Hindawi Publishing Corporation

EURASIP Journal on Image and Video Processing
Volume 2007, Article ID 85385, 8 pages
d0i:10.1155/2007/85385

Research Article

JPEG2000 Compatible Lossless Coding of Floating-Point Data

INTRODUCTION

Bryan E. Usevitch

Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, TX 79968-0523, USA
Received 14 August 2006; Revised 13 December 2006; Accepted 22 December 2006
Recommended by James E. Fowler

Many scientific applications require that image data be stored in floating-point format due to the large dynamic range of the
data. These applications pose a problem if the data needs to be compressed since modern image compression standards, such
as JPEG2000, are only defined to operate on fixed-point or integer data. This paper proposes straightforward extensions to the
JPEG2000 image compression standard which allow for the efficient coding of floating-point data. These extensions maintain
desirable properties of JPEG2000, such as lossless and rate distortion optimal lossy decompression from the same coded bit stream,
scalable embedded bit streams, error resilience, and implementation on low-memory hardware. Although the proposed methods
can be used for both lossy and lossless compression, the discussion in this paper focuses on, and the test results are limited to, the
lossless case. Test results on real image data show that the proposed lossless methods have raw compression performance that is
competitive with, and sometime exceeds, current state-of-the-art methods.

Copyright © 2007 Bryan E. Usevitch. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Floating-point image compression has not received a lot
of attention by the compression community. This is evi-
denced by the fact that modern image compression texts
(see [1-3]) have no direct discussion of floating-point com-
pression methods. Perhaps the reason floating-point com-
pression has not been emphasized is that most digital-image
data is acquired through the sampling and quantization
of analog data, and thus starts as fixed-point data. How-
ever, there are applications, especially in the scientific com-
munity, where floating-point compression would be imme-
diately applicable. Examples include post processed data,
such as atmospherically corrected satellite data, and scien-
tific simulation data, where the data begins and ends as
floating-point data. Even though these floating-point appli-
cation areas may be smaller than the fixed-point areas, the
JPEG2000 standards body has created a committee (ISO/IEC
JTC1/SC29/WGT1 Part 10 committee) to propose enhance-
ments to the JPEG2000 standard which specifically target
scientific (including floating-point) compression applica-
tions.

Traditionally there have been two main methods for
compressing floating-point data. The first method is to ini-
tially quantize the floating-point data into fixed-point data
prior to compression. This method has the advantage that

the plethora of fixed-point compression algorithms de-
scribed in the textbooks and literature can then be used to
compress the quantized data. A main disadvantage of this
method is that it causes irreversible data loss. This data loss
may not be acceptable from either a technological or polit-
ical standpoint (we just spent 10 million dollars to acquire
the data and you want to do what?). In fact, a main reason
for using a floating-point representation in the first place is
to avoid any sort of data loss.

The second traditional method for compression of
floating-point data is to use a general lossless method such as
gzip on the integer representation of the floating-point data.
Candidate compressors include gzip, bzip2, rice-golomb, and
JPEG2000 lossless. Note that this method implicitly oper-
ates on the integer representation of the floating-point data
(4bytes in the case of single precision), and not the ac-
tual floating-point values themselves. This is an important
but subtle point. For example, quantizing a floating-point
data set with widely varying exponents by keeping the upper
N bits of each of the integer representations of the floating-
point values would not result in a distortion optimal quanti-
zation. A main advantage of this second method for floating-
point compression is that it incurs no data loss. However,
the second method has the big disadvantage of loss of data
flexibility. For example, partially decompressing to get a lossy
representation at a target bit rate, or partially decompressing

EURASIP Journal on Image and Video Processing

only one spatial region of the compressed data either very
difficult or impossible.

The aforementioned disadvantages of these two tradi-
tional methods are overcome by the methods proposed in
this paper, since these proposed methods are enhancements
to JPEG2000 to allow for compression of floating-point data.
Since they are based on JPEG2000, lossy and lossless decom-
pression can be achieved from the same compressed data
stream. Furthermore, all the other compressed data flexi-
bility properties of JPEG2000, such as quality, resolution,
and spatial scaling, are preserved. Prior to discussing these
properties further, we first mention other recently published
schemes for floating-point compression.

Several lossless floating-point methods have been re-
cently proposed in the literature. Engelson et al. [4] proposed
a method which uses one-dimensional polynomial predic-
tion, where the prediction residual was represented as an in-
teger so as to result in lossless compression. Ghido [5] pro-
poses a method wherein the floating-point data is first loss-
lessly mapped into an integer representation. This represen-
tation is transformed to improve coding efficiency and then
coded. The method was devised for coding IEEE audio and
is thus a one-dimensional method. The approach of Ratana-
worabhan et al. [6] is different in that it does not convert the
floating-point values to integers, but rather works directly
on the integer representation of the floating-point values.
It uses a predictor with a special hash function to code the
prediction residuals. This method is also a one-dimensional
method. The method of Lindstrom and Isenburg [7] is also
different in that it is not a one-dimensional but rather a two-
or three-dimensional method. Specifically, it uses a Lorenzo
predictor that can do two- or three-dimensional prediction
and thus can take better advantage of spatial correlations in
images and data cubes. The prediction residuals are repre-
sented using an integer format in order to be lossless. A com-
mon theme from all these proposed methods is that in order
to be lossless, floating-point values at some stage of the cod-
ing process must be represented as integers. This theme is
continued in this paper where floating-point values are rep-
resented in what is here called extended integer (EI) format.

The floating-point compression methods proposed in
this paper have several advantages over the previously men-
tioned methods. Most of these advantages are inherited di-
rectly from the original fixed-point JPEG2000 algorithm,
since once the floating-point values are converted to EI for-
mat the coding process is nearly identical. However, some
minor modifications need to be made to accommodate the
EI format and to improve coding efficiency. These modifica-
tions include extending the maximum number of possible
bits planes (beyond the current limit of 38 in JPEG2000),
adding one or two additional coding passes every several
bit planes, and introducing a lossless wavelet transform that
handles the EI format. Note that these modifications are why
the paper title refers to the proposed methods as “JPEG com-
patible” instead of “JPEG compliant,” since they cannot be
run in current JPEG2000 Part 1 and Part 2 compliant codecs.

The first advantage of the proposed methods is that lossy
and lossless decompression can be obtained from only one

coded representation. Thus the end user does not have to
choose between either a lossy or lossless representation at the
outset of coding. Also, the amount of loss for lossy decoding
can be chosen at decoding time and can be varied to what-
ever amount desired. Finally, since the codestream is embed-
ded, the resulting coded representation is rate distortion op-
timal for the given number of bits decoded. Other floating-
point compression algorithms in the literature do not offer
this combined lossy/lossless decompression capability. For
example, the method of [7] does offer either lossy or lossless
compression, but the amount of loss has to be set at com-
pression time and the resulting truncated data stream is not
guaranteed to be a rate distortion optimal representation.
One could attempt to mimic the lossy/lossless decompres-
sion of the proposed methods by applying the fixed-point
JPEG2000 method directly to the 4-byte integer representa-
tion (for single precision) floating-point data. However, the
lossy partial decompression of this data would not be rate
distortion optimal (and in fact would be really bad for data
with widely varying exponents) since the JPEG2000 method
assumes a linear representation for its rate distortion compu-
tations, and the mapping from floating-point value to 4-byte
integer is nonlinear.

The proposed methods also maintain the quality, resolu-
tion, and spatial scaling properties found in JPEG2000. For
example, spatial scaling is made possible through the code-
block structure of the coding algorithm and allows for ran-
dom spatial access to and partial decompression of only se-
lected portions of the data. This ability would be especially
advantageous in working with large data sets often found in
scientific applications. The other floating-point compression
methods are prediction-based and do not allow for the same
level of random access to the data. As another example, reso-
lution or size scaling would allow a partial decompression of
the data to a much smaller size, such as a thumbnail image.
This, coupled with spatial scaling, would allow for searching,
zooming, and decompressing only areas of interest from the
data. Note that all of these scalings require no extra coding
or decoding, but can be accomplished with only a low com-
plexity reordering of the data.

The proposed methods also offer a measure of error re-
silience. This is because codestreams for each codeblock are
self-contained. Specifically, the arithmetic encoder is reset at
the beginning of coding each codeblock, and the codeblock
codestream ends with an identifiable marker (which cannot
be reproduced by the data). Thus errors in one codeblock
would not be propagated to subsequent codeblocks (unless
of course the error occurs in the end of codeblock marker).
Other floating-point methods are based on some form of
prediction and thus will have a greater tendency to propagate
errors.

The proposed methods are also amenable to implemen-
tation on low memory machines. This is because codeblock
sizes are small (16 X 16 blocks are used for experiments in
this paper, and the maximum size for the JPEG2000 stan-
dard is 1024 x 1024), and the wavelet transform can be im-
plemented incrementally (see [3, Section 17.4]). This means
that only a portion of the total data set needs to be in memory

Bryan E. Usevitch

at any particular time, resulting in modest RAM require-
ments while still allowing for the compression of large data
sets.

The proposed methods also follow the same coding path
as used in JPEG2000. Specifically, the coding passes, con-
text computations, bit scanning, lifting for wavelet trans-
form, and arithmetic encoder are all identical to those used in
JPEG2000. While this fact may not be important to end users,
it is very beneficial to persons or companies implementing
the proposed algorithms. It means that large portions of ex-
isting hardware and software developed for JPEG2000 can be
used to implement the new methods, resulting in consider-
able design savings. Finally, it should be noted that in ad-
dition to much greater compressed data flexibility, the pro-
posed methods also give good raw lossless compression per-
formance. This will be demonstrated in Section 6.

One may ask if all the increased compressed data stream
flexibility is necessary or important? Ultimately that ques-
tion will be answered by the end user, and to date the end
user has not been given a lot of options to experiment with.
However, it should be noted that the ISO JPEG committee
felt that compressed data flexibility was sufficiently impor-
tant as to create an entirely new international image com-
pression standard, namely, JPEG2000 to supplement the ex-
isting and widely used JPEG standard. The nontrivial nature
of this task lends credence to the importance of compressed
data flexibility.

The remainder of the paper proceeds as follows. Section 2
discusses floating-point formats and the representation of
floating-point numbers using the EI format. Section 3 uses
the EI format to derive a lossless, floating-point wavelet
transform. Section 4 proposes modifications to JPEG2000
bit-plane coding which allow for the efficient coding of Els.
Section 5 proposes new context determination methods to be
used in the bit-plane coding and entropy coding of floating-
point data. Section 6 gives compression performance results
and Section 7 gives conclusions. Also note that the paper has
the following limitation. Even though the proposed methods
apply equally well to lossy and lossless compression, the dis-
cussion in this paper focuses on, and the test results are lim-
ited to, the lossless case. This is also the case most emphasized
in the literature on floating-point compression.

2. FLOATING POINT REPRESENTATIONS

The proposed extensions in this paper apply to binary float-
ing-point representations in general, but will be explained
and illustrated using 32-bit IEEE floating-point format. The
32-bit IEEE floating-point format is shown in Figure 1 and
represents numbers as

(=1)* x 2727 % (01.f) if0<e< 255, (1)
where s is the sign (0 for positive), e is an offset-by-127 ex-
ponent, and f is the mantissa fraction [8]. Floating-point
values can be conceptualized as “extended integers” (EI) as
shown in Figure 2. The number of bits required to represent
an arbitrary set of floating-point numbers using the EI for-
mat is 278, which includes 254 bits for standard float values

18 23
L[e | f |

Ficure 1: 32-bit IEEE floating-point representation showing the
sign bit, 8 exponent bits, and 24 mantissa bits (the most significant
1 bit is implied).

Exponent 127 0 —126
\L (L \l/ (L
Offset |T|‘<||||||||||||T|||||\b §
Xponent 255 254 127 1
1. . |
255 bits 23 bits

FIGURE 2: Extended integer representation of 32-bit IEEE floating-
point format showing the 278-bit locations in which the 24 consec-
utive mantissa bits can be located.

(0 < e < 255), 1bit for exceptions (e = 255), and 23 bits for
trailing fraction bits when e = 0.

A straightforward way to compress floating-point data
would be to apply the JPEG2000 bit-plane coding algorithms
directly to the EI format (neglecting for a moment the is-
sue of the wavelet transform). The main modification needed
would be to increase the maximum allowable number of bit
planes, which is defined to be 38 in the current standard. The
greatest advantage of this approach is that it preserves all the
properties of JPEG2000, including highly scalable embedded
bit streams and rate distortion optimality. The main disad-
vantage in directly applying the JPEG2000 bit-plane coding
to the EI format is that it results in low coding efficiency. For
example, consider the case of lossless coding of floating-point
data using the EI format. Given that the number of bits in
the EI format, 278, is approximately 9 times bigger than 32,
and that the best lossless compression is about 2 : 1 or 3 : 1,
compression could actually result in an expansion of approx-
imately 3 to 4 for large dynamic range data. Methods given
in Section 4 show how to reduce this bit-plane coding ineffi-
ciency.

3. LOSSLESS FLOATING POINT WAVELET TRANSFORM

This section derives a method for performing a lossless or
reversible wavelet transform using floating-point data. This
lossless wavelet transform is necessary if lossless JPEG2000
compression with resolution scaling is desired. Note that the
wavelet transform is not a necessary step in JPEG2000 com-
pression, but it does allow for resolution scaling and potential
added efficiency through decorrelating the input coefficients.

The main disadvantage of the wavelet transform in the
floating-point case is that it generally increases the dynamic
range of the mantissa of each floating-point number. To see
this note that before wavelet transforming, the EI represen-
tation of each coefficient can reside anywhere within the 278
possible bit locations. However, each El is constrained in that
its nonzero bits, the mantissa bits, must occupy a run of at
most 24 consecutive bit locations. This fact will be used later
to improve the efficiency of bit-plane coding these EI values.

EURASIP Journal on Image and Video Processing

Now consider the filter operation of the wavelet transform as
an inner product:

N-1
w= Z hici, (2)
i=0

where h; are the filter coefficients of a length N filter and ¢;
are the floating-point data coefficients. Since ¢; and h; both
have mantissas of 24 bits, the resulting product term h;c; will
in general have a mantissa of length greater than 24 bits (pos-
sibly as large as 48 bits). In addition, since each of h; and ¢;
can have greatly varying exponents, the sum w of these in-
ner products has an EI representation that is much greater
than a run of 24 bits. Simply, truncating the wavelet coeffi-
cient mantissa back to 24 bits, as would be done in standard
floating-point arithmetic, would result in a wavelet trans-
form that is not reversible (lossless). Thus a lossless wavelet
transform cannot be derived using standard floating-point
multiplication.

A solution to the lossless wavelet transform can be de-
rived by recognizing that the EI format represents integers,
albeit large ones. Thus applying the lossless integer wavelet
transform from the original JPEG2000 standard, making al-
lowances for the larger 278-bit integer size, results in a loss-
less wavelet transform for floating-point data. This proposed
lossless floating-point wavelet transform has two main dis-
advantages. First, coding efficiency is potentially decreased
since the coding of each wavelet coefficient can potentially
require the coding of more than 24 mantissa bits. Second,
because of the varying exponents of the original data, each
wavelet coefficient will generally have a mantissa of varying
bit lengths. Thus, the coder will have to send side informa-
tion to the decoder to indicate when to stop coding of each
coefficient because of these varying bit lengths. Note that
the problem of varying mantissa lengths is not an issue in
untransformed data since all of these coefficients have a set
mantissa length of 24 bits. For these reasons, this paper con-
siders the coding of both wavelet transformed and untrans-
formed floating-point data. The coding of untransformed
data has precedent in the original JPEG2000 standard in 2
places: (1) the coding of the LL band of the wavelet trans-
formed data, and (2) the compression of untransformed
bilevel image data [3]. Note also that eliminating the wavelet
transform eliminates only one aspect of flexibility of the
coded bit stream, namely, resolution or size scaling.

We close this section by commenting on the relative
improvement in coding performance due to the wavelet
transform in the fixed-point and floating-point compression
cases. The distribution of wavelet transformed coefficients in
a particular frequency band tends to have a Laplacian distri-
bution [9, 10]. Thus a large percentage of the coefficients in
the band have relatively small values. Small values for fixed-
point representation directly translates into a small number
of bit planes required to code the coefficient in a lossless
manner. Thus the wavelet transform has the ability to greatly
enhance the coding performance in the fixed-point case. In
contrast, a small coefficient in floating-point representation
does not necessarily translate into a smaller number of bit

Bit

lane

fubset 31 1 30 129 1 28 |
||||||||||||||||||||||||4\||||||||||:
e 255 248 240 232 224

Coefficient | [T T T T T T T T TITTITTTITITITTIITTITTI]
Coefficient 2 LI T T T T TTTTTTTTTTTITTTTITTIT]

FIGURE 3: An example subset division where the number of bit
planes per subset is z = 8. Coefficient 1 is eligible in subsets 31—
28 while coefficient 2 is eligible in subsets 30-28.

planes required for coding. Rather it just means that the ini-
tial bit-plane coded starts further down in the coding process.
Thus, the number of bit planes required to code the smaller
coefficient could actually increase due to the wavelet trans-
form. As a result, the wavelet transform is not as beneficial to
coding in the floating-point case as it is in the fixed-point
case. This bit expansion can be ameliorated somewhat by
choosing the truncation floor of the EI representation to be
the smallest bit plane of the original data that has a nonzero
value (for data without denormalized values the truncation
floor would be 23 bits less than the smallest exponent of the
original data).

4. BIT-PLANE CODING

The proposed algorithms in this paper use the concept of bit-
plane coding the EI format with some modifications made
to increase efficiency. The first modification deals with the
number of coefficients that are coded in each bit plane. In
standard JPEG2000 bit-plane coding, each bit from every co-
efficient is coded in each bit plane, starting with the most
significant bit plane. This approach is inefficient for floating-
point data since for any particular coefficient, the run of
mantissa bits will occupy only a fraction of the 278 bits of
the EI representation (24 of the 278 bits for untransformed
data, and generally more bits for the wavelet transformed
data). Define the active bits of the EI representation as the
24 mantissa bits for untransformed data, and the run of bits
bounded the highest and lowest bit-plane-1 values for the
wavelet transformed data. Therefore untransformed data has
active bits in less than 9% (24/278 x 100) of the total bit
planes. Thus it is expected for floating-point data, having a
large dynamic range, that only a subset of the coefficients will
be coded in a particular bit plane. The first proposed modifi-
cation is to divide the bit planes into subsets, similar to what
EZW does using zero-trees and SPIHT does using set parti-
tions. A coefficient is said to be eligible in a particular subset
if it has active bits in any of the bit planes of that subset (see
Figure 3).

A proposed subset division for defining coefficient eligi-
bility is shown in Figure 3, which corresponds to a uniform
division of the bit planes. For this division, a coefficient w; is
eligible in subset s if

[EJ . [MJ 3)

z

Bryan E. Usevitch

EL
SEFIHR | CL
SP MR —>| CL 2-bit
planes
(one subset)
SP MR CL
EL
SP MR CL
z-bit
planes

(next subset)

F1GURE 4: The bit-plane encoding passes showing the inclusion of
the eligibility (EL) coding pass.

where ¢; is the coefficient’s offset exponent, z is the number
of bit planes in each subset, and N is the number of mantissa
bits required to represent the coefficient. The valid range of
subsets is

lﬁnjﬂJ =5max2520) (4)

where emax is the largest coefficient exponent in the code-
block.

The algorithm for coding floating-point values proceeds
by first identifying those coefficients eligible in the largest
subset smax. The locations of these coefficients in the largest
subset are coded using standard and run mode coding from
the JPEG2000 integer cleanup pass. The only difference being
that no sign bits are coded. These locations can be viewed as
forming a mask, herein called the eligibility mask (EM), indi-
cating only those coefficients that are to be coded in the cur-
rent subset. The coding of the eligibility map can be viewed
as another pass herein referred to as the eligibility (EL) pass.
After the eligible coefficients are identified, standard integer
bit-plane coding is then performed, where the three passes
(significance propagation, magnitude refinement, cleanup)
are limited to those bits indicated by the EM. The relation of
the EL coding pass to the standard integer bit-plane coding
passes is shown in Figure 4.

The Standard integer bit-plane encoding proceeds up
through the coding of bit-plane z X spmax. At this point, an-
other EL pass is required since bit-plane z X smax — 1 is in sub-
set Smax — 1 which may include more eligible coefficients. This
next EP codes only those coefficients which become eligible
in subset smax — 1, and these locations are added to the EM.
Then z more bit planes are coded to reach the next subset
boundary, followed by another EL coding pass. The process

continues in a like manner until all bit planes are coded (see
Figure 4). One exception needs to be mentioned. The max-
imum subset may skip coding some of its most significant
bit planes if they are all zero. This is identical to identifying
the first nonzero bit planes in standard JPEG2000 bit-plane
coding [3].

The second modification to the JPEG2000 bit-plane cod-
ing deals with when to stop coding a coefficient. As men-
tioned above, stopping the coding of coefficients in the orig-
inal JPEG2000 bit-plane coding is not an issue since each bit
from every coefficient is coded in each bit plane. In floating-
point bit-plane coding, all the useful coefficient informa-
tion is contained in only a fraction of the bit planes. Thus
the floating-point algorithm includes the concept of turning
off the coding of a coefficient after all active bits have been
coded. The variable used to track this is called alpha signifi-
cance (denoted by «). This variable is identical to the signif-
icance function ¢ in JPEG2000 except in one regard. Specif-
ically, it is set after the first significant bit in a coefficient is
coded. However, it differs in that it is set to zero after all ac-
tive bits in a coefficient have been coded. This corresponds
to 24 bits (1 for the most significant bit and 23 for the mag-
nitude refinement bits) for untransformed data. For wavelet
transformed data, an extra pass is included to indicate when
a coefficient has no remaining bits to be coded. This pass, de-
noted as “alpha off” (AO), only codes those coefficients that
have been significant for at least 24 bit planes. For efficiency,
this pass is only coded prior to every eligibility pass. Because
this pass is coded only once every z bit planes, and assuming
last bit to be coded to be uniformly distributed in the subset,
this adds on average an extra z/2 zero bits that must be coded
for wavelet transformed coefficients. The overhead of these
extra bits is caused by the nonuniform mantissa length of
each coefficient introduced by the wavelet transform. The use
of a-significance improves coding performance since only
those bits which contain relevant information are coded.

5. CONTEXT FORMATION AND SIGNIFICANCE
PROPAGATION

Besides bit-plane coding coefficients, the JPEG2000 algo-
rithm must create contexts to assist in the entropy coding of
these bits. This section describes a new variable f-signif-
icance that is used in conjunction with the a-significance
introduced in the previous section to form entropy coding
contexts. These variables can be viewed as enhancements to
the original significance function ¢ used in the fixed-point
JPEG2000 bit-plane coding and context formation [3]. The
significance function ¢ in JPEG2000 serves 3 purposes: (1)
indicates the coefficients which are to be coded in the mag-
nitude refinement pass, (2) determines the contexts for the
arithmetic coding of symbols, (3) indicates neighbors of sig-
nificant coefficients to be coded in the significance propaga-
tion pass. Purpose 1 of ¢ is filled by the a-significance (see
previous section) in floating-point coding. The variable j3-
significance is introduced to fill purposes 2 and 3 of ¢. Pur-
poses 2 and 3 use the statistical correlation of significance
among neighboring pixels to improve the entropy coding

EURASIP Journal on Image and Video Processing

performance. However, this correlation decreases as the dis-
tance (as measured in bit planes) between the most signifi-
cant bits in neighboring pixels increases. The -significance
is used to account for this decrease in correlation. The f-
significance variable is set at the same time the a-significance
variable is set, but is turned off after B < 23bit planes.
This models the fact that after B bit planes, the correlation
among neighboring bit planes is negligible and thus not use-
ful for coding purposes (see discussion on BYPASS mode on
[3, page 504]). The exact value of B which gives best per-
formance needs to be determined experimentally and is ex-
pected to be in the range of 4 to 15 for most image types. The
B-significance variable is used in the same manner as ¢ in the
original JPEG2000 for purposes of identifying neighbors of
significant pixels for the significance propagation pass, or for
determining contexts for entropy coding.

A main advantage of using the EI concept for compress-
ing floating-point data is its simplicity. For bit-plane coding
the method requires only minor changes to the JPEG2000
coding algorithm. These changes include the addition of an
EL and AO pass every z-bit planes, and the tracking of two
significance variables (« and f3) instead of just one (o). The
other change required is an integer wavelet transform that
can handle the larger bit size corresponding to Els. Because
of its simplicity, the EI method retains all the other very
nice properties of JPEG2000 including fully embedded bit
streams, and post-compression rate distortion optimization.
It also maintains the homogeneity of the coding paths for in-
teger and floating-point data, which is analogous to lossy and
lossless compression following the same computational data
paths.

6. TEST RESULTS

This section presents compression performance results of the
proposed floating-point coding using the EI algorithm. Only
lossless results are given since the correctness of the com-
pression algorithms can be unconditionally verified, it avoids
the issue of doing post compression rate distortion optimiza-
tion, it makes it easy to directly compare the results with
other compression algorithms, and the lossless case is the
case emphasized in the literature for floating-point compres-
sion. The results of the proposed algorithm are for the two
cases of untransformed and wavelet transformed image data,
labeled nowave and wave, respectively. The parameters for
the proposed algorithms are given in Table 1. The results for
the proposed method should be considered as slightly opti-
mistic since they do not include all of the overhead needed
for packet formation in JPEG2000 (packet headers will have
to be changed from the existing JPEG2000 headers to ac-
commodate the new algorithm, and this issue was not pur-
sued here). However, packet overhead in JPEG2000 is small
and should not affect these results by more than a few per-
cent. Also note that for efficiency, the truncation floor of
the lossless wavelet transform was set to be 23 bits below the
minimum positive exponent of the original data. This choice
eliminates the expansion of data bits below the truncation
floor while still maintaining a lossless wavelet transform.

TaBLE 1: Parameters used in the proposed nowave and wave meth-
ods for the lossless floating-point compression tests.

Parameter Value
Subset size 8
Levels of wavelet trans. 3t
Codeblock size 16 X 16

B-significance 8-bit planes

TFor transformed data only.

The compression results are compared against the results
of four additional lossless methods. The first two methods,
labeled gzip and bzip2, apply the well-known gzip and bzip2
lossless compressors directly to the 4-byte integer represen-
tation of floating-point image files. The third method, la-
beled gz4, divides the original image into four one-byte inte-
ger images. Each one-byte image represents one-byte of the
floating-point representation of the original floating-point
values. The compressor gzip is then run on each of these four
files, with the sum of their compressed sizes giving the re-
sulting compressed image size. The fourth method, labeled
lip2gz, divides the original image into a 16-bit integer im-
age and two 8-bit images. The 16-bit image represents the
sign, exponent, and first seven (stored) mantissa bits of the
floating-point representation of the original values. The two
8-bit images each represent the remaining least significant
mantissa bits. The lossless JPEG2000 algorithm is run on the
16-bit image, and gzip is run on the two 8-bit files, with the
compressed image size being the sum of the individual com-
pressed sizes. The actual JPEG2000 compressor used is the
publicly available JASPER implementation [11].

The proposed compression methods were tested on two
different data sets. The first set consists of weather research
forecast data for hurricane Isabel, and is publicly available
on the Internet [12]. The data was generated by the National
Center for Atmospheric Research and was used in the 2004
[EEE Visualization Contest. The data is in the form of vol-
umetric cubes of dimensions 500 x 500 x 100, and these
cubes are generated at several time instances. For simplicity
the 500 x 500 dimensions were truncated to 480 x 480 to be
exact multiples of the codeblock size. One hundred 480 x 480
pixel images were created from this truncated block, and each
image was compressed independently. JPEG2000 is primar-
ily an image compression standard, but it does have some
provisions for compressing volumetric data given in Part 2
of the standard. This decorrelation in the third dimension
provided by Part 2 was not used in these experiments. The
compression results, averaged over the 100 images for each
variable, were computed for the 7th and 24th time instants
for the temperature, pressure, cloud, precipitation, and U, V,
and W wind speed variables. The results are shown in Tables
2 and 3.

From Tables 2 and 3, it appears that the ljp2gz method
is the winner in terms of raw compression performance, al-
though it had problems with the cloud variable data. The sec-
ond and third best compression performance results proba-
bly go to nowave and gz4, where either one could be argued
as being the second best. The Isabel data is exceptional in one

Bryan E. Usevitch

TABLE 2: Results of compressing hurricane Isabel data for seven
variables at time step 7. Values are compression ratios (original size
divided by compressed size) averaged over 100 images.

Image gzip bzip2 gz4 ljp2gz Nowave Wave
Temperature 1.24 134 1.79 1.86 1.54 1.91
Pressure .13 110 157 173 1.44 1.41
Cloud 8.03 8.06 821 7.18 9.22 5.06
Precip. 129 125 1.50 1.58 1.55 0.95

U wind speed 1.11 1.07 1.45 1.66 1.39 1.33
Vwind speed 1.12 1.07 1.43 1.65 1.38 1.32
W wind speed 1.08 1.05 1.24 1.18 1.27 1.00

TaBLE 4: Results of compressing battlescale forecast model data for
six variables averaged over 2 time steps. Values are compression ra-
tios (original size divided by compressed size) with each time step
having 63 images.

Image gzip bzip2 gz4 ljp2gz Nowave Wave
Temperature 142 1.65 1.93 1.70 1.64 2.15
Pressure 1.25 1.39 1.72 1.45 1.54 1.77

Water Vapor 1.14 1.11 1.47 1.35 1.40 1.57
Uwindspeed 1.11 1.06 139 1.25 1.37 1.32
Vwind speed 1.10 1.06 139 1.25 1.37 1.35
W wind speed 1.08 1.03 1.20 0.98 1.23 0.93

TaBLE 3: Results of compressing hurricane Isabel data for seven
variables at time step 24. Values are compression ratios (original
size divided by compressed size) averaged over 100 images.

Image gzip bzip2 gz4 ljp2gz Nowave Wave
Temperature 1.24 1.36 1.71 1.81 1.52 1.74
Pressure .14 1.11 1.50 1.68 1.44 1.32
Cloud 9.34 9.60 870 6.61 10.56 4.47
Precip. 1.10 1.06 129 1.40 1.31 0.91

U wind speed 1.10 1.07 137 1.58 1.37 1.24
V wind speed 1.12 1.07 1.37 1.58 1.37 1.24
W wind speed 1.08 1.05 1.21 1.06 1.23 0.95

aspect. Approximately 0.5% of the original data points were
not available, and these points were set to the value of 1e35!
in the resultant data. Also, these missing points were scat-
tered as singleton points throughout the data. These points
negatively impact coding performance of probably all the
tested algorithms, but especially hurt the performance of the
proposed wave method. As mentioned in Section 3, taking
the lossless wavelet transform of data with points with greatly
varying exponents can greatly increase the number of man-
tissa bits needed to represent the resulting wavelet domain
data. For example, the 1e35 coefficient starts at the 2!1° bit
value (or 243 offset bit plane), and the precipitation variable
has data down to the 2714° bit value (or —22 offset bit plane).
Inner products using these wide values could result in coef-
ficients needing 266 mantissa bits to represent, which is well
beyond the original 24 mantissa bits needed. Due to filtering,
these expanded range pixel values occupy a neighborhood
around the original missing pixel value.

The second set of image data was floating-point weather
image data generated by the battlescale forecast model
(BEM) (more description of the data can be found in [13]).
The data was originally given in 129 X 129 x 63 data cubes for
each variable, which was then truncated and parsed to give
63, 128 x 128 pixel, images. The results of compressing the
temperature, pressure, water vapor, and U, V, and W wind
speed variables averaged over two time steps (two data cubes)

1 Values different from 1e35 were observed in the data, but all had (decimal)
exponents greater than 35.

are shown in Table 4. Here the clear winner in terms of raw
compression performance is the proposed wave method, al-
though it does have a slight problem with the W wind speed
data variable. The second and third best methods are proba-
bly the gz4 and nowave, respectively.

A conclusion that can be drawn from the experiment re-
sults is that no one algorithm gives the best compression per-
formance for all types of data. However, the data also shows
that the proposed nowave and wave methods give raw com-
pression performance that is very competitive with state-
of-the-art existing methods. The good compression perfor-
mance, coupled with the benefits of a very flexible coded bit-
stream, make the proposed methods very attractive for use in
lossless floating-point image compression.

Beside compression performance, algorithm complexity
is another important consideration when choosing a com-
pression method. Algorithm complexity is discussed here
in terms of implementation complexity and computational
complexity. Implementation complexity is defined as the ef-
fort required to implement a particular compression method
in either software or hardware. Admittedly the effort required
to implement floating-point JPEG2000 is greater that re-
quired to implement for example gzip. However, gzip, bzip,
JPEG, and fixed-point JPEG2000 are all publicly and freely
available. Thus, the end user does not have to exert a sig-
nificant effort in implementing them. In a similar manner,
implementations of the currently proposed JPEG2000-based
floating-point methods will eventually also become publicly
available. Thus the implementation cost of the different com-
pression methods, at least to the end user, is negligible. The
implementation cost for floating-point JPEG2000 is also re-
duced for manufacturers already having integer JPEG2000
implementation since much of the existing code and software
can be reused.

Computational complexity is defined as the amount of
machine resources, for example, CPU cycles, required to
compress an image. Table 5 shows the results of measuring
the computational complexity of various methods using the
UNIX time command. The time output used was the “real”
time, and the system used was a Pentium 4, 3 GHz, running
the 2.6.12 kernel on Linux. The times for gz4 and ljp2gz are
somewhat overstated since the times for separating and com-
bining the separate files was not included. Also, the wave and
nowave code is currently “proof of concept” code and has not

EURASIP Journal on Image and Video Processing

TABLE 5: Real compression and decompression times measured us-
ing the UNIX time command, using the pressure variable from the
first Battlescale Forecast Model data cube.

gzip bzip2 gz4 ljp2gz nowave wave
code 1.19 1.95 1.08 2.15 7.78 17.69
decode 0.69 1.17 0.76 2.41 5.48 12.89
total 1.87 3.12 1.84 4.55 13.25 30.58

been fully optimized in terms of its algorithms and coding.
For example, after a certain number of bit planes below the
most significant bit, the mantissa one and zero bits become
equal probable. Thus there is no advantage to coding them
with the arithmetic encoder (see the discussion of BYPASS
mode on [3, page 504]). The current wave and nowave have
not implemented the BYPASS mode and thus are not as com-
putationally efficient as they could be. The results of Table 5
indicate that the proposed methods (even probably with op-
timization) are more computationally complex than other
current floating-point methods. Since the proposed methods
and integer JPEG2000 algorithm use the same bit-plane scan-
ning, context formation, lifting wavelet transform, and arith-
metic encoder, the main increase in computational complex-
ity comes from the increased number of bit planes and in-
creased wavelet transform complexity caused by the pro-
posed methods’ increased integer length.

7. CONCLUSIONS

This paper presented methods for compressing floating-
point image data that can be incorporated into the JPEG2000
standard with very few modifications. Test results show that
the raw lossless compression performance of the proposed
algorithms on real floating-point image data is very compet-
itive with current state-of-the-art methods. However, com-
parison of the proposed algorithms based solely on raw
compression performance greatly understates the value of
the proposed algorithms. Besides offering excellent floating-
point lossless compression, the proposed algorithms retain
all of the desirable properties of JPEG2000, such as partial
lossy decompression from losslessly coded bit streams, and
rate distortion optimal embedded bit streams that can be de-
coded with resolution, quality, or spatial ordering. Thus the
proposed algorithms offer both very good compression per-
formance, as well as higher compressed data flexibility. The
results of this paper also show that the increased compressed
data flexibility also comes at the cost of some increase in
computational complexity.

ACKNOWLEDGMENTS

This work was supported by the National Imagery and Map-
ping Agency Grant NMA401-02-2017 and the Texas Instru-
ments Foundation. The author thanks Dr. Sergio Cabrera
and the Army Research Labs for providing the battlescale
forecast model image data. Hurricane Isabel data was pro-
duced by the Weather Research and Forecast (WRF) model,
courtesy of NCAR, and the US National Science Foundation

(NSF). The author thanks the anonymous reviewer for sug-
gesting the gzip and [jp2¢z as methods for comparing com-
pression results.

REFERENCES

[1] K. Sayood, Introduction to Data Compression, Morgan Kauf-
mann, San Francisco, Calif, USA, 2000.

[2] A. Gersho and R. Gray, Vector Quantization and Signal Com-
pression, Kluwer Academic, Norwell, Mass, USA, 1992.

[3] D. Taubman and M. Marcellin, JPEG2000: Image Compres-
sion Fundamentals, Standards, and Practice, Kluwer Academic,
Boston, Mass, USA, 2002.

[4] V. Engelson, D. Fritzson, and P. Fritzson, “Lossless compres-
sion of high-volume numerical data from simulations,” in Pro-
ceedings of Data Compression Conference (DDC °00), p. 574,
Snowbird, Utah, USA, March 2000.

[5] F Ghido, “An efficient algorithm for lossless compression of
IEEE float audio,” in Proceedings of Data Compression Confer-
ence (DDC °04), pp. 429-438, Snowbird, Utah, USA, March
2004.

[6] P. Ratanaworabhan, K. Jian, and M. Burtscher, “Fast lossless
compression of scientific floating-point data,” in Proceedings of
Data Compression Conference (DCC °06), pp. 133-142, Snow-
bird, Utah, USA, March 2006.

[7] P.Lindstrom and M. Isenburg, “Fast and efficient compression
of floating-point data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 1245-1250, 2006.

[8] T. Instruments, TMS320C3x User’s Guide, Texas Instruments,
1994.

[9] S. G. Mallat, “A theory for multiresolution signal decomposi-
tion: the wavelet representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674—693,
1989.

[10] B. E. Usevitch, “A tutorial on modern lossy wavelet image
compression: foundations of JPEG 2000,” IEEE Signal Process-
ing Magazine, vol. 18, no. 5, pp. 22-35, 2001.

[11] M. Adams, “The JasPer Project,” Source code and user manu-
als, http://www.ece.uvic.ca/~mdadams/jasper/.

[12] http://vis.computer.org/vis2004contest/data.html.

] O. M. Kosheleva, B. E. Usevitch, S. D. Cabrera, and E. Vidal Jr.,
“Rate distortion optimal bit allocation methods for volumetric
data using JPEG 2000,” IEEE Transactions on Image Processing,
vol. 15, no. 8, pp. 2106-2112, 2006.

http://www.ece.uvic.ca/~mdadams/jasper/
http://vis.computer.org/vis2004contest/data.html

	1. INTRODUCTION
	2. FLOATING POINT REPRESENTATIONS
	3. LOSSLESS FLOATING POINT WAVELET TRANSFORM
	4. BIT-PLANE CODING
	5. CONTEXT FORMATION AND SIGNIFICANCE PROPAGATION
	6. TEST RESULTS
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

