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Object-based image coding is drawing a great attention for the many opportunities it offers to high-level applications. In terms of
rate-distortion performance, however, its value is still uncertain, because the gains provided by an accurate image segmentation
are balanced by the inefficiency of coding objects of arbitrary shape, with losses that depend on both the coding scheme and the
object geometry. This work aims at measuring rate-distortion costs and gains for a wavelet-based shape-adaptive encoder similar
to the shape-adaptive texture coder adopted in MPEG-4. The analysis of the rate-distortion curves obtained in several experiments
provides insight about what performance gains and losses can be expected in various operative conditions and shows the potential
of such an approach for image coding.
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1. INTRODUCTION

Object-based image coding is an increasingly active area of
research, dating back to early works on second generation
coding techniques [1] and gainingmomentummore recently
thanks to the driving force of theMPEG-4 video coding stan-
dard [2]. The major conceptual reason for object-based cod-
ing is that images are naturally composed by objects, and
the usual pixel-level description is only due to the lack of a
suitable language to efficiently represent them. Once objects
have been identified and described, they can be treated in-
dividually for the most diverse needs. For example they can
be assigned different coding resources and different error-
protection levels based on their relative importance for the
user [3, 4], can be edited in various ways by high-level ap-
plications, or can be used for subsequent classification tasks
(e.g., biometric applications).

In some instances, object-based coding is obviously the
most reasonable solution. In the context of MPEG-4 video
coding, for example, when a number of arbitrarily shaped
foreground objects move in front of a fixed background,
which is a full-frame sprite, conventional coding is clearly
inefficient. Additionally, there exist applications (e.g., [5]) in
which data are available only for part of the image frame, and
one has no choice but to either code an arbitrarily-shaped

object or artificially pad the object out to a full-frame. Sim-
ilar to object-based coding, but at a lower level of abstrac-
tion, is region-based coding, where the focus is not on ob-
jects, meant as semantic units, but rather on image regions,
defined by their statistical properties. Statistically homoge-
neous regions can be singled out by pixel-level segmentation
techniques with the aim to encode them efficiently, or the
user himself can identify a region of interest (ROI) to en-
code it at higher priority or with different techniques than the
background, as envisaged in several applications and stan-
dards [6–9].

Of course, before resorting to object-based coding, and
to a particular suite of algorithms, one should be well aware
of its potential advantages and costs. In terms of coding ef-
ficiency, the object-based description of an image presents
some peculiar costs which do not appear in conventional
coding. First of all, since objects are separate entities, their
shape and position must be described by means of some seg-
mentation map, sent in advance as side information. In ad-
dition, most coding techniques become less efficient when
dealing with regions of arbitrary size and shape. Finally, each
object needs its own set of coding parameters, which adds
to the side information cost. On the positive side, an accu-
rate segmentation carries with it information on the graph-
ical part of the image, the edges, and hence contributes to
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the coding efficiency and perceived quality. Moreover, com-
ponent regions turn out to be more homogeneous, and their
individual encoding can lead to actual rate-distortion gains.

In any case, to limit the additional costs, or even obtain
some performance improvement, it is necessary to select ap-
propriate coding tools, and to know in advance their behav-
ior under different circumstances.

In this work, we focus on a wavelet-based shape-adaptive
coding algorithm. The main coding tools are the shape-
adaptive wavelet transform (SA-WT) proposed by S. Li and
W. Li [10], and a shape-adaptive version of SPIHT (SA-
SPIHT) [11] (similar to that formerly proposed in [12] and
further refined in [13]) which extends to objects of arbi-
trary shape the well-known image coder proposed by Said
and Pearlman [14]. The attention on wavelet-based coding
is justified by the enormous success of this approach in con-
ventional image coding [15, 16], leading to the new wavelet-
based standard JPEG-2000 [7], and more recently video cod-
ing [17]. As for the choice of the specific coding scheme, S. Li
andW. Li’s SA-WT is by now a de facto standard, and SPIHT
guarantees a very good performance, and is widespread and
well known in the compression community. In addition, the
algorithm analyzed here is very similar to the standard tex-
ture coder of MPEG-4 [2]. Of course, this is not the only rea-
sonable choice, and other coding algorithms based on shape-
adaptive wavelet have been proposed in recent years [18–22],
sometimes with very interesting results, but a comparison
with some of these algorithms, deferred to the last section,
is of marginal interest here. The main focus of this work is to
analyze the quite general mechanisms that influence the effi-
ciency of wavelet-based shape-adaptive coding and to assess
the difference in performance with respect to conventional
wavelet-based coding.

In more detail, we can identify three causes for the ad-
ditional costs of object-based coding: the reduced energy
compaction of the WT and the reduced coding efficiency of
SPIHT that arise in the presence of regions with arbitrary
shape and size, and the cost of side information (segmen-
tation map, object coding parameters). Note that this clas-
sification is somewhat arbitrary, since the reduced energy
compaction of WT does influence the efficiency of SPIHT,
nonetheless it will help us in our analysis. As for the possible
gains, theymirror the losses, since they arise for the increased
energy compaction of the WT, when dominant edges are
removed, and for the increased coding efficiency of SPIHT
when homogeneous regions have to be coded.

A theoretical analysis of such phenomena is out of the
question, and in the literature attempts have been made only
for very simple cases, like 1D piecewise-constant signals [23].
Therefore, we measure losses and gains by means of numer-
ical experiments carried out in controlled conditions. This
allows us to isolate with good reliability the individual con-
tributions to the overall performance, point out weaknesses
and strengths of this approach, and hence give insight about
the behavior of the proposed coding scheme in situations of
practical interest.

In order to assess losses and gains related to the SA-WT
only, we remove the cost of side information, and use an
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Figure 1: The object-based coding scheme under investigation.

“oracle” coder which mimics the progressive bit-plane cod-
ing of SPIHT but knows in advance the location of signifi-
cant coefficients within each bit-plane, thereby removing all
sorting-pass costs.1 Within this framework, we use several
classes of images and of segmentation maps, both synthetic
and natural, so as to study all the relevant phenomena. Sub-
sequently, for the same set of images and maps, we add the
actual coding phase: the additional gains and losses can be
therefore attributed to SA-SPIHT or to its interactions with
the SA-WT.

The manuscript is organized as follows. In Section 2
some more detail on the coding scheme is provided. In Sec-
tions 3 and 4 we analyze losses and, respectively, gains of
object-based coding by means of numerical experiments on
suitable images and segmentation maps. Section 5 presents
some results for a real-world image with its own segmenta-
tion maps, and Section 6 compares performance with those
of other coding schemes described in the literature. Finally,
Section 7 draws conclusions.

2. THE CODING SCHEME

We implemented an object-based coding scheme with the
following elementary steps (see Figure 1):

(1) image segmentation;
(2) lossless coding of the segmentation map (object

shapes);
(3) shape-adaptive wavelet transform of each object;
(4) shape-adaptive SPIHT coding of each object;
(5) optimal post-coding rate allocation among objects.

The accurate segmentation of the image is of central im-
portance for the success of object-based coding, and is by it-
self a very challenging task and a “hot” topic. However, faith-
ful image segmentation is not of interest here and is not in-
vestigated. Moreover, to study the effects of different object
geometries on the coding performance, we need to change
rather freely the geometrical/statistical parameters of objects,
and therefore resort, in most of the analysis, to artificial

1 Note that the very same oracle coder works for all bit-plane oriented
coders that use S. Li and W. Li’s SA-WT, like for example [19, 22].
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regular segmentation maps, independent of the actual im-
age content. Only in our final experiments we do consider
meaningful segmentation maps.

The segmentation maps are encoded without loss of in-
formation, because of their importance, by means of a modi-
fied version of the RAPP algorithm [24], originally proposed
for palette images, which proves very efficient for this task.
The cost for coding the map, as well as all other side infor-
mation costs, can become significant and even dominant in
some instances, and hence must be always taken into account
in the overall performance.

As for the SA-WT, we resort to S. Li andW. Li’s algorithm,
as already said, which is almost universally used in the litera-
ture and also adopted in theMPEG-4 standard. For a detailed
description we refer to the original paper [10], but it is worth
recalling here its most relevant features. First of all, the num-
ber of coefficients equals the number of pixels in the original
object, so there is no new redundancy introduced. Second,
spatial relationships among pixels are retained, so there are
no new spurious “frequencies” in the transform. Finally, the
SA-WT falls back to ordinary WT for rectangular objects.
All these reasons, together with its simple implementation
and experimentally good performance, justify the success of
this algorithm. In the implementation, we use five levels of
decomposition, Daubechies 9/7 biorthogonal filters, and the
global subsampling option which secures experimentally the
best performance.

After SA-WT, we use the well-known SPIHT algorithm,
in the shape-adaptive extension proposed in [11]. Again, we
refer the reader to the original paper [14] for a description
of SPIHT, but it is worth recalling that it is a bit-plane coder
of the wavelet coefficients. For each bit-plane there are es-
sentially two tasks, locating the significant bits, and specify-
ing their value (also the coefficient signs must be encoded
of course). Other algorithms of interest here share the same
general approach, and differ only in the way significant bits
are located. Our shape-adaptive version of SPIHT is very
similar to the basic algorithm with the differences that only
active nodes, that is nodes belonging to the support of the
SA-WT transform, are considered, and that the tree of coef-
ficients has a single ancestor in the lowest frequency band.

After coding, the rate-distortion (RD) curves of all ob-
jects are analyzed so as to optimally allocate bits among them
for any desired encoding rate, like in the post-compression
rate allocation algorithm of JPEG-2000. This process is in-
trinsically performed in conventional coding, while it is a
necessary step in object-based coding, and also an extra de-
gree of freedom as bits could be also allocated according to
criteria different from RD optimization.

3. MEASUREMENT OF LOSSES

3.1. Methodology

The performance of a transform-based compression algo-
rithm depends essentially on the efficiency of the transform,
which is therefore the first item we must quantify.

In the context of data compression, the goal of a trans-
form is to compact as much signal energy as possible in
a small number of transform coefficients. After a suitable
bit allocation, this translates in an SNR (signal-to-noise ra-
tio) improvement which, for a Gaussian signal, an isomet-
ric transform, and in the high-resolution limit, is equal to
the coding gain (CG) [25, 26], defined as 10 log10 σ

2
AM/σ

2
GM,

that is, the ratio (in dB) between the arithmetic and geomet-
ric means of the transform coefficients, or transform sub-
bands in the wavelet case. Although the above-mentioned
conditions are rarely met in practice, the CG provides a good
insight about the actual gain provided by the transform.
In addition, it can be easily extended [27] to encompass
nonisometric transforms, such as that based on the biorthog-
onal Daubechies filters. Unfortunately, in the case of shape-
adaptiveWT, such ameasure is notmeaningful at all, because
the transform is nonisometric in an unpredictable way. This
depends on the need to transform signal segments composed
by a single pixel: in S. Li and W. Li’s algorithm, this gener-
ates a single coefficient which is put in the low-pass trans-
form band and, in order not to introduce discontinuities in
otherwise flat areas, is multiplied by a constant. This multi-
plication (which can occur many times in the SA-WT of an
object) modifies the transform energy andmakes the coding-
gain measure all but useless.

For this reason, we propose here an alternative method-
ology2 to compare the efficiency of SA-WT and its conven-
tional (or “flat”) version. The basic idea is to apply both the
shape-adaptive and the flat transforms to the same image,
quantize the resulting coefficients in the same way, and com-
pare the resulting RD curves. In order for the comparison to
be meaningful, the transforms must operate on exactly the
same source, and hence all objects of the imagemust undergo
the SA-WT and be processed together. The total number of
coefficients produced by the SA-WT is equal to the number
of image pixels and hence to the number of WT coefficients.
These two sets of coefficients (which cannot be directly com-
pared because of the energy mismatch) are sent to an oracle
encoder which implements a bit-plane quantization scheme
like that of SPIHT and most other engines used in object-
based coders. All these algorithms spend some coding bits to
locate the significant coefficients in each plane (sorting pass,
in SPIHT terminology), and some others to encode their
sign and to progressively quantize them (refinement pass).
Our oracle coder knows in advance all significance maps and
spends its bits only for the sign and the progressive quanti-
zation of coefficients. As a consequence, the rate-distortion
performance of this virtual coder depends only on how well
the transform capture pixel dependencies, what we call trans-
form efficiency.

As an example, consider the RD curves of Figure 2. Al-
though the object-based coder (solid red) performs clearly
worse than the flat coder (solid blue), at least at low rates,
their oracle counterparts (dashed red and dashed blue) per-
form nearly equally well. This means that, as far as the

2 Preliminary results have been presented in [28].
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transforms are concerned, the shape-adaptive WT is almost
as efficient as the conventional WT, and therefore the losses
must be ascribed to coding inefficiencies or to the side infor-
mation. Actually, since the cost of side information is known,
we can also easily compute the losses caused by SA-SPIHT in-
efficiencies, the second major item we are interested to mea-
sure.

There are two reasons why shape-adaptive SPIHT could
be less efficient than flat SPIHT:

(i) the presence of incomplete trees of coefficients;
(ii) the interactions with the SA-WT.

Much of the efficiency of SPIHT, especially at low-rates, is
due to the use of zerotrees, that is, trees of coefficients that
are all insignificant with respect to a given threshold and
can be temporarily discarded from further analysis. A sin-
gle information bit can therefore describe a whole zerotree,
comprising a large number of coefficients. With an arbitrar-
ily shaped object, the support of the transform can be quite
irregular, and incomplete zerotrees can appear, which lack
some branches and comprise less coefficients than before. As
a consequence, the zerotree coding process becomes less effi-
cient, at least at the lowest rates.

The second item concerns a more subtle phenomenon,
the fact that the reduced WT energy compaction affects in-
deed both quantization and sorting. In fact, when the WT
does not compact efficiently, the energy is more scattered
throughout the trees and more bits are spent sorting in order
to isolate the significant coefficients at each iteration. Hence,
computing these losses as due to SA-SPIHT is somewhat ar-
bitrary, but it is also true that a different coder could be less
affected by this phenomenon.

3.2. Experimental results

To measure losses, we encode some natural images of the
USC database [29] with both the oracle and the actual object-
based coders using synthetic segmentation maps of various
types formed by square tiles, rectangular tiles, wavy tiles, ir-
regular tiles. Test images (512 × 512 pixels, 8 bit/pixel) are
shown in Figure 3, while Figure 4 shows some examples of
segmentation maps. By using such synthetic maps, which are
not related to the actual image to be coded, we introduce and
measure only the losses due to object shape and size, while
no gain can be expected because object boundaries do not
coincide with actual region boundaries.

In the first experiment we segment the natural images in
square tiles of size going from 512×512 (whole image) down
to 32×32 (256 objects), and encode them as described before.
In Figure 5 we report the rate-distortion curves obtained by
the object-based coders for each tile size: solid lines refer to
the actual coder, and dashed lines to the oracle coder. Note
that the flat case corresponds to the 512× 512 coder, that is,
conventional WT and SPIHT. Curves refer to the image Lena
of Figure 3(a), as will always be in the following unless oth-
erwise stated, but similar results have been obtained with all
other images. A first important observation is that the quan-
tization rate is always a small fraction, about one fourth, of
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Figure 2: RD curves for flat (red) and object-based (blue) coders.
Solid and dashed lines are, respectively, for actual and oracle coders.

the total rate, at least in the range considered here.3 As a con-
sequence, the same relative loss of efficiency is much more
critical for SPIHT than for the WT. In this experiment, how-
ever, losses are always quite limited. Performances worsen as
the tile size decreases, but the rate increment is always less
than 20% (except a very low rates) and the PSNR gap is less
than half dB at high rates, and about 1 dB at lower rates.
Most of these losses are due, directly or indirectly, to the re-
duced compaction ability of the SA-WT, since the zerotrees
are always complete, and the fixed cost of side information,
0.013 bit/pixel in the worst case, is quite small. Note, how-
ever, that this last cost cannot be neglected if one looks at
very low rates.

To begin investigating the influence of region shapes, in
the second experiment we consider rectangular tiles of fixed
size (4096 pixels) but different aspect ratios, from 64× 64 to
512×8. The RD curves are reported in Figure 6, together with
those for the flat case, and show that the aspect ratio does
matter, but only when very short segments are considered.
Indeed, the performance is very close for 64 × 64, 128 × 32,
and even 256 × 16 tiles, while it becomes significantly worse
for 512 × 8 tiles, because the WT cannot compact much en-
ergy anymore with segments as short as 8 pixels. For exam-
ple, the PSNR loss at high rate is 1.15 dB for the 512× 8 case
and less than 0.6 dB for all the other cases. One might sus-
pect that the sharp decline in performance in the 512 × 8
case is also related with our use of 5 levels of decomposition
when 3 or 4 would have beenmore appropriate for such short
segments. In fact, this mismatch produces several single co-
efficients, after some levels of WT, which are further filtered

3 At higher rates, the RD slope is the same in all cases because we are only
coding noise-like residuals, and hence the analysis looses interest.



Marco Cagnazzo et al. 5

(a) (b) (c) (d)

Figure 3: Test images from the USC database: (a) Lena, (b) peppers, (c) baboon, (d) house.

(a) (b) (c) (d)

Figure 4: Some maps used in the experiments: (a) square 128× 128 tiles, (b) rectangular 128 × 32 tiles, (c) wavy tiles with C = 1, A = 16,
(d) out-of-context map.

and lead to an artificial increase in energy. However, all our
experiments show that adapting the number of decomposi-
tion levels to the object size has no measurable effects on the
performance, and that a fixed 5-level SA-WT is the optimal
choice, at least for our 512× 512 images.

Let us now consider more complex tiles, obtained by re-
modeling the boundaries of a 64 × 64 square as sine-waves
with amplitude A pixels, and frequency C cycles/tile. One
such segmentation map, obtained for A = 16 and C = 1,
is shown in Figure 4(c). In Figure 7, we report the RD curves
for some significant values of A and C, together with the ref-
erence curves for square 64 × 64 tiles and for flat coding. As
expected, the performance worsens as the tiles become less
regular. At high rates the impairment is not dramatic, with a
PSNR loss that lies between 1 and 2 dB, while the situation is
much worse at low rates, with losses of 4-5 dB or, for a given
PSNR, a coding rate that doubles with respect to flat coding.
Apparently, such losses are mainly due to the side informa-
tion and SA-SPIHT inefficiencies, and only in minimal part
to the SA-WT, since the RD curves for the oracle coder are all
very close, but we should not forget the WT-SPIHT interac-
tions, and will soon come back to this topic.

In our fourth experiment, we use segmentationmaps ob-
tained for unrelated (remote-sensing) images of the same size
as ours. These maps, one of which is shown in Figure 4(d),
present many elementary tiles, with quite different size and
shape, some with regular boundaries and some not. Figure 8
shows RD curves for this case, which resemble closely those

of Figure 7, and for which the same comments apply, sug-
gesting that the wavy-tiles segmentation can be a good tool
to mimic actual segmentation maps.

To take a closer look at these results, let us consider
Table 1 where we have collected the individual contributions
of side information, quantization, and sorting pass to the
overall coding cost, at a PSNR of 30 dB, corresponding to
the low-rate range. We see that the increase of the quanti-
zation cost with respect to the flat case is quite steep, from
15% up to 100%, due to the reduced compaction ability of
the transform. As for the sorting cost, it also increases with
respect to the flat case. The increase is obviously larger in
the last six cases, when the tile geometry is more challenging,
but also nonnegligible in the first six cases, with square and
rectangular tiles. This is quite telling, because with straight
boundaries there are no incomplete trees to impair perfor-
mance, and hence all losses must be charged to the reduced
energy compaction. Therefore, one can even hypothesize that
transform inefficiencies are the ultimate cause of most of the
overall losses, even though the effects are more evident in the
sorting pass, a conjecture that we will further analyze shortly.
As a synthetic measure of performance, we reported in the
last column the overall rate increase with respect to flat cod-
ing, including all contributions, which is quite large in all re-
alistic cases, confirming that object-based coding can be very
penalizing at low rates.

The picture, however, is quite different at high rates.
Table 2 is similar to Table 1 except that all costs are computed



6 EURASIP Journal on Image and Video Processing

0 0.2 0.4 0.6 0.8 1

Rate (bit/pixel)

20

25

30

35

40

P
SN

R
(d
B
)

Flat
128× 128

64× 64
32× 32

Figure 5: RD performance with square-tile segmentation. Solid and
dashed lines are, respectively, for actual and oracle coders. Black
lines are for flat (conventional) coding of the whole image, colored
lines are for object-based coding.
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Figure 6: RD performance with rectangular-tile segmentation.

at a PSNR of 38 dB, hence at the right end of our range. It is
obvious that the cost of side information becomes less rel-
evant, and even in the more challenging situations the cost
of quantization and sorting presents only a limited increase.
In the last column, we report a more familiar measure of
performance, the PSNR loss with respect to flat coding at
0.8 bit/pixel, which is never more than 2 dB, and quite often
under just 1 dB showing that, at high rates, object-based cod-
ing can be used without paying much attention to the rate-
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Figure 7: RD performance with wavy-tile segmentation.
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Figure 8: RD performance with out-of-context segmentation
maps.

distortion performance. It is also worth remembering that, in
most practical situations where object-based coding is used,
there is only a small number of objects, and therefore these
measures of loss can be assumed as upper bounds.

We conclude this section with one last insightful experi-
ment, which sheds some more light on the nature of SPIHT
losses. S. Li and W. Li’s SA-WT, when applied to all objects
of an image, like the simple example of Figure 9(a), produces
transforms that do not fit together, namely, cannot be put
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Table 1: Indicators of losses at low rates (PSNR = 30 dB).

Absolute rates Percent increase

Tiling Side.i. Quant. Sorting Quant. Sorting Total

Whole image — 0.026 0.085 — — —

128× 128 0.003 0.030 0.091 15.4 7.3 11.7

64× 64 0.005 0.034 0.096 30.9 13.1 21.6

32× 32 0.013 0.037 0.104 42.9 22.0 38.7

128× 32 0.005 0.034 0.100 31.2 17.8 25.2

256× 16 0.005 0.040 0.110 53.5 29.3 39.6

512× 8 0.005 0.054 0.131 106.9 54.0 71.1

C = 1, A = 8 0.032 0.038 0.116 48.4 36.3 67.5

C = 1, A = 16 0.044 0.041 0.125 58.6 46.7 89.1

C = 2, A = 16 0.060 0.047 0.141 80.6 65.8 123.4

Map 1 0.083 0.038 0.127 48.3 49.9 123.4

Map 2 0.105 0.042 0.135 61.2 59.2 154.0

Map 3 0.042 0.034 0.105 33.0 24.0 63.0

Table 2: Indicators of losses at high rates (PSNR = 38 dB).

Absolute rates Percent increase ΔPSNR
@ 0.8 b/pTiling Side.i. Quant. Sorting Quant. Sorting

Whole image — 0.176 0.488 — — —

128× 128 0.003 0.184 0.498 4.2 2.0 0.15

64× 64 0.005 0.195 0.512 10.6 4.9 0.31

32× 32 0.013 0.204 0.534 15.5 9.4 0.62

128× 32 0.005 0.194 0.519 10.2 6.3 0.37

256× 16 0.005 0.209 0.542 18.2 11.0 0.60

512× 8 0.005 0.241 0.590 36.4 20.9 1.14

C = 1, A = 8 0.032 0.211 0.563 19.3 15.2 0.95

C = 1, A = 16 0.044 0.221 0.589 25.2 20.6 1.35

C = 2, A = 16 0.060 0.234 0.622 32.6 27.3 1.82

Map 1 0.083 0.209 0.591 18.5 21.1 1.33

Map 2 0.105 0.225 0.611 27.5 25.2 1.89

Map 3 0.042 0.197 0.544 11.7 11.3 0.78

together in a single image as the pieces of a mosaic, because
some coefficients overlap, as the circled coefficients shown in
Figure 9(b). This is unavoidable if all single coefficients must
be put in the low-pass band after filtering. However, we can
modify the algorithm and put single coefficients either in the
low-pass or high-pass band depending on their coordinates.
This way, we might sacrifice part of the SA-WT efficiency,
but obtain object transforms that fit together as shown in
Figure 9(c). After all the SA-WTs have been carried out, we
can encode the coefficients by using SA-SPIHT on each ob-
ject, or conventional SPIHT on all the coefficients arranged
as a single image. The flat and object-based coders thus op-
erate exactly on the same set of coefficients, and all possible
impairments can be ascribed to SA-SPIHT coding inefficien-
cies. The RD curves obtained with flat and SA-SPIHT for
various segmentation maps are reported in Figure 10, and
show clearly that the efficiency gap between shape-adaptive
and flat SPIHT is always very limited, and at high rates never
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Figure 9: Object overlapping in the transform domain. The 4×4
original image with two objects (a) is subject to 1 level of SA-WT:
the supports of the two objects overlap with S. Li and W. Li SA-WT
(b) but not with the fitting SA-WT (c).

exceeds 0.3 dB.4 This seems to be a conclusive proof that the
losses arising in the sorting pass, although dominant with re-
spect to those of the quantization pass, are mostly related to
the reduced compaction ability of the SA-WT.

4. MEASUREMENT OF GAINS

4.1. Methodology

The rate-distortion potential of object-based coding strongly
depends on the ability of the segmenter to single out accu-
rately the component objects. When this happens, in fact, the
segmentation map describes automatically many expensive
high-frequency components, related to the edges between
different objects. In terms of SA-WT, this means dealing with
a signal (within the object) that is much smoother that the
original signal, since strong edges have been removed, which
leads in turn to a much increased efficiency because most of
the encoding resources, especially at low rates, are normally
used for describing edges. Of course, the actual success of
this approach depends on many factors, such as the profile
of edges, the statistical properties of the signal within the ob-
jects, and the accuracy of segmentation.

In order to measure the potential performance gains, we
get rid of the dependence on the segmentation algorithm,
which is not the object of this analysis, by building some mo-
saics in which neighboring tiles are extracted from different
images. Of course, one must keep in mind that this condi-
tion is very favorable for object-based coding since objects
are clear-cut and we know their shape perfectly. Our mosaics
vary not only for the form of the tiles, but also for the source
images from which they are drawn, that can be

(i) synthetic images where the signal is polynomial in the
spatial variables;

4 As an aside, our experiments show also that the performance of this new
scheme (fitting SA-WT + flat SPIHT) is very close to that of our object-
based algorithm. However, this new scheme is not object-based anymore.
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Figure 10: RD performance with fitting SA-WT. Solid lines are for
flat coding of the mosaic formed by the object transform, dashed
lines are for actual object-based coding.

(ii) natural images from the USC database;
(iii) natural textures from the Brodatz database, also avail-

able at [29].

Some examples are shown in Figure 11. By changing the
source images we go from the most favorable case, like that
of Figure 11(a), where all tiles are from polynomial images,
to the most challenging, like that of Figure 11(d), where even
within the tiles there are strong signal components at the
medium and high frequencies due to the original textures. In
between these extremes, there are more realistic cases where
the objects are drawn from natural images predominantly
smooth, like Figure 11(b), or with significant texture com-
ponents, like Figure 11(c).

4.2. Experimental results

Figure 12 shows the PSNR differences between the object-
based and the flat coders when mosaics are composed by
wavy tiles of size 64 × 64 and boundary parameters C = 1
and A = 16 with the same source images as those shown in
Figure 11. For the first mosaic, there is a very large gain of
8–10 dB at medium-high rates, and up to 20 dB at low rates
(out of the scale of our figure). This is remarkable but not
really surprising, given the smooth sources and the fact that
Daubechies wavelets are perfectly fit for polynomial signals.

More interesting are the results obtained with the nat-
ural mosaics, with a gain at all bit-rates of about 5 dB in
the first case, and almost 2 dB in the second case. Consid-
ering that these are natural images, this speaks strongly in fa-
vor of the potential of object-based coding, even with all the
caveat due to the favorable experimental conditions. Also, re-
member that the observed gain is obtained despite the losses
due to the use of SA-WT with small wavy tiles (see again

Figure 7). As expected, results are less favorable for the fourth
mosaic, where the presence of many high-frequency compo-
nents within the tiles reduces the gain to the point that it
compensates the shape loss but little more.

Figure 13 shows results obtained with the same source
images but with square 128 × 128 tiles. The general behav-
ior is very similar to the former case, but all gains are now
much smaller because of the reduced number of objects and
the straight boundaries, and even with the polynomial mo-
saic there is only a 2 dB gain at high rates.

5. PERFORMANCEWITH REAL-WORLD IMAGES

In order to isolate and analyze in depth the phenomena of
interest, the experiments carried out in the preceding sec-
tions dealt with ideal and sometimes limiting cases. Now,
we focus on the performance of the whole coding scheme
in real-world situations, thus including the image segmenta-
tion, with all its inaccuracies.

In these experiments, we consider the image peppers of
Figure 3(c) because its segmentation in a reasonably small
number of meaningful objects is somewhat simpler. As a side
effect, some objects comprise just one or a few smooth and
coherent surfaces, which makes peppers a more favorable
case with respect to other, more complex, images. In any case,
the choice of what represents an object is somewhat arbitrary,
and therefore we use several segmentation maps, with a dif-
ferent number of objects, shown in Figure 14 from the most
detailed (25 objects) to the simplest one (just 4 objects, in-
cluding the background).

Our object-based coding scheme provides the RD curves
shown in Figure 15 together with the curve for the flat coder.
Results might seem a bit disappointing at first, since the flat
coder is always the best, but this is easily justified. In fact,
even neglecting the unavoidable segmentation inaccuracies,
it must be considered that, with ordinary images, the object
boundaries are rarely clear-cut, due to the combination of
the object 3D geometry and the illumination, and also to
the limited resolution of the sensors that causes some edge
smearing. Of course, this erodes the gains of removing strong
edges. In addition, when objects have a semantic meaning,
their interior is typically not uniform (just think of the bright
glares within each pepper), and therefore the WT does not
benefit much from the segmentation. On the other hand,
when the segmentation map becomes very accurate, so as to
single out regions that are actually uniform, the cost of side
information increases significantly. In this light, the object-
based RD curves of Figure 15 can be considered reasonably
good, with a loss of no more than half dB at medium-high
rates, and somewhat more at the lower rates, when the cost
of side information is proportionally more relevant.

It is also interesting to consider the visual quality of com-
pressed images, and to this end, in Figure 16 we show the
image peppers compressed at 0.05 bit/pixel with WT/SPIHT
(Figure 16(a)) and with our object-based coder using the
simple segmentation map of Figure 14(b) (Figure 16(b)).
Such a low rate was selected in order to emphasize the dif-
ferences of the two approaches, which at higher rates tend
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(a) (b) (c) (d)

Figure 11: Some mosaics used in the experiments, with square 128× 128 tiles: (a) polynomials, (b) house+peppers, (c) Lena+baboon, (d)
textures.
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Figure 12: PSNR gain of OB-coding with respect to flat coding for
wavy-tile mosaics.

to disappear. The first image has a better PSNR (26.3 ver-
sus 25.2 dB), but the second one has a superior perceptual
quality, at a first look, because major edges have been better
preserved. At a closer inspection, however, the object-based
coded image presents a slightly worse texture quality, due to
the lower effective rate available, and especially some annoy-
ing artifacts at the diagonal boundaries, which appear un-
naturally rugged. This last problem could be easily overcome
by some directional filtering. Needless to say, if one concen-
trates most coding resources on a single object considered
of interest, neglecting the background, the object-based ap-
proach shows an overwhelming superiority.

To conclude this section, let us consider an example of
compression of multispectral images, where the segmenta-
tion produces regions with nearly uniform statistics, the cost
of the segmentation map is shared among many bands, and
hence the conditions are such that object-based coding can
actually provide some rate-distortion gains. We use a 6-band
512× 512-pixel Landsat TM multispectral image of a region
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Figure 13: PSNR gain of OB-coding with respect to flat coding for
square-tile mosaics.

near Lisbon, one band of which is shown in Figure 17(a),
while Figure 17(b) shows the segmentation map used in this
experiment. Figure 18 compares the rate-distortion perfor-
mance of the best flat and best object-based technique (see
[30] for more details). After recovering from the initial hand-
icap due to side information, the object-based technique pro-
vides a small but consistent performance gain over the flat
technique.

6. COMPARISONWITH OTHER OBJECT-BASED
WAVELET CODERS

The object-based coder we have analyzed uses what are
probably the most well-known and widespread tools in this
field, but other object-based coders have been proposed re-
cently, and it is therefore interesting to carry out a perfor-
mance comparison. We therefore repeated the experiments
of Figure 15 using various algorithms: WDR [18], TARP
[21], OB-SPECK [19], and BISK [22], implemented in the
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(a) (b) (c) (d)

Figure 14: Segmentation maps for image peppers with (a) 25, (b) 16, (c) 8, and (d) 4 objects.
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Figure 15: RD performance of flat and object-based codings for
image peppers.

Qcc library [31] freely available at [32]. All these algorithms
are based on an SA-WT [5] very similar to S. Li and W. Li’s
SA-WT, and encode the coefficients by means of embedded
bit-plane coding algorithms.

The best performance is exhibited by BISK, based on
the shape-adaptive version of SPECK, from which it differs
for two main innovations: the use of a more flexible binary
rather than quaternary splitting of blocks, and the introduc-
tion of a bounding box to help discard nodes outside the
object of interest. BISK proves also superior to SA-SPIHT,
as appears from the curves of Figure 19, obtained with the
map of Figure 14(d). The gap, however, is partially due to
BISK use of arithmetic coding for the output stream. When
we introduce a similar coding step after SPIHT the differ-
ence becomes very limited, Figure 20. This had to be ex-
pected, if losses are mostly related, directly or indirectly, to

the compaction ability of the SA-WT, and this is the same for
the two coders.

7. CONCLUSIONS

Wavelet transform is a de facto standard in image coding, and
SPIHT is one of the most efficient, simple, and flexible algo-
rithms for the encoding of wavelet coefficients. It is therefore
only natural to consider their shape-adaptive versions to ad-
dress the problem of object-based image coding, and to won-
der how efficient they are when used for this new task.

Our aim was to assess the rate-distortion performance of
such an object-based coder by means of numerical experi-
ments in typical situations of interest, and single out, to the
extent possible, the individual phenomena that contribute to
the overall losses and gains. Since the usual coding gain does
not make sense for S. Li and W. Li’s SA-WT, we measured
its compaction ability by analyzing the RD performance of
a virtual oracle coder which spends bits only for quantiza-
tion. This was a very important step because SA-WT losses
turned out to be quite significant, especially at low rates. Al-
though the quantization cost is by itself only a small fraction
of the total cost, the reduced compaction ability of SA-WT
has a deep effect also on the subsequent coding phase, the
sorting pass of SPIHT. In fact, our experiments revealed this
to be the main cause of SPIHT losses, while the presence of
incomplete trees plays only a minor role. This is also con-
firmed by the fact that SA-SPIHT performs about as well as
more sophisticated coding algorithms, and suggests that al-
gorithms that code significance maps equally well perform
equivalently at shape-adaptive coding regardless of how care-
fully their coding strategies have been tailored to accommo-
date object boundaries, and hence improving boundary han-
dling is largely a wasted effort.

As for the gains, our analysis showed that they can be sig-
nificant when the image presents sharp edges between rel-
atively homogeneous regions but also that this is rarely the
case with real-world images where the presence of smooth
contours, and the inaccuracies of segmentation (for a few
objects) or its large cost (for many objects) represent serious
hurdles towards potential performance gains.
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(a) (b)

Figure 16: Image peppers compressed at 0.05 bit/pixel with (a) flat and (b) object-based codings.

(a) (b)

Figure 17: Band 5 of the Landsat TM multispectral image (a) and its segmentation map (b).
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Figure 18: RD performance of flat and object-based codings for the
Landsat TM image.

The experimental evidence (the bulk of which was not
presented here) allows us to provide some simple guidelines
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Figure 19: RD performance of BISK and SA-SPIHT for image pep-
pers.

for the use of wavelet-based OB-coding, by dividing opera-
tive conditions in three major cases.
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Figure 20: RD performance of BISK and SA-SPIHTwith arithmetic
coding for image peppers.

(1) A few large (say, over ten thousand pixels)
objects with smooth contours

RD losses and gains are both negligible, hence performance
is very close to that of flat wavelet-based coding, the best cur-
rently known. In this case, which is the most explored in the
literature, resorting to wavelet-based coding, with S. Li and
W. Li’s transform and SA-SPIHT or BISK, is probably the
best solution.

(2) Many small objects (or a few large objects with
very active boundaries) at low rates

There are significant RD losses, both because of the reduced
compaction ability of SA-WT and because the coding cost of
the segmentation map is not irrelevant. This is the only case,
in our opinion, where the wavelet-based approach leaves
space for further improvements, as the introduction of new
tools explicitly thought to encode objects rather than signals
with arbitrary support.

(3) Many small objects (or a few large objects with
very active boundaries) at high rates

Here, the losses due to the SA-WT and the side information
become almost negligible, and the performance comes again
very close to that of flat coding, making wavelet-based coding
very competitive again.

This list accounts mainly for the losses, as performance
gains are currently achievable only for some specific source,
like multispectral images. Further improvements require
probably a tighter interaction between coding and segmen-
tation, with a better description of the graphical part of the

image, for example by taking into account the profile as well
as the position of the boundaries, or even an RD-driven seg-
mentation.
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