front of the classroom.
The camera records the instructor acting in front of the
board such that exactly the screen showing the board con-
tent is recorded. With a zoom camera, this is easily pos-
sible from a nondisturbing distance (e.g., from the rear of
the classroom); and lens distortion is negligible. In this ar-
ticle, it is assumed that the instructor operates using an
electronic chalkboard with a rear projection (e.g., a Star-
Board) rather than one with front projection. The rea-
son for this is that when a person acts in front of the
board and a front projector is used, the board content is
also projected onto the person. This makes segmentation
very difficult. Furthermore, given a segmentation, the pro-
jected board artifacts disturb the appearance of the lec-
turer. Once set up, the camera does not require operation
by a camera person. In order to ease segmentation, light
changes and (automatic) camera adjustments should be in-
hibited as much as possible. Figure 5 shows a sketch of the
setup.

7. INSTRUCTOR EXTRACTION

A robust segmentation between instructor and background
is hard to find using motion statistics. However, getting a
subset of the background by looking at a short series of
frames is possible. Given a subset of the background, the
problem reduces to classifying the rest of the pixels as to ei-
ther belonging to the background or not. The idea behind the
approach presented here is based on the notion of a color sig-
nature. A color signature models an image or part of an im-
age by its representative colors. This abstraction technique is
frequently used in different variants in image retrieval appli-
cations, where color signatures are used to compare patterns
representing images (see, e.g., [38, 39]). A variation of the
notion of a color signature is able to solve the lecturer extrac-
tion problem and is useful for a variety of other image and
video segmentation tasks. Further details on the following
algorithm are available in [40, 41]. The approach presented
here is based on the following assumptions. The hardware is
set up as described in Section 6; the colors of the instructor
image are overall different from those in the rest of the image;
and during the first few seconds after the start of the record-
ing, there is only one instructor and he or she moves in front
of the camera. The input is a sequence of digitized YUV or
RGB video frames, either from a recorded video or directly
from a camera. The following steps are performed.

(1) Convert the pixels of each video frame to the CIELAB
color space.

(2) Gather samples of the background colors using motion
statistics.

(3) Find the representative colors of the background (i.e.,
build a color signature of the background).

(4) Classify each pixel of a frame by measuring the dis-
tance to the color signature.

(5) Apply some postprocessing steps, for example, noise
reduction, and biggest component search.

(6) Suppress recently drawn board strokes.

The segmented instructor is then saved into MPEG-4 for-
mat. The client scales the video up to board size and replays
it semitransparently.

7.1. Conversion to CIELAB

The first step of the algorithm is to convert each frame to
the CIELAB color space [42]. Using a large amount of mea-
surements (see [43]), this color space was explicitly designed
as a perceptually uniform color space. It is based on the
opponent-color theory of color vision [44, 45]. The theory
assumes that two colors cannot be both green and red or blue
and yellow at the same time. As a result, single values can be
used to describe the red/green and the yellow/blue attributes.
When a color is expressed in CIELAB, L defines lightness, a
denotes the red/green value, and b the yellow/blue value. In
the algorithm described here, the standard observer and the
D65 reference white [46] are used as an approximation to all
possible color and lighting conditions that might appear in
an image. CIELAB is still not the optimal perceptual color
space (see, e.g., [47]) and the aforementioned assumption
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sometimes leads to problems. But in practice, the Euclidean
distance between two colors in this space better approximates
a perceptually uniform measure for color differences than in
any other color space, like YUV, HSI, or RGB.

7.2. Gathering background samples

It is hard to get a background image for direct subtraction.
The instructor can paste images or even animations onto the
board; and when the instructor scrolls a page of board con-
tent upwards, the entire screen is updated. However, the in-
structor sometimes stands still producing fewer changes than
the background noise. The idea is thus to extract only a rep-
resentative subset of the background that does not contain
any foreground for further processing.

To distinguish noise from real movements, we use the fol-
lowing simple but general model. Given two measurements
m1 and m2 of the same object, with each measurement hav-
ing a maximum deviation e from the real world due to noise
or other factors, it is clear that the maximum possible de-
viation between m1 and m2 is 2e. Given several consecutive
frames, we estimate e to find out which pixels changed due
to noise and which pixels changed due to real movement. To
achieve this, we record the color changes of each pixel (x, y)
over a certain number of frames t(x, y), called the recording
period. We assume that in this interval, the minimal change
is caused only by noise. The image data is continuously eval-
uated. The frame is divided into 16 equally sized regions and
changes are accumulated in each region. Under the assump-
tion that at least one of these regions was not touched by
any foreground object (the instructor is unlikely to cover the
entire camera region), 2e is estimated to be the maximum
variation of the region with the minimal sum. We then join
all pixels of the current frame with the background sample
that during the recording period t(x, y) did not change more
than our estimated 2e. The recording period t(x, y) is initial-
ized within one second and is continuously increased for pix-
els that are seldom classified as background. This is done to
avoid adding a still-standing foreground object to the back-
ground buffer. In our experiments, it took a few seconds for
enough pixels to be collected to form a representative subset
of the background. We call this time period the initialization
phase. The background sample buffer is organized as an ag-
ing FIFO queue. Figure 6 shows typical background samples
after the initialization phase.

The background sample is fed into the clustering method
described in the next section. Once built up, the clustering is
only updated when more than a quarter of the underlying
background sample has changed. However, a constant up-
dating is still needed in order to be able to react to changing
lighting conditions.

7.3. Building amodel of the background

The idea behind color signatures is to provide a means for
abstraction that sorts out individual outliers caused by noise
and small error. A color signature is a set of representative
colors, not necessarily a subset of the input colors. While the
set of background samples from Section 7.2 typically consists

(a) (b)

Figure 6: Using motion statistics, a sample of the background is
gathered. The images show the original video (a) and known back-
ground that was reconstructed over several frames (b). The white
regions constitute the unknown region.

of a few hundred thousand colors, the following clustering
reduces the background sample to its representative colors,
usually about a few hundred. The known background sam-
ple is clustered into equally sized clusters because in CIELAB
space specifying a cluster size means specifying a certain per-
ceptual accuracy. To do this efficiently, we use the modified
two-stage k-d tree [48] algorithm described in [49], where
the splitting rule is to simply divide the given interval into
two equally sized subintervals (instead of splitting the sample
set at its median). In the first phase, approximate clusters are
found by building up the tree and stopping when an interval
at a node has become smaller than the allowed cluster diam-
eter. At this point, clusters may be split into several nodes.
In the second stage of the algorithm, nodes that belong to
several clusters are recombined. To do this, another k-d tree
clustering is performed using just the cluster centroids from
the first phase. We use different cluster sizes for L, a, and b
axes. The values can be set by the user according to the per-
ceived color diversity on each of the axes. The default is 0.64
for L, 1.28 for a, and 2.56 for the b axis. For efficiency reasons
and for further abstraction, clusters that contain fewer than
0.1% of the pixels of the entire background sample are re-
moved. The constants were learned with a set of benchmark
images using a genetic algorithm.

The k-d tree is explicitly built and the interval boundaries
are stored in the nodes. Given a certain pixel, all that has to be
done is to traverse the tree to find out whether it belongs to
one of the known background clusters or not. Figure 7 shows
an example color signature.

7.4. Postprocessing

The pure foreground/background classification based on the
color signature will usually select some individual pixels in
the background with a foreground color and vice versa, re-
sulting in tiny holes in the foreground object. The wrongly
classified background pixels are eliminated by a standard
erode filter operation while the tiny holes are filled by a
standard dilate operation. A standard Gaussian noise filter
smoothing reduces the number of jagged edges and hard
corners. A biggest connected component search is then per-
formed. The biggest connected component is considered
to be the instructor, and all other connected components
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Figure 7: Original picture (above) and a corresponding color sig-
nature representing the entire image (below). For visualization pur-
poses, the color signature was generated using very rough limits so
that it contains only a few representative colors.

(a) (b)

(c) (d)

Figure 8: Two examples of color-segmented instructors. Original
frames are shown on the left, segmented frames are shown on the
right. The frame below shows an instructor scrolling the board,
which requires an update of many background samples.

(mostly noise and other moving or newly introduced ob-
jects) are eliminated from the output image. Figure 8 shows
two sample frames of a video where the instructor has been
extracted as described here.

7.5. Board stroke suppression

As described in Section 7.2, the background model is built
using statistics over several frames. Recently inserted board
content is therefore not part of it. For example, when an ani-
mation is used on the board, a huge amount of new board

(a) (b)

Figure 9: Board drawings that are connected to the instructor are
often considered foreground by the classification. An additional
board stroke suppression eliminates these artifacts. (a): the result
of the color signature classification. (b): after applying a postpro-
cessing step to eliminate board strokes.

content is shown on the board in a short time. With the
connected component analysis performed for the pixels clas-
sified as foreground, most of the unconnected strokes and
other blackboard content have already been eliminated. In
order to suppress strokes just drawn by the lecturer, all colors
from the board system’s color palette are inserted as cluster
centroids to the k-d tree. However, as the real appearance of
the writing varies with both projection screen and camera
settings and with illumination, not all of the board activities
can be suppressed. Additionally, strokes are surrounded by
regions of noise that make them appear to be foreground.
In order to suppress most of those thinner objects, that is,
objects that only expand a few pixels in the X and/or the Y-
dimensions are eliminated using an erode operation. Fortu-
nately, a few remaining board strokes are not very disturbing
because the segmented video is later overlaid on the board
drawings anyways. Figure 9 compares two segmented frames
with and without board stroke suppression.

8. LIMITS OF THE APPROACH

The most critical drawback of the presented approach is
color dependence. Although the instructor videos are mostly
well separable by color, the approach fails when parts of the
instructor are very similar to the background. When the in-
structor wears a white shirt, for example, the segmentation
sometimes fails because dialog boxes often also appear as
white to the camera.

The presented approach requires that the instructor
moves at least during the initialization phase. During our ex-
perimental recordings, we did not find this to be impractical.
However, it requires some knowledge and is therefore prone
to usage errors. The quality of the segmentation is subopti-
mal if the instructor does not appear in the picture during
the first few frames or does not move at all.

Another problem is that if the instructor points at a
rapidly changing object (e.g., an animation on the board
screen) of a similar color structure, the instructor and the
animation might both be classified as foreground. If they
are connected somehow, the two corresponding components
could be displayed as the single biggest component.
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(a) (b)

(c) (d)

Figure 10: The final result: the instructor is extracted from the orig-
inal video (left) and pasted semitransparently over the vector-based
board content (right).

9. RESULTS

The resulting segmented instructor video is scaled to fit the
board resolution (usually 1024× 768) using linear interpola-
tion. It is pasted over the board content at the receiving end
of the transmission or lecture replay. Several examples of lec-
tures that contain an extracted and overlaid instructor can be
seen in Figures 4 and 10.

The performance of the presented segmentation algo-
rithm depends on the complexity of the background and on
how often it has to be updated. Usually, the current Java-
based prototype implementation processes a 640×480 video
at 25 frames per second after the initialization phase.

Reflections on the board display are mostly classified as
background and small moving objects never make up the
biggest connected component. For the background recon-
struction process to collect representative background pixels,
it is not necessary to record a few seconds without the in-
structor. The only requirement is that, for the first few sec-
onds of initialization, the lecturer keeps moving and does
not occlude background objects that differ significantly from
those in the other background regions.

As the algorithm focuses on the background, it provides
rotation and scaling invariant tracking of the biggest mov-
ing object. The tracking still works when the instructor turns
around or when he leaves the scene and a student comes up
to work on the board. Once initialized, the instructor does
not disappear, even if he or she stands absolutely still for sev-
eral seconds (which is actually very unusual).

10. FORMAL EVALUATION

A generalized version of the algorithm has been published
under the name SIOX (Simple Interactive Object Extraction,
http://www.siox.org). It can be used for various segmenta-
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Figure 11: Per-image error measurement from applying SIOX on
the benchmark dataset provided by [50]. Please refer to the text for
a detailed description.

(a) (b)

Figure 12: Lecture replay using the video capabilities of small de-
vices. (a): a Symbian-OS-based mobile phone. The resolution is
176 × 144 pixels. (b): a video iPod.

tion tasks and has been implemented as a low-interaction
still-image segmentator into the open source image manip-
ulation programs GIMP and Inkscape. A detailed evaluation
of the robustness of the approach including benchmark re-
sults can be found in [40, 51].

In order to evaluate the strengths and weaknesses of the
color signature segmentation approach more formally, we
benchmarked the method using a publicly available bench-
mark. In [52], a database of 50 images plus the correspond-
ing ground truth to be used for benchmarking foreground
extraction approaches is presented. The benchmark data set
is available on the Internet [50] and also includes 20 images
from the Berkeley Image Segmentation Benchmark Database
[53]. The data set contains color images, a pixel-accurate
ground truth, and user-specified trimaps. The trimaps define
a known foreground region, a known background region,
and an unknown region. We chose comparison with this
database because the solutions presented in [52] are the basis
for the so-called “GrabCut” algorithm, which is commonly
considered to be a very successful method for foreground
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extraction (though not fast enough for real-time video pro-
cessing). Unfortunately, this way we cannot test the motion
statistics part of our approach (described in Section 7.2) be-
cause the benchmark only concerns still images. However,
the motion statistics part is relatively simple and straightfor-
ward and never turned out to be an accuracy bottleneck.

The error measurement in [52] is defined as

ε = no.misclassified pixels
no. of pixels in unclassified region

·

If both background and foreground k-d trees are built,
the best-case average error of the algorithm is 3.6%. If only
the background signature is given (as presented in this arti-
cle), the overall error is 11.32 %. The best-case average error
rate on the database reported in [52] is 7.9%. The image seg-
mentation task defined in the benchmark exceeds by far the
level of difficulty of our segmentation task. Yet, we get rea-
sonable results when using this benchmark.

11. CONCLUSION

This article proposes changing the way chalkboard lecture
webcasts are to be transmitted. The standard side-by-side re-
play of video and blackboard content causes technical and
cognitive problems. We propose cutting the lecturer image
out of the video stream and pasting it on the rendered rep-
resentation of the board. The lecturer—a human being—is
brought back to the remote lecturing scenario so each remote
lecture becomes “human-centered” or “anthropocentric” in-
stead of handwriting-centered. Our experiments show that
this approach is feasible and also aesthetically appealing. The
superimposed lecturer helps the student to better associate
the lecturer’s gestures with the board contents. Pasting the
instructor on the board also reduces space and resolution
requirements. This makes it also possible to replay a chalk-
board lecture on mobile devices (see Figure 12).
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